Project 1: Checkmate

For this project I used the following code to initialize my data. I included comments to explain what I was doing, and why.

library(RCurl)
## Loading required package: bitops
library(stringr)

#Extracting the URL text 
chessURL <-getURL("https://raw.githubusercontent.com/mfarris9505/Project1Data/master/Chess%20Players.txt")

#Reading the txt file into "CSV"
chess <-read.csv(text = chessURL)

#There was this odd first line of X..... which I eliminated
names(chess)[1] <- "header"

From my experience with Python and game creation, I was more comfortable looking at this data set and dealing with position. I am new to the regex, and I understand why it would and could be useful, but in this instance, I decided to first test position, and to see if I could develop a standard set and then replicate the position for the various lines in the rough data. So, we took some data points to start.

str_extract(chess$header, "GARY")

str_locate(chess$header, "GARY") 

*Note I didn’t run this code in the Markdown, as it produces just multiple lines and isn’t all that pretty. I ran it in the console, and viewed the output, and took note of the positions.

Much to my delight… I found that the 2 Gary’s in the data set were in the same position 9 to 12.

I tested this with the score as well, to see if they were in similar positions, and I found out that I was indeed correct, everything corrolated to a relative postion (Again, I tested the points by plugging in test values such as “39”, “21”, and “18”, and ran it in the console. This process was not shown here) and found that the each are 6 positions away starting at position 51.

Repeating this for each data point I needed (Name, State, Score, and AvG) I found the positions which can be seen in the code below. This was actually quite simple and took me roughly 5 minutes. I figured it save me about an hour trying to code regex to pick out specific delimiters.

Using a for loop, I ran over the data, and extracted everything I needed.

N64 <- 1:64

chessdata <- data.frame(N64)
chessopponents <- data.frame(N64)

x <-4
for (i in 1:64) {
  chessdata$Name[i] <- str_sub(chess$header[x], start = 9, end = 35)
  chessdata$State[i] <- str_sub(chess$header[x+1], start = 4, end = 5)
  chessdata$Score[i] <- str_sub(chess$header[x], start = 42, end = 44)
  chessdata$AVG[i] <- str_sub(chess$header[x+1], start = 23, end = 26)
  
  
  chessopponents$RD1[i] <-str_sub(chess$header[x], start = 51, end = 52)
  chessopponents$RD2[i] <-str_sub(chess$header[x], start = 57, end = 58)
  chessopponents$RD3[i] <-str_sub(chess$header[x], start = 63, end = 64)
  chessopponents$RD4[i] <-str_sub(chess$header[x], start = 69, end = 70)
  chessopponents$RD5[i] <-str_sub(chess$header[x], start = 75, end = 76)
  chessopponents$RD6[i] <-str_sub(chess$header[x], start = 81, end = 82)
  chessopponents$RD7[i] <-str_sub(chess$header[x], start = 87, end = 88)
  
  x <-x+3
}

# Formating to force String to numeric for the calculations
chessdata$AVG <- as.numeric(as.character(chessdata$AVG))

chessopponents$RD1 <- as.numeric(as.character(chessopponents$RD1))
chessopponents$RD2 <- as.numeric(as.character(chessopponents$RD2))
chessopponents$RD3 <- as.numeric(as.character(chessopponents$RD3))
chessopponents$RD4 <- as.numeric(as.character(chessopponents$RD4))
chessopponents$RD5 <- as.numeric(as.character(chessopponents$RD5))
chessopponents$RD6 <- as.numeric(as.character(chessopponents$RD6))
chessopponents$RD7 <- as.numeric(as.character(chessopponents$RD7))

head(chessdata)
##   N64                        Name State Score  AVG
## 1   1 GARY HUA                       ON   6.0 1794
## 2   2 DAKSHESH DARURI                MI   6.0 1553
## 3   3 ADITYA BAJAJ                   MI   6.0 1384
## 4   4 PATRICK H SCHILLING            MI   5.5 1716
## 5   5 HANSHI ZUO                     MI   5.5 1655
## 6   6 HANSEN SONG                    OH   5.0 1686
head(chessopponents)
##   N64 RD1 RD2 RD3 RD4 RD5 RD6 RD7
## 1   1  39  21  18  14   7  12   4
## 2   2  63  58   4  17  16  20   7
## 3   3   8  61  25  21  11  13  12
## 4   4  23  28   2  26   5  19   1
## 5   5  45  37  12  13   4  14  17
## 6   6  34  29  11  35  10  27  21

From here, calculating the averages could be accomplished in several ways, however, again from my experience with Python, I went ahead and composed a double iterated “for” loop, with an “if” statement to weed out any of the coerced NA values. Again, probably not the best way to accomplish this task, but as the data set was not signiciantly large, I felt it would accomplish the task quite well.

x <- 0
avgadd <- 0 

for (i in 1:64){
  for (j in 1:7){
    #Test to rule out NA values
    if (is.na(chessopponents[i,j+1])){
      
    #Else statement only adds the number of player  
      }else{
      avgadd<- avgadd + chessdata$AVG[chessopponents[i,j+1]]
      x<- x + 1
    }
  }
  chessdata$Avg_OP[i] <- avgadd/x
  avgadd <-0
  x<-0 

  }
head(chessdata)
##   N64                        Name State Score  AVG   Avg_OP
## 1   1 GARY HUA                       ON   6.0 1794 1605.286
## 2   2 DAKSHESH DARURI                MI   6.0 1553 1469.286
## 3   3 ADITYA BAJAJ                   MI   6.0 1384 1563.571
## 4   4 PATRICK H SCHILLING            MI   5.5 1716 1573.571
## 5   5 HANSHI ZUO                     MI   5.5 1655 1500.857
## 6   6 HANSEN SONG                    OH   5.0 1686 1518.714

I included the entire list at the bottom, for readability. To write the table to a CSV, the following code was written. A couple notes, I left the data as it was in the beginning as I knew it wasn’t particularly large. However, now that we are saving the data for future use, some things that would be benficial would be to eliminate “excessive data.” In the beginning, I captured elongated names (ie. the spaces behind the names, as I was unsure how long each name was). Had this been an extremely large dataset this could impact processing so, the str_trim() was used to trim the fat as it were, and then the trimmed file could be saved. I uploaded the file to my github repository and pasted the link with the hwk assignment:

chessdata$Name <- str_trim(chessdata$Name)
head(chessdata)
##   N64                Name State Score  AVG   Avg_OP
## 1   1            GARY HUA    ON   6.0 1794 1605.286
## 2   2     DAKSHESH DARURI    MI   6.0 1553 1469.286
## 3   3        ADITYA BAJAJ    MI   6.0 1384 1563.571
## 4   4 PATRICK H SCHILLING    MI   5.5 1716 1573.571
## 5   5          HANSHI ZUO    MI   5.5 1655 1500.857
## 6   6         HANSEN SONG    OH   5.0 1686 1518.714
write.table(chessdata, "MyChessdata.csv")

#All of the data for review
chessdata
##    N64                       Name State Score  AVG   Avg_OP
## 1    1                   GARY HUA    ON   6.0 1794 1605.286
## 2    2            DAKSHESH DARURI    MI   6.0 1553 1469.286
## 3    3               ADITYA BAJAJ    MI   6.0 1384 1563.571
## 4    4        PATRICK H SCHILLING    MI   5.5 1716 1573.571
## 5    5                 HANSHI ZUO    MI   5.5 1655 1500.857
## 6    6                HANSEN SONG    OH   5.0 1686 1518.714
## 7    7          GARY DEE SWATHELL    MI   5.0 1649 1372.143
## 8    8           EZEKIEL HOUGHTON    MI   5.0 1641 1468.429
## 9    9                STEFANO LEE    ON   5.0 1411 1523.143
## 10  10                  ANVIT RAO    MI   5.0 1365 1554.143
## 11  11   CAMERON WILLIAM MC LEMAN    MI   4.5 1712 1467.571
## 12  12             KENNETH J TACK    MI   4.5 1663 1506.167
## 13  13          TORRANCE HENRY JR    MI   4.5 1666 1497.857
## 14  14               BRADLEY SHAW    MI   4.5 1610 1515.000
## 15  15     ZACHARY JAMES HOUGHTON    MI   4.5 1220 1483.857
## 16  16               MIKE NIKITIN    MI   4.0 1604 1385.800
## 17  17         RONALD GRZEGORCZYK    MI   4.0 1629 1498.571
## 18  18              DAVID SUNDEEN    MI   4.0 1600 1480.000
## 19  19               DIPANKAR ROY    MI   4.0 1564 1426.286
## 20  20                JASON ZHENG    MI   4.0 1595 1410.857
## 21  21              DINH DANG BUI    ON   4.0 1563 1470.429
## 22  22           EUGENE L MCCLURE    MI   4.0 1555 1300.333
## 23  23                   ALAN BUI    ON   4.0 1363 1213.857
## 24  24          MICHAEL R ALDRICH    MI   4.0 1229 1357.000
## 25  25           LOREN SCHWIEBERT    MI   3.5 1745 1363.286
## 26  26                    MAX ZHU    ON   3.5 1579 1506.857
## 27  27             GAURAV GIDWANI    MI   3.5 1552 1221.667
## 28  28 SOFIA ADINA STANESCU-BELLU    MI   3.5 1507 1522.143
## 29  29           CHIEDOZIE OKORIE    MI   3.5 1602 1313.500
## 30  30         GEORGE AVERY JONES    ON   3.5 1522 1144.143
## 31  31               RISHI SHETTY    MI   3.5 1494 1259.857
## 32  32      JOSHUA PHILIP MATHEWS    ON   3.5 1441 1378.714
## 33  33                    JADE GE    MI   3.5 1449 1276.857
## 34  34     MICHAEL JEFFERY THOMAS    MI   3.5 1399 1375.286
## 35  35           JOSHUA DAVID LEE    MI   3.5 1438 1149.714
## 36  36              SIDDHARTH JHA    MI   3.5 1355 1388.167
## 37  37       AMIYATOSH PWNANANDAM    MI   3.5  980 1384.800
## 38  38                  BRIAN LIU    MI   3.0 1423 1539.167
## 39  39              JOEL R HENDON    MI   3.0 1436 1429.571
## 40  40               FOREST ZHANG    MI   3.0 1348 1390.571
## 41  41        KYLE WILLIAM MURPHY    MI   3.0 1403 1248.500
## 42  42                   JARED GE    MI   3.0 1332 1149.857
## 43  43          ROBERT GLEN VASEY    MI   3.0 1283 1106.571
## 44  44         JUSTIN D SCHILLING    MI   3.0 1199 1327.000
## 45  45                  DEREK YAN    MI   3.0 1242 1152.000
## 46  46   JACOB ALEXANDER LAVALLEY    MI   3.0  377 1357.714
## 47  47                ERIC WRIGHT    MI   2.5 1362 1392.000
## 48  48               DANIEL KHAIN    MI   2.5 1382 1355.800
## 49  49           MICHAEL J MARTIN    MI   2.5 1291 1285.800
## 50  50                 SHIVAM JHA    MI   2.5 1056 1296.000
## 51  51             TEJAS AYYAGARI    MI   2.5 1011 1356.143
## 52  52                  ETHAN GUO    MI   2.5  935 1494.571
## 53  53              JOSE C YBARRA    MI   2.0 1393 1345.333
## 54  54                LARRY HODGE    MI   2.0 1270 1206.167
## 55  55                  ALEX KONG    MI   2.0 1186 1406.000
## 56  56               MARISA RICCI    MI   2.0 1153 1414.400
## 57  57                 MICHAEL LU    MI   2.0 1092 1363.000
## 58  58               VIRAJ MOHILE    MI   2.0  917 1391.000
## 59  59          SEAN M MC CORMICK    MI   2.0  853 1319.000
## 60  60                 JULIA SHEN    MI   1.5  967 1330.200
## 61  61              JEZZEL FARKAS    ON   1.5  955 1327.286
## 62  62              ASHWIN BALAJI    MI   1.0 1530 1186.000
## 63  63       THOMAS JOSEPH HOSMER    MI   1.0 1175 1350.200
## 64  64                     BEN LI    MI   1.0 1163 1263.000