C30 For the matrix A below, compute the dimension of the null space of A, dim (N(A)).
$$ \[\begin{bmatrix} 2 & -1 & -3 & 11 & 9 \\ 1 & 2 & 1 & -7 & -3 \\ 3 & 1 & -3 & 6 & 8 \\ 2 & 1 & 2 & -5 & -3 \\ \end{bmatrix}\]$$
A <- matrix(c(2, -1, -3, 11, 9,
1, 2, 1, -7, -3,
3, 1, -3, 6, 8,
2, 1, 2, -5, -3),
nrow = 4, byrow = TRUE)## [,1] [,2] [,3] [,4] [,5]
## [1,] 2 -1 -3 11 9
## [2,] 1 2 1 -7 -3
## [3,] 3 1 -3 6 8
## [4,] 2 1 2 -5 -3
To find the dimension of the null space of matrix \[A (dim(N(A)))\] we need to perform row reduction (Gaussian elimination) on the augmented matrix \[[A | 0]\]The null space of A is the set of all solutions to the homogeneous system \[Ax = 0\].
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 1 1
## [2,] 0 1 0 -3 -1
## [3,] 0 0 1 -2 -2
## [4,] 0 0 0 0 0
This matrix indicates that there are three pivot columns (columns 1, 2, and 3) and two free columns (columns 4 and 5) The rank of A is the number of pivot columns, which is 3 So, the dimension of the null space \[(dim(N(A))\] is given by the difference between the total number of columns in A and the rank of A Therefore: Dimension of the null space \[(dim(N(A)) = Total columns − Rank of A\]
Dimension of the null space \[(dim(N(A)) = 5 −3 = 2\] So, the dimension of the null space of matrix = 2