Data Dive 3

Groupby and Probability:

In this Data Dive we will be exploring the use of the groupby function to explore the probabilities of various categorical values in our data set.

Preparing our Data Set:

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
txhousing = na.omit(txhousing)
txhousing
## # A tibble: 7,126 × 9
##    city     year month sales   volume median listings inventory  date
##    <chr>   <int> <int> <dbl>    <dbl>  <dbl>    <dbl>     <dbl> <dbl>
##  1 Abilene  2000     1    72  5380000  71400      701       6.3 2000 
##  2 Abilene  2000     2    98  6505000  58700      746       6.6 2000.
##  3 Abilene  2000     3   130  9285000  58100      784       6.8 2000.
##  4 Abilene  2000     4    98  9730000  68600      785       6.9 2000.
##  5 Abilene  2000     5   141 10590000  67300      794       6.8 2000.
##  6 Abilene  2000     6   156 13910000  66900      780       6.6 2000.
##  7 Abilene  2000     7   152 12635000  73500      742       6.2 2000.
##  8 Abilene  2000     8   131 10710000  75000      765       6.4 2001.
##  9 Abilene  2000     9   104  7615000  64500      771       6.5 2001.
## 10 Abilene  2000    10   101  7040000  59300      764       6.6 2001.
## # ℹ 7,116 more rows

Choosing 3 Categorical Variables to group_by() on:

  • year
  • city
  • year and month

Grouping by Year to calculate Mean Sales:

In the code-block below we use the group_by function to create a new dataframe called grouped_year that summarizes the mean sales amount for all houses in Texas for a given year.

## Loading the tidyverse library as well as the TXHousing Dataset
grouped_year = txhousing |> group_by(year) |> summarize(mean_sales = mean(sales))
grouped_year
## # A tibble: 16 × 2
##     year mean_sales
##    <int>      <dbl>
##  1  2000       501.
##  2  2001       546.
##  3  2002       619.
##  4  2003       639.
##  5  2004       681.
##  6  2005       796.
##  7  2006       910.
##  8  2007       776.
##  9  2008       582.
## 10  2009       496.
## 11  2010       459.
## 12  2011       449.
## 13  2012       523.
## 14  2013       610.
## 15  2014       627.
## 16  2015       662.

Dividing our mean values into Bins and Calculating Probability

We classify our mean sales into 5 categories (1-5) in order of their sales amount. We then use the count of each category to classify the probability of selecting a value from a given category.

We store these probabilities in a new dataframe called probability1.

grouped_year$sales_bins = cut(grouped_year$mean_sales, 5, labels = c('1','2','3','4','5'))

probability1 = count(grouped_year,sales_bins)
probability1$Probability = probability1$n/sum(probability1$n) 

probability1
## # A tibble: 5 × 3
##   sales_bins     n Probability
##   <fct>      <int>       <dbl>
## 1 1              5      0.312 
## 2 2              5      0.312 
## 3 3              3      0.188 
## 4 4              2      0.125 
## 5 5              1      0.0625

It appears as though category 5 has the lowest probability of just 0.0625. Category 1 and Category 2 have the same probability of 0.3125, making them have the highest probability.

From this much alone, it appears as though Years with the highest mean sales value, have the lowest probability of being selected and vice-versa

Let us give each of the probabilistic classes thier own labels in accordance with their individual probabilities.

probability1 <- probability1 |>
  mutate(Probability_Class = ifelse(Probability == max(Probability), "Highest",
                               ifelse(Probability == min(Probability), "Lowest", "Other")))

probability1
## # A tibble: 5 × 4
##   sales_bins     n Probability Probability_Class
##   <fct>      <int>       <dbl> <chr>            
## 1 1              5      0.312  Highest          
## 2 2              5      0.312  Highest          
## 3 3              3      0.188  Other            
## 4 4              2      0.125  Other            
## 5 5              1      0.0625 Lowest

Now that we have the probability classes for each ‘year’ in our dataset, we merge the probability1 dataframe with out grouped_year dataframe and plot the distribution of mean sales across years based on their probability class

m = merge(grouped_year,probability1, on = sales_bins)
ggplot(m, aes(x = Probability_Class, y = mean_sales)) +
  geom_boxplot() +
  labs(title = "Boxplot of Mean Sales by Probability Class",
       x = "Probability Class",
       y = "Mean Sales($)")

Examining our Results;

From the graph above, it appears that our initial observation, that high mean sales values have lower probability and vice versa. This generally makes sense as highly expensive houses are not likely to be sold very often.

Let us use a scatter plot to verify this one more time:

ggplot(m, aes(x = year, y = mean_sales, color = Probability_Class)) +
  geom_point(size = 3) +
  labs(title = "Scatter Plot of Mean Sales by Year",
       x = "Year",
       y = "Mean Sales",
       color = "Probability Class")

As we see in the above graph as well, Lower Mean sales values (below $620) are colored Red, indicating that they have a higher probability, and High sales value (above $900) are colored green, indicating a lower probability.

Having established this pattern, let us group some more columns:

Grouping by City to calculate Total Volume:

In the dataframe grouped_city we view the total volume of sales in our data set grouped by on each city in Texas:

## # A tibble: 46 × 2
##    city                  total_volume
##    <chr>                        <dbl>
##  1 Abilene                 3178820632
##  2 Amarillo                5908116316
##  3 Arlington              11545041833
##  4 Austin                 90524109737
##  5 Bay Area               16750641629
##  6 Beaumont                4473962695
##  7 Brazoria County         1544337955
##  8 Brownsville              555310375
##  9 Bryan-College Station   5768137453
## 10 Collin County          49680889869
## # ℹ 36 more rows

Dividing our Volume values into Bins and Calculating their Probability

We classify our mean sales into 5 categories (10) in order of their total $ volume amount. We then use the count of each category to classify the probability of selecting a value from a given category.

We store these probabilities in a new dataframe called probability1.

breaks <- quantile(grouped_city$total_volume, probs = seq(0, 1, length.out = 10 + 1))
grouped_city$volume_bins = cut(grouped_city$total_volume, breaks = breaks, labels = FALSE)

grouped_city
## # A tibble: 46 × 3
##    city                  total_volume volume_bins
##    <chr>                        <dbl>       <int>
##  1 Abilene                 3178820632           5
##  2 Amarillo                5908116316           7
##  3 Arlington              11545041833           8
##  4 Austin                 90524109737          10
##  5 Bay Area               16750641629           8
##  6 Beaumont                4473962695           6
##  7 Brazoria County         1544337955           3
##  8 Brownsville              555310375           1
##  9 Bryan-College Station   5768137453           7
## 10 Collin County          49680889869          10
## # ℹ 36 more rows

Like in the previous case, we calculate the probability of belonging to a given bin and classify these probabilities in Highest, Lowest and Others respectively.

probability2 = count(grouped_city,volume_bins)
probability2$Probability = probability2$n/sum(probability2$n) 


probability2 <- probability2 |>
  mutate(Probability_Class = ifelse(Probability == max(Probability), "Highest",
                               ifelse(Probability == min(Probability), "Lowest", "Other")))
probability2
## # A tibble: 11 × 4
##    volume_bins     n Probability Probability_Class
##          <int> <int>       <dbl> <chr>            
##  1           1     4      0.0870 Other            
##  2           2     5      0.109  Highest          
##  3           3     4      0.0870 Other            
##  4           4     5      0.109  Highest          
##  5           5     4      0.0870 Other            
##  6           6     5      0.109  Highest          
##  7           7     4      0.0870 Other            
##  8           8     5      0.109  Highest          
##  9           9     4      0.0870 Other            
## 10          10     5      0.109  Highest          
## 11          NA     1      0.0217 Lowest

Now that we have the probability classes for each volume-bin in our dataset, we merge the probability2 dataframe with our grouped_city dataframe and plot the distribution of mean volumes across cities based on their probability class

m1 = merge(grouped_city,probability2, on = volume_bins)
ggplot(m1, aes(x = Probability_Class, y = total_volume)) +
  geom_boxplot() +
  labs(title = "Boxplot of Total Volume by Probability Class",
       x = "Probability Class",
       y = "Volume ($)")

m1
##    volume_bins                  city total_volume n Probability
## 1            1                Lufkin    542598345 4  0.08695652
## 2            1           Nacogdoches    490137622 4  0.08695652
## 3            1    South Padre Island    418820140 4  0.08695652
## 4            1           Brownsville    555310375 4  0.08695652
## 5            2                 Paris    570522681 5  0.10869565
## 6            2                Laredo   1121534001 5  0.10869565
## 7            2             Texarkana    988680775 5  0.10869565
## 8            2             Kerrville    685095490 5  0.10869565
## 9            2             Harlingen    882720149 5  0.10869565
## 10           3           Port Arthur   1346078433 4  0.08695652
## 11           3              Victoria   1757221647 4  0.08695652
## 12           3                Odessa   1216128638 4  0.08695652
## 13           3       Brazoria County   1544337955 4  0.08695652
## 14           4       Sherman-Denison   2261424980 5  0.10869565
## 15           4         Temple-Belton   2728364331 5  0.10869565
## 16           4             Galveston   2638752735 5  0.10869565
## 17           4               McAllen   2124169176 5  0.10869565
## 18           4            San Angelo   2387927414 5  0.10869565
## 19           5               Abilene   3178820632 4  0.08695652
## 20           5                  Waco   3097648656 4  0.08695652
## 21           5               Midland   3445619670 4  0.08695652
## 22           5         Wichita Falls   2739455360 4  0.08695652
## 23           6              Beaumont   4473962695 5  0.10869565
## 24           6               Garland   4318007608 5  0.10869565
## 25           6     Killeen-Fort Hood   4161642970 5  0.10869565
## 26           6                Irving   4080690475 5  0.10869565
## 27           6     Longview-Marshall   3750221827 5  0.10869565
## 28           7                 Tyler   7219282248 4  0.08695652
## 29           7 Bryan-College Station   5768137453 4  0.08695652
## 30           7              Amarillo   5908116316 4  0.08695652
## 31           7               Lubbock   6547274620 4  0.08695652
## 32           8             Arlington  11545041833 5  0.10869565
## 33           8               El Paso  10761469007 5  0.10869565
## 34           8        Corpus Christi   9398012807 5  0.10869565
## 35           8              Bay Area  16750641629 5  0.10869565
## 36           8            Fort Worth  20381390425 5  0.10869565
## 37           9         Denton County  23469290796 4  0.08695652
## 38           9             Fort Bend  34070480996 4  0.08695652
## 39           9     Montgomery County  24114939999 4  0.08695652
## 40           9     NE Tarrant County  28266591118 4  0.08695652
## 41          10                Dallas 172254815470 5  0.10869565
## 42          10         Collin County  49680889869 5  0.10869565
## 43          10               Houston 212967342030 5  0.10869565
## 44          10           San Antonio  55176992274 5  0.10869565
## 45          10                Austin  90524109737 5  0.10869565
## 46          NA            San Marcos    355312320 1  0.02173913
##    Probability_Class
## 1              Other
## 2              Other
## 3              Other
## 4              Other
## 5            Highest
## 6            Highest
## 7            Highest
## 8            Highest
## 9            Highest
## 10             Other
## 11             Other
## 12             Other
## 13             Other
## 14           Highest
## 15           Highest
## 16           Highest
## 17           Highest
## 18           Highest
## 19             Other
## 20             Other
## 21             Other
## 22             Other
## 23           Highest
## 24           Highest
## 25           Highest
## 26           Highest
## 27           Highest
## 28             Other
## 29             Other
## 30             Other
## 31             Other
## 32           Highest
## 33           Highest
## 34           Highest
## 35           Highest
## 36           Highest
## 37             Other
## 38             Other
## 39             Other
## 40             Other
## 41           Highest
## 42           Highest
## 43           Highest
## 44           Highest
## 45           Highest
## 46            Lowest

The above chart does not show a consistent pattern that discerns certain cities having a higher probability than others. Although the groups with the Highest probability tend to show large outliers. Perhaps using smaller categorizations are more useful in the regard.

ggplot(m1, aes(x = city, y = total_volume, fill = Probability_Class )) +
  geom_bar(stat = "identity") +
  labs(title = "Bar Chart of Total Volume($) by City",
       x = "City",
       y = "Total Value",
       fill = "Category") +
  scale_x_discrete(guide = guide_axis(check.overlap = TRUE))

### Evaluating our Results:

In both the above graphs, there seems to be no direct probability pattern between cities that have a High a High or Low Volume. It appears that certain cities exhibit large outliers, but there is no clear pattern in thier probability.

Grouping by both Year and City:

In our next explorations we will attempt to use the group_by() function on 2 different labels - city and year. Just like in the previous 2 explorations we will caclulate probabilities and attempt to find patterns. However, this time we will summarize the total number of listings

grouped_city_year = txhousing |> group_by(year,city ) |> summarize(total_listings = sum(listings))
## `summarise()` has grouped output by 'year'. You can override using the
## `.groups` argument.
grouped_city_year
## # A tibble: 661 × 3
## # Groups:   year [16]
##     year city                  total_listings
##    <int> <chr>                          <dbl>
##  1  2000 Abilene                         9011
##  2  2000 Amarillo                       13070
##  3  2000 Arlington                      16656
##  4  2000 Austin                         43892
##  5  2000 Bay Area                       22108
##  6  2000 Beaumont                       11354
##  7  2000 Brazoria County                 5391
##  8  2000 Brownsville                     4365
##  9  2000 Bryan-College Station           6719
## 10  2000 Collin County                  37874
## # ℹ 651 more rows

This has yielded a fairly large dataframe with a diverse range of listings.

Breaking the listings into categories and Calculating Probabilities:

Just like in the previous 2 cases, we will divide our total_listings column in 5 categories and label the probability of selecting a given category

breaks <- quantile(grouped_city$total_listings, probs = seq(0, 1, length.out = 10 + 1))
## Warning: Unknown or uninitialised column: `total_listings`.
grouped_city_year$listing_bins = cut(grouped_city_year$total_listings, breaks = 5, labels = FALSE)

probability3 = count(grouped_city_year,listing_bins)
probability3$Probability = probability3$n/sum(probability3$n) 

probability3 <- probability3 |>
 mutate(Probability_Class = ifelse(Probability == max(Probability), "Highest",
                               ifelse(Probability == min(Probability), "Lowest", "Other")))

probability3
## # A tibble: 55 × 5
## # Groups:   year [16]
##     year listing_bins     n Probability Probability_Class
##    <int>        <int> <int>       <dbl> <chr>            
##  1  2000            1    36     0.0545  Highest          
##  2  2000            2     1     0.00151 Lowest           
##  3  2000            3     1     0.00151 Lowest           
##  4  2001            1    36     0.0545  Highest          
##  5  2001            3     2     0.00303 Lowest           
##  6  2002            1    34     0.0514  Highest          
##  7  2002            2     1     0.00151 Lowest           
##  8  2002            3     2     0.00303 Other            
##  9  2003            1    34     0.0514  Highest          
## 10  2003            2     1     0.00151 Lowest           
## # ℹ 45 more rows

Graphing and Analyzing the Probabilities:

m2 = merge(grouped_city_year,probability3, on = listing_bins)
ggplot(m2, aes(x = Probability_Class, y = total_listings)) +
  geom_boxplot() +
  labs(title = "Boxplot of Total Listings by Probability Class",
       x = "Probability Class",
       y = "# Listings")

m2
##     year listing_bins                  city total_listings  n Probability
## 1   2000            1               Abilene           9011 36 0.054462935
## 2   2000            1              Amarillo          13070 36 0.054462935
## 3   2000            1             Arlington          16656 36 0.054462935
## 4   2000            1                Austin          43892 36 0.054462935
## 5   2000            1              Bay Area          22108 36 0.054462935
## 6   2000            1              Beaumont          11354 36 0.054462935
## 7   2000            1       Brazoria County           5391 36 0.054462935
## 8   2000            1           Brownsville           4365 36 0.054462935
## 9   2000            1 Bryan-College Station           6719 36 0.054462935
## 10  2000            1         Collin County          37874 36 0.054462935
## 11  2000            1        Corpus Christi          27828 36 0.054462935
## 12  2000            1                Lufkin           2813 36 0.054462935
## 13  2000            1         Denton County          25924 36 0.054462935
## 14  2000            1               El Paso          29286 36 0.054462935
## 15  2000            1             Fort Bend          30650 36 0.054462935
## 16  2000            1            Fort Worth          27860 36 0.054462935
## 17  2000            1             Galveston           6065 36 0.054462935
## 18  2000            1               Garland           5569 36 0.054462935
## 19  2000            1             Harlingen           8036 36 0.054462935
## 20  2000            1            San Marcos           2592 36 0.054462935
## 21  2000            1                Irving           3627 36 0.054462935
## 22  2000            1     Killeen-Fort Hood          17161 36 0.054462935
## 23  2000            1     Longview-Marshall           7526 36 0.054462935
## 24  2000            1               Lubbock           9187 36 0.054462935
## 25  2000            1         Wichita Falls           8406 36 0.054462935
## 26  2000            1               McAllen          12592 36 0.054462935
## 27  2000            1     Montgomery County          28617 36 0.054462935
## 28  2000            1     NE Tarrant County          25564 36 0.054462935
## 29  2000            1                 Paris           3596 36 0.054462935
## 30  2000            1           Port Arthur           4193 36 0.054462935
## 31  2000            1            San Angelo           6588 36 0.054462935
## 32  2000            1           San Antonio          76898 36 0.054462935
## 33  2000            1              Victoria           3598 36 0.054462935
## 34  2000            1       Sherman-Denison           6296 36 0.054462935
## 35  2000            1         Temple-Belton           7037 36 0.054462935
## 36  2000            1                 Tyler          18070 36 0.054462935
## 37  2000            2                Dallas         170685  1 0.001512859
## 38  2000            3               Houston         221616  1 0.001512859
## 39  2001            1               Abilene           9236 36 0.054462935
## 40  2001            1              Amarillo          13133 36 0.054462935
## 41  2001            1             Arlington          18805 36 0.054462935
## 42  2001            1                Austin          85963 36 0.054462935
## 43  2001            1              Bay Area          21471 36 0.054462935
## 44  2001            1              Beaumont          12127 36 0.054462935
## 45  2001            1       Brazoria County           4160 36 0.054462935
## 46  2001            1           Brownsville           4600 36 0.054462935
## 47  2001            1 Bryan-College Station           8517 36 0.054462935
## 48  2001            1         Collin County          47746 36 0.054462935
## 49  2001            1        Corpus Christi          26747 36 0.054462935
## 50  2001            1                Lufkin           3297 36 0.054462935
## 51  2001            1         Denton County          31410 36 0.054462935
## 52  2001            1               El Paso          39302 36 0.054462935
## 53  2001            1             Fort Bend          31174 36 0.054462935
## 54  2001            1            Fort Worth          31817 36 0.054462935
## 55  2001            1             Galveston           1403 36 0.054462935
## 56  2001            1               Garland           7661 36 0.054462935
## 57  2001            1             Harlingen           7466 36 0.054462935
## 58  2001            1       Sherman-Denison           7900 36 0.054462935
## 59  2001            1                Irving           4397 36 0.054462935
## 60  2001            1     Killeen-Fort Hood          10549 36 0.054462935
## 61  2001            1     Longview-Marshall           8082 36 0.054462935
## 62  2001            1               Lubbock           9734 36 0.054462935
## 63  2001            1         Wichita Falls           9797 36 0.054462935
## 64  2001            1     Montgomery County          30397 36 0.054462935
## 65  2001            1     NE Tarrant County          30090 36 0.054462935
## 66  2001            1                 Paris           3882 36 0.054462935
## 67  2001            1           Port Arthur           3988 36 0.054462935
## 68  2001            1            San Angelo           7435 36 0.054462935
## 69  2001            1           San Antonio          81842 36 0.054462935
## 70  2001            1            San Marcos            775 36 0.054462935
## 71  2001            1                  Waco            840 36 0.054462935
## 72  2001            1         Temple-Belton           7093 36 0.054462935
## 73  2001            1                 Tyler          17936 36 0.054462935
## 74  2001            1              Victoria           3682 36 0.054462935
## 75  2001            3               Houston         231002  2 0.003025719
## 76  2001            3                Dallas         211139  2 0.003025719
## 77  2002            1               Abilene           8589 34 0.051437216
## 78  2002            1              Amarillo          14076 34 0.051437216
## 79  2002            1             Arlington          21887 34 0.051437216
## 80  2002            1               Garland          10659 34 0.051437216
## 81  2002            1              Bay Area          26177 34 0.051437216
## 82  2002            1              Beaumont          12121 34 0.051437216
## 83  2002            1       Brazoria County           5694 34 0.051437216
## 84  2002            1           Brownsville            850 34 0.051437216
## 85  2002            1 Bryan-College Station           9215 34 0.051437216
## 86  2002            1         Collin County          60422 34 0.051437216
## 87  2002            1        Corpus Christi          16321 34 0.051437216
## 88  2002            1               McAllen           3830 34 0.051437216
## 89  2002            1         Denton County          36499 34 0.051437216
## 90  2002            1               El Paso          37744 34 0.051437216
## 91  2002            1             Fort Bend          34235 34 0.051437216
## 92  2002            1            Fort Worth          36211 34 0.051437216
## 93  2002            1           Port Arthur           4527 34 0.051437216
## 94  2002            1             Harlingen           4410 34 0.051437216
## 95  2002            1           San Antonio          84921 34 0.051437216
## 96  2002            1                Irving           5666 34 0.051437216
## 97  2002            1     Killeen-Fort Hood          15039 34 0.051437216
## 98  2002            1     Longview-Marshall            943 34 0.051437216
## 99  2002            1               Lubbock           8274 34 0.051437216
## 100 2002            1                Lufkin            370 34 0.051437216
## 101 2002            1                 Paris           4165 34 0.051437216
## 102 2002            1     Montgomery County          38358 34 0.051437216
## 103 2002            1     NE Tarrant County          38127 34 0.051437216
## 104 2002            1           Nacogdoches             66 34 0.051437216
## 105 2002            1       Sherman-Denison           9717 34 0.051437216
## 106 2002            1         Temple-Belton            584 34 0.051437216
## 107 2002            1            San Angelo           6393 34 0.051437216
## 108 2002            1              Victoria           3389 34 0.051437216
## 109 2002            1         Wichita Falls           8753 34 0.051437216
## 110 2002            1                 Tyler          18490 34 0.051437216
## 111 2002            2                Austin         105971  1 0.001512859
## 112 2002            3               Houston         291577  2 0.003025719
## 113 2002            3                Dallas         257416  2 0.003025719
## 114 2003            1               Abilene           8714 34 0.051437216
## 115 2003            1              Amarillo          15910 34 0.051437216
## 116 2003            1             Arlington          30357 34 0.051437216
## 117 2003            1               Garland          14496 34 0.051437216
## 118 2003            1              Bay Area          30646 34 0.051437216
## 119 2003            1              Beaumont          13558 34 0.051437216
## 120 2003            1           Brownsville           1020 34 0.051437216
## 121 2003            1 Bryan-College Station          11908 34 0.051437216
## 122 2003            1         Collin County          71482 34 0.051437216
## 123 2003            1        Corpus Christi          18190 34 0.051437216
## 124 2003            1     Montgomery County          43483 34 0.051437216
## 125 2003            1         Denton County          42849 34 0.051437216
## 126 2003            1               El Paso          37833 34 0.051437216
## 127 2003            1             Fort Bend          42735 34 0.051437216
## 128 2003            1            Fort Worth          46247 34 0.051437216
## 129 2003            1             Galveston           6022 34 0.051437216
## 130 2003            1           San Antonio          96270 34 0.051437216
## 131 2003            1       Sherman-Denison          11504 34 0.051437216
## 132 2003            1                Irving           7490 34 0.051437216
## 133 2003            1     Killeen-Fort Hood          11410 34 0.051437216
## 134 2003            1               Lubbock          10236 34 0.051437216
## 135 2003            1                Lufkin           2162 34 0.051437216
## 136 2003            1               McAllen           2680 34 0.051437216
## 137 2003            1         Wichita Falls           8300 34 0.051437216
## 138 2003            1     NE Tarrant County          47644 34 0.051437216
## 139 2003            1           Nacogdoches           2518 34 0.051437216
## 140 2003            1                 Paris           4947 34 0.051437216
## 141 2003            1           Port Arthur           5095 34 0.051437216
## 142 2003            1            San Angelo           6697 34 0.051437216
## 143 2003            1                 Tyler          18734 34 0.051437216
## 144 2003            1              Victoria           4055 34 0.051437216
## 145 2003            1         Temple-Belton           2276 34 0.051437216
## 146 2003            1             Texarkana           1357 34 0.051437216
## 147 2003            1                  Waco           1805 34 0.051437216
## 148 2003            2                Austin         124080  1 0.001512859
## 149 2003            4               Houston         357570  2 0.003025719
## 150 2003            4                Dallas         308677  2 0.003025719
## 151 2004            1               Abilene           8132 35 0.052950076
## 152 2004            1              Amarillo          14440 35 0.052950076
## 153 2004            1             Arlington          33294 35 0.052950076
## 154 2004            1             Harlingen           3664 35 0.052950076
## 155 2004            1              Bay Area          31398 35 0.052950076
## 156 2004            1              Beaumont          14406 35 0.052950076
## 157 2004            1 Bryan-College Station          13884 35 0.052950076
## 158 2004            1         Collin County          71430 35 0.052950076
## 159 2004            1        Corpus Christi          20887 35 0.052950076
## 160 2004            1                Lufkin           3173 35 0.052950076
## 161 2004            1         Denton County          46553 35 0.052950076
## 162 2004            1               El Paso          16069 35 0.052950076
## 163 2004            1             Fort Bend          48638 35 0.052950076
## 164 2004            1            Fort Worth          52908 35 0.052950076
## 165 2004            1             Galveston           7023 35 0.052950076
## 166 2004            1               Garland          15175 35 0.052950076
## 167 2004            1            San Angelo           7449 35 0.052950076
## 168 2004            1           San Antonio          78956 35 0.052950076
## 169 2004            1                Irving           8935 35 0.052950076
## 170 2004            1     Killeen-Fort Hood          10114 35 0.052950076
## 171 2004            1     Longview-Marshall           3245 35 0.052950076
## 172 2004            1               Lubbock          13595 35 0.052950076
## 173 2004            1              Victoria           4015 35 0.052950076
## 174 2004            1               McAllen           4697 35 0.052950076
## 175 2004            1     Montgomery County          45638 35 0.052950076
## 176 2004            1     NE Tarrant County          48741 35 0.052950076
## 177 2004            1           Nacogdoches            234 35 0.052950076
## 178 2004            1                 Paris           4931 35 0.052950076
## 179 2004            1           Port Arthur           5582 35 0.052950076
## 180 2004            1             Texarkana           4932 35 0.052950076
## 181 2004            1                 Tyler          23684 35 0.052950076
## 182 2004            1       Sherman-Denison          13404 35 0.052950076
## 183 2004            1         Temple-Belton           8085 35 0.052950076
## 184 2004            1         Wichita Falls           8349 35 0.052950076
## 185 2004            1                  Waco           4848 35 0.052950076
## 186 2004            2                Austin         124727  1 0.001512859
## 187 2004            4                Dallas         326358  1 0.001512859
## 188 2004            5               Houston         406073  1 0.001512859
## 189 2005            1               Abilene           7344 33 0.049924357
## 190 2005            1              Amarillo          12551 33 0.049924357
## 191 2005            1             Arlington          31576 33 0.049924357
## 192 2005            1             Harlingen           1895 33 0.049924357
## 193 2005            1              Bay Area          33306 33 0.049924357
## 194 2005            1              Beaumont          14737 33 0.049924357
## 195 2005            1       Brazoria County           3412 33 0.049924357
## 196 2005            1 Bryan-College Station          13983 33 0.049924357
## 197 2005            1         Collin County          65046 33 0.049924357
## 198 2005            1        Corpus Christi          23849 33 0.049924357
## 199 2005            1     Montgomery County          44520 33 0.049924357
## 200 2005            1         Denton County          40826 33 0.049924357
## 201 2005            1             Fort Bend          48692 33 0.049924357
## 202 2005            1            Fort Worth          56725 33 0.049924357
## 203 2005            1             Galveston           4944 33 0.049924357
## 204 2005            1               Garland          13587 33 0.049924357
## 205 2005            1     Longview-Marshall          14010 33 0.049924357
## 206 2005            1       Sherman-Denison          11899 33 0.049924357
## 207 2005            1                Irving           8662 33 0.049924357
## 208 2005            1     Killeen-Fort Hood          10114 33 0.049924357
## 209 2005            1     NE Tarrant County          43311 33 0.049924357
## 210 2005            1               Lubbock          16206 33 0.049924357
## 211 2005            1                Lufkin            720 33 0.049924357
## 212 2005            1         Wichita Falls           8760 33 0.049924357
## 213 2005            1            San Angelo           4765 33 0.049924357
## 214 2005            1           Nacogdoches           1230 33 0.049924357
## 215 2005            1                 Paris            406 33 0.049924357
## 216 2005            1           Port Arthur           5115 33 0.049924357
## 217 2005            1             Texarkana           1536 33 0.049924357
## 218 2005            1                 Tyler          25068 33 0.049924357
## 219 2005            1              Victoria           3988 33 0.049924357
## 220 2005            1         Temple-Belton           5012 33 0.049924357
## 221 2005            1                  Waco          11126 33 0.049924357
## 222 2005            2                Austin         107577  2 0.003025719
## 223 2005            2           San Antonio         101339  2 0.003025719
## 224 2005            4                Dallas         301934  1 0.001512859
## 225 2005            5               Houston         426876  1 0.001512859
## 226 2006            1               Abilene           8071 32 0.048411498
## 227 2006            1              Amarillo          13166 32 0.048411498
## 228 2006            1             Arlington          36316 32 0.048411498
## 229 2006            1               Garland          16322 32 0.048411498
## 230 2006            1              Bay Area          45041 32 0.048411498
## 231 2006            1              Beaumont          11522 32 0.048411498
## 232 2006            1       Brazoria County            718 32 0.048411498
## 233 2006            1 Bryan-College Station          14831 32 0.048411498
## 234 2006            1         Collin County          76454 32 0.048411498
## 235 2006            1        Corpus Christi          31473 32 0.048411498
## 236 2006            1     Montgomery County          42384 32 0.048411498
## 237 2006            1         Denton County          42083 32 0.048411498
## 238 2006            1               El Paso          16638 32 0.048411498
## 239 2006            1             Fort Bend          46063 32 0.048411498
## 240 2006            1            Fort Worth          70985 32 0.048411498
## 241 2006            1             Galveston          14472 32 0.048411498
## 242 2006            1     Longview-Marshall          13257 32 0.048411498
## 243 2006            1             Harlingen           1689 32 0.048411498
## 244 2006            1         Temple-Belton           5259 32 0.048411498
## 245 2006            1                Irving          10022 32 0.048411498
## 246 2006            1     NE Tarrant County          46819 32 0.048411498
## 247 2006            1               Lubbock          18119 32 0.048411498
## 248 2006            1               Midland            758 32 0.048411498
## 249 2006            1           Port Arthur           3773 32 0.048411498
## 250 2006            1            San Angelo            624 32 0.048411498
## 251 2006            1           Nacogdoches            772 32 0.048411498
## 252 2006            1                 Paris           1947 32 0.048411498
## 253 2006            1         Wichita Falls          10218 32 0.048411498
## 254 2006            1                 Tyler          28011 32 0.048411498
## 255 2006            1              Victoria           3912 32 0.048411498
## 256 2006            1       Sherman-Denison          13563 32 0.048411498
## 257 2006            1                  Waco          11646 32 0.048411498
## 258 2006            2                Austin         104343  2 0.003025719
## 259 2006            2           San Antonio         103795  2 0.003025719
## 260 2006            4                Dallas         349743  1 0.001512859
## 261 2006            5               Houston         429540  1 0.001512859
## 262 2007            1               Abilene          10364 35 0.052950076
## 263 2007            1              Amarillo          15664 35 0.052950076
## 264 2007            1             Arlington          36359 35 0.052950076
## 265 2007            1               Garland          16324 35 0.052950076
## 266 2007            1              Bay Area          50694 35 0.052950076
## 267 2007            1              Beaumont          13967 35 0.052950076
## 268 2007            1       Brazoria County           1409 35 0.052950076
## 269 2007            1 Bryan-College Station          14741 35 0.052950076
## 270 2007            1         Collin County          88804 35 0.052950076
## 271 2007            1        Corpus Christi          36113 35 0.052950076
## 272 2007            1               McAllen           2573 35 0.052950076
## 273 2007            1         Denton County          45145 35 0.052950076
## 274 2007            1               El Paso          41545 35 0.052950076
## 275 2007            1             Fort Bend          53171 35 0.052950076
## 276 2007            1            Fort Worth          74338 35 0.052950076
## 277 2007            1             Galveston          19959 35 0.052950076
## 278 2007            1           Port Arthur           5445 35 0.052950076
## 279 2007            1             Harlingen           2596 35 0.052950076
## 280 2007            1               Lubbock          20921 35 0.052950076
## 281 2007            1                Irving          11667 35 0.052950076
## 282 2007            1     Killeen-Fort Hood          14774 35 0.052950076
## 283 2007            1     Longview-Marshall          14954 35 0.052950076
## 284 2007            1     NE Tarrant County          46090 35 0.052950076
## 285 2007            1              Victoria           4634 35 0.052950076
## 286 2007            1               Midland           3301 35 0.052950076
## 287 2007            1     Montgomery County          45693 35 0.052950076
## 288 2007            1            San Angelo           4021 35 0.052950076
## 289 2007            1           Nacogdoches           1295 35 0.052950076
## 290 2007            1                 Paris           4194 35 0.052950076
## 291 2007            1         Temple-Belton           8871 35 0.052950076
## 292 2007            1             Texarkana            530 35 0.052950076
## 293 2007            1                 Tyler          33011 35 0.052950076
## 294 2007            1       Sherman-Denison          14047 35 0.052950076
## 295 2007            1                  Waco          10421 35 0.052950076
## 296 2007            1         Wichita Falls          11107 35 0.052950076
## 297 2007            2                Austin         117995  2 0.003025719
## 298 2007            2           San Antonio         143617  2 0.003025719
## 299 2007            4                Dallas         377951  1 0.001512859
## 300 2007            5               Houston         487485  1 0.001512859
## 301 2008            1               Abilene          11088 38 0.057488654
## 302 2008            1              Amarillo          17519 38 0.057488654
## 303 2008            1             Arlington          29260 38 0.057488654
## 304 2008            1               Garland          12625 38 0.057488654
## 305 2008            1              Bay Area          45824 38 0.057488654
## 306 2008            1              Beaumont          16503 38 0.057488654
## 307 2008            1       Brazoria County           7503 38 0.057488654
## 308 2008            1 Bryan-College Station          14423 38 0.057488654
## 309 2008            1         Collin County          77403 38 0.057488654
## 310 2008            1        Corpus Christi          33594 38 0.057488654
## 311 2008            1               Lubbock          18511 38 0.057488654
## 312 2008            1         Denton County          41118 38 0.057488654
## 313 2008            1               El Paso          57924 38 0.057488654
## 314 2008            1             Fort Bend          54008 38 0.057488654
## 315 2008            1            Fort Worth          63303 38 0.057488654
## 316 2008            1             Galveston          11093 38 0.057488654
## 317 2008            1                Odessa             91 38 0.057488654
## 318 2008            1             Harlingen          12170 38 0.057488654
## 319 2008            1           Port Arthur           6161 38 0.057488654
## 320 2008            1                Irving          10578 38 0.057488654
## 321 2008            1     Killeen-Fort Hood          18501 38 0.057488654
## 322 2008            1                Laredo           7759 38 0.057488654
## 323 2008            1     Longview-Marshall          16461 38 0.057488654
## 324 2008            1         Temple-Belton          11280 38 0.057488654
## 325 2008            1               McAllen          32742 38 0.057488654
## 326 2008            1               Midland           4591 38 0.057488654
## 327 2008            1     Montgomery County          45543 38 0.057488654
## 328 2008            1     NE Tarrant County          43531 38 0.057488654
## 329 2008            1           Nacogdoches           3269 38 0.057488654
## 330 2008            1             Texarkana           6935 38 0.057488654
## 331 2008            1                 Paris           3883 38 0.057488654
## 332 2008            1       Sherman-Denison          12915 38 0.057488654
## 333 2008            1            San Angelo           5919 38 0.057488654
## 334 2008            1         Wichita Falls          11174 38 0.057488654
## 335 2008            1            San Marcos            657 38 0.057488654
## 336 2008            1              Victoria           5127 38 0.057488654
## 337 2008            1                  Waco          20400 38 0.057488654
## 338 2008            1                 Tyler          34397 38 0.057488654
## 339 2008            2                Austin         139018  2 0.003025719
## 340 2008            2           San Antonio         159559  2 0.003025719
## 341 2008            4                Dallas         342368  1 0.001512859
## 342 2008            5               Houston         465098  1 0.001512859
## 343 2009            1               Abilene           9738 39 0.059001513
## 344 2009            1              Amarillo          17728 39 0.059001513
## 345 2009            1             Arlington          23074 39 0.059001513
## 346 2009            1               Garland           9306 39 0.059001513
## 347 2009            1              Bay Area          39058 39 0.059001513
## 348 2009            1              Beaumont          17184 39 0.059001513
## 349 2009            1       Brazoria County           8070 39 0.059001513
## 350 2009            1 Bryan-College Station          14546 39 0.059001513
## 351 2009            1         Collin County          60179 39 0.059001513
## 352 2009            1        Corpus Christi          35373 39 0.059001513
## 353 2009            1     Longview-Marshall          17065 39 0.059001513
## 354 2009            1         Denton County          36313 39 0.059001513
## 355 2009            1               El Paso          46777 39 0.059001513
## 356 2009            1             Fort Bend          42177 39 0.059001513
## 357 2009            1            Fort Worth          55863 39 0.059001513
## 358 2009            1             Galveston          13489 39 0.059001513
## 359 2009            1           Nacogdoches           2946 39 0.059001513
## 360 2009            1             Harlingen          24493 39 0.059001513
## 361 2009            1                 Paris           3891 39 0.059001513
## 362 2009            1                Irving           9371 39 0.059001513
## 363 2009            1             Kerrville           6219 39 0.059001513
## 364 2009            1     Killeen-Fort Hood          19807 39 0.059001513
## 365 2009            1                Laredo           7178 39 0.059001513
## 366 2009            1       Sherman-Denison          11915 39 0.059001513
## 367 2009            1               Lubbock          16961 39 0.059001513
## 368 2009            1               McAllen          26228 39 0.059001513
## 369 2009            1               Midland           6554 39 0.059001513
## 370 2009            1     Montgomery County          41975 39 0.059001513
## 371 2009            1     NE Tarrant County          39498 39 0.059001513
## 372 2009            1         Wichita Falls          11181 39 0.059001513
## 373 2009            1                Odessa           5255 39 0.059001513
## 374 2009            1            San Marcos           2063 39 0.059001513
## 375 2009            1           Port Arthur           7981 39 0.059001513
## 376 2009            1            San Angelo           6583 39 0.059001513
## 377 2009            1             Texarkana           6943 39 0.059001513
## 378 2009            1                 Tyler          33803 39 0.059001513
## 379 2009            1              Victoria           5333 39 0.059001513
## 380 2009            1         Temple-Belton          12129 39 0.059001513
## 381 2009            1                  Waco          16919 39 0.059001513
## 382 2009            2           San Antonio         146326  2 0.003025719
## 383 2009            2                Austin         129637  2 0.003025719
## 384 2009            3                Dallas         290567  1 0.001512859
## 385 2009            4               Houston         380839  1 0.001512859
## 386 2010            1               Abilene          10551 42 0.063540091
## 387 2010            1              Amarillo          16078 42 0.063540091
## 388 2010            1             Arlington          23969 42 0.063540091
## 389 2010            1              Victoria           5110 42 0.063540091
## 390 2010            1              Bay Area          50945 42 0.063540091
## 391 2010            1              Beaumont          20773 42 0.063540091
## 392 2010            1       Brazoria County           8858 42 0.063540091
## 393 2010            1           Brownsville            740 42 0.063540091
## 394 2010            1 Bryan-College Station          18749 42 0.063540091
## 395 2010            1         Collin County          61850 42 0.063540091
## 396 2010            1        Corpus Christi          32870 42 0.063540091
## 397 2010            1     Longview-Marshall          19308 42 0.063540091
## 398 2010            1         Denton County          38544 42 0.063540091
## 399 2010            1               El Paso          36204 42 0.063540091
## 400 2010            1             Fort Bend          51402 42 0.063540091
## 401 2010            1            Fort Worth          59411 42 0.063540091
## 402 2010            1             Galveston          14914 42 0.063540091
## 403 2010            1               Garland          10660 42 0.063540091
## 404 2010            1             Harlingen          20026 42 0.063540091
## 405 2010            1                Odessa           5202 42 0.063540091
## 406 2010            1                Irving          10289 42 0.063540091
## 407 2010            1             Kerrville           8988 42 0.063540091
## 408 2010            1     Killeen-Fort Hood          19952 42 0.063540091
## 409 2010            1                Laredo           7844 42 0.063540091
## 410 2010            1            San Marcos           2561 42 0.063540091
## 411 2010            1               Lubbock          19698 42 0.063540091
## 412 2010            1                Lufkin           3201 42 0.063540091
## 413 2010            1               McAllen          24282 42 0.063540091
## 414 2010            1               Midland           7613 42 0.063540091
## 415 2010            1     Montgomery County          45977 42 0.063540091
## 416 2010            1     NE Tarrant County          41445 42 0.063540091
## 417 2010            1           Nacogdoches           2597 42 0.063540091
## 418 2010            1         Wichita Falls          11513 42 0.063540091
## 419 2010            1                 Paris           4065 42 0.063540091
## 420 2010            1           Port Arthur           7538 42 0.063540091
## 421 2010            1            San Angelo           7484 42 0.063540091
## 422 2010            1         Temple-Belton          13064 42 0.063540091
## 423 2010            1             Texarkana           7705 42 0.063540091
## 424 2010            1       Sherman-Denison          12320 42 0.063540091
## 425 2010            1    South Padre Island          10619 42 0.063540091
## 426 2010            1                  Waco          16287 42 0.063540091
## 427 2010            1                 Tyler          36613 42 0.063540091
## 428 2010            2                Austin         138949  2 0.003025719
## 429 2010            2           San Antonio         152690  2 0.003025719
## 430 2010            4                Dallas         300022  1 0.001512859
## 431 2010            5               Houston         439576  1 0.001512859
## 432 2011            1               Abilene           9600 42 0.063540091
## 433 2011            1              Amarillo          16983 42 0.063540091
## 434 2011            1             Arlington          20972 42 0.063540091
## 435 2011            1              Victoria           3997 42 0.063540091
## 436 2011            1              Bay Area          48388 42 0.063540091
## 437 2011            1              Beaumont          20975 42 0.063540091
## 438 2011            1       Brazoria County           9003 42 0.063540091
## 439 2011            1           Brownsville           9301 42 0.063540091
## 440 2011            1 Bryan-College Station          19274 42 0.063540091
## 441 2011            1         Collin County          53084 42 0.063540091
## 442 2011            1        Corpus Christi          29525 42 0.063540091
## 443 2011            1     Longview-Marshall          18231 42 0.063540091
## 444 2011            1         Denton County          34710 42 0.063540091
## 445 2011            1               El Paso          37386 42 0.063540091
## 446 2011            1             Fort Bend          51272 42 0.063540091
## 447 2011            1            Fort Worth          52222 42 0.063540091
## 448 2011            1             Galveston          12924 42 0.063540091
## 449 2011            1               Garland           9034 42 0.063540091
## 450 2011            1             Harlingen          17829 42 0.063540091
## 451 2011            1                Odessa           4464 42 0.063540091
## 452 2011            1                Irving           8266 42 0.063540091
## 453 2011            1             Kerrville          10086 42 0.063540091
## 454 2011            1     Killeen-Fort Hood          17261 42 0.063540091
## 455 2011            1                Laredo           7222 42 0.063540091
## 456 2011            1            San Marcos           2044 42 0.063540091
## 457 2011            1               Lubbock          20464 42 0.063540091
## 458 2011            1                Lufkin           4839 42 0.063540091
## 459 2011            1               McAllen          26647 42 0.063540091
## 460 2011            1               Midland           7448 42 0.063540091
## 461 2011            1     Montgomery County          43523 42 0.063540091
## 462 2011            1     NE Tarrant County          36405 42 0.063540091
## 463 2011            1           Nacogdoches           3204 42 0.063540091
## 464 2011            1         Wichita Falls          11698 42 0.063540091
## 465 2011            1                 Paris           4181 42 0.063540091
## 466 2011            1           Port Arthur           7787 42 0.063540091
## 467 2011            1            San Angelo           6635 42 0.063540091
## 468 2011            1         Temple-Belton          13659 42 0.063540091
## 469 2011            1             Texarkana           8485 42 0.063540091
## 470 2011            1       Sherman-Denison          11129 42 0.063540091
## 471 2011            1    South Padre Island          10731 42 0.063540091
## 472 2011            1                  Waco          18213 42 0.063540091
## 473 2011            1                 Tyler          36836 42 0.063540091
## 474 2011            2                Austin         116808  2 0.003025719
## 475 2011            2           San Antonio         142642  2 0.003025719
## 476 2011            3                Dallas         262693  1 0.001512859
## 477 2011            5               Houston         414543  1 0.001512859
## 478 2012            1               Abilene          11635 43 0.065052950
## 479 2012            1              Amarillo          15865 43 0.065052950
## 480 2012            1             Arlington          14755 43 0.065052950
## 481 2012            1                Austin          92226 43 0.065052950
## 482 2012            1              Bay Area          38278 43 0.065052950
## 483 2012            1              Beaumont          20296 43 0.065052950
## 484 2012            1       Brazoria County           7382 43 0.065052950
## 485 2012            1           Brownsville           9506 43 0.065052950
## 486 2012            1 Bryan-College Station          19314 43 0.065052950
## 487 2012            1         Collin County          39244 43 0.065052950
## 488 2012            1        Corpus Christi          26527 43 0.065052950
## 489 2012            1     Longview-Marshall          19834 43 0.065052950
## 490 2012            1         Denton County          26000 43 0.065052950
## 491 2012            1               El Paso          38553 43 0.065052950
## 492 2012            1             Fort Bend          40928 43 0.065052950
## 493 2012            1            Fort Worth          42051 43 0.065052950
## 494 2012            1             Galveston          11162 43 0.065052950
## 495 2012            1               Garland           5820 43 0.065052950
## 496 2012            1             Harlingen          19626 43 0.065052950
## 497 2012            1                Odessa           2576 43 0.065052950
## 498 2012            1                Irving           6054 43 0.065052950
## 499 2012            1             Kerrville          10132 43 0.065052950
## 500 2012            1     Killeen-Fort Hood          15381 43 0.065052950
## 501 2012            1                Laredo           5907 43 0.065052950
## 502 2012            1            San Marcos           1774 43 0.065052950
## 503 2012            1               Lubbock          18626 43 0.065052950
## 504 2012            1                Lufkin           5063 43 0.065052950
## 505 2012            1               McAllen          25933 43 0.065052950
## 506 2012            1               Midland           5720 43 0.065052950
## 507 2012            1     Montgomery County          36185 43 0.065052950
## 508 2012            1     NE Tarrant County          27122 43 0.065052950
## 509 2012            1           Nacogdoches           2879 43 0.065052950
## 510 2012            1         Wichita Falls          10752 43 0.065052950
## 511 2012            1                 Paris           4287 43 0.065052950
## 512 2012            1           Port Arthur           7157 43 0.065052950
## 513 2012            1            San Angelo           5351 43 0.065052950
## 514 2012            1         Temple-Belton          12985 43 0.065052950
## 515 2012            1             Texarkana           6707 43 0.065052950
## 516 2012            1       Sherman-Denison           9806 43 0.065052950
## 517 2012            1    South Padre Island           8852 43 0.065052950
## 518 2012            1                  Waco          17640 43 0.065052950
## 519 2012            1                 Tyler          34925 43 0.065052950
## 520 2012            1              Victoria           3393 43 0.065052950
## 521 2012            2           San Antonio         124196  1 0.001512859
## 522 2012            3                Dallas         195543  1 0.001512859
## 523 2012            4               Houston         324204  1 0.001512859
## 524 2013            1               Abilene          11505 43 0.065052950
## 525 2013            1              Amarillo          15247 43 0.065052950
## 526 2013            1             Arlington          11111 43 0.065052950
## 527 2013            1                Austin          73242 43 0.065052950
## 528 2013            1              Bay Area          32668 43 0.065052950
## 529 2013            1              Beaumont          19675 43 0.065052950
## 530 2013            1       Brazoria County           5779 43 0.065052950
## 531 2013            1           Brownsville           9896 43 0.065052950
## 532 2013            1 Bryan-College Station          16873 43 0.065052950
## 533 2013            1         Collin County          29072 43 0.065052950
## 534 2013            1        Corpus Christi          23206 43 0.065052950
## 535 2013            1     Longview-Marshall          21121 43 0.065052950
## 536 2013            1         Denton County          19326 43 0.065052950
## 537 2013            1               El Paso          44158 43 0.065052950
## 538 2013            1             Fort Bend          28669 43 0.065052950
## 539 2013            1            Fort Worth          35900 43 0.065052950
## 540 2013            1             Galveston           9945 43 0.065052950
## 541 2013            1               Garland           3882 43 0.065052950
## 542 2013            1             Harlingen          17669 43 0.065052950
## 543 2013            1                Odessa           2700 43 0.065052950
## 544 2013            1                Irving           4673 43 0.065052950
## 545 2013            1             Kerrville           9116 43 0.065052950
## 546 2013            1     Killeen-Fort Hood          18951 43 0.065052950
## 547 2013            1                Laredo           5933 43 0.065052950
## 548 2013            1            San Marcos           1440 43 0.065052950
## 549 2013            1               Lubbock          13088 43 0.065052950
## 550 2013            1                Lufkin           5126 43 0.065052950
## 551 2013            1               McAllen          26616 43 0.065052950
## 552 2013            1               Midland           5223 43 0.065052950
## 553 2013            1     Montgomery County          29255 43 0.065052950
## 554 2013            1     NE Tarrant County          19850 43 0.065052950
## 555 2013            1           Nacogdoches           3301 43 0.065052950
## 556 2013            1         Wichita Falls          10092 43 0.065052950
## 557 2013            1                 Paris           4275 43 0.065052950
## 558 2013            1           Port Arthur           8032 43 0.065052950
## 559 2013            1            San Angelo           4500 43 0.065052950
## 560 2013            1         Temple-Belton          12067 43 0.065052950
## 561 2013            1             Texarkana           8804 43 0.065052950
## 562 2013            1       Sherman-Denison           9027 43 0.065052950
## 563 2013            1    South Padre Island           8162 43 0.065052950
## 564 2013            1                  Waco          16177 43 0.065052950
## 565 2013            1                 Tyler          33885 43 0.065052950
## 566 2013            1              Victoria           3400 43 0.065052950
## 567 2013            2                Dallas         151116  2 0.003025719
## 568 2013            2           San Antonio         109613  2 0.003025719
## 569 2013            3               Houston         247473  1 0.001512859
## 570 2014            1               Abilene          11566 43 0.065052950
## 571 2014            1              Amarillo          14820 43 0.065052950
## 572 2014            1             Arlington           9177 43 0.065052950
## 573 2014            1                Austin          75694 43 0.065052950
## 574 2014            1              Bay Area          27914 43 0.065052950
## 575 2014            1              Beaumont          19040 43 0.065052950
## 576 2014            1       Brazoria County           4299 43 0.065052950
## 577 2014            1           Brownsville           9341 43 0.065052950
## 578 2014            1 Bryan-College Station          13278 43 0.065052950
## 579 2014            1         Collin County          26520 43 0.065052950
## 580 2014            1        Corpus Christi          20787 43 0.065052950
## 581 2014            1     Longview-Marshall          22329 43 0.065052950
## 582 2014            1         Denton County          18268 43 0.065052950
## 583 2014            1               El Paso          48560 43 0.065052950
## 584 2014            1             Fort Bend          28108 43 0.065052950
## 585 2014            1            Fort Worth          30642 43 0.065052950
## 586 2014            1             Galveston           8706 43 0.065052950
## 587 2014            1               Garland           3258 43 0.065052950
## 588 2014            1             Harlingen          19261 43 0.065052950
## 589 2014            1                Odessa           3059 43 0.065052950
## 590 2014            1                Irving           4104 43 0.065052950
## 591 2014            1             Kerrville           8454 43 0.065052950
## 592 2014            1     Killeen-Fort Hood          17026 43 0.065052950
## 593 2014            1                Laredo           6281 43 0.065052950
## 594 2014            1            San Marcos           1257 43 0.065052950
## 595 2014            1               Lubbock          12348 43 0.065052950
## 596 2014            1                Lufkin           5175 43 0.065052950
## 597 2014            1               McAllen          26716 43 0.065052950
## 598 2014            1               Midland           6597 43 0.065052950
## 599 2014            1     Montgomery County          28154 43 0.065052950
## 600 2014            1     NE Tarrant County          16800 43 0.065052950
## 601 2014            1           Nacogdoches           3523 43 0.065052950
## 602 2014            1         Wichita Falls          10520 43 0.065052950
## 603 2014            1                 Paris           3637 43 0.065052950
## 604 2014            1           Port Arthur           7682 43 0.065052950
## 605 2014            1            San Angelo           5859 43 0.065052950
## 606 2014            1         Temple-Belton          10645 43 0.065052950
## 607 2014            1             Texarkana           9234 43 0.065052950
## 608 2014            1       Sherman-Denison           8408 43 0.065052950
## 609 2014            1    South Padre Island           8958 43 0.065052950
## 610 2014            1                  Waco          15315 43 0.065052950
## 611 2014            1                 Tyler          32044 43 0.065052950
## 612 2014            1              Victoria           3323 43 0.065052950
## 613 2014            2                Dallas         136440  2 0.003025719
## 614 2014            2           San Antonio         106596  2 0.003025719
## 615 2014            3               Houston         224230  1 0.001512859
## 616 2015            1               Abilene           6150 45 0.068078669
## 617 2015            1              Amarillo           7841 45 0.068078669
## 618 2015            1             Arlington           4261 45 0.068078669
## 619 2015            1                Austin          46107 45 0.068078669
## 620 2015            1              Bay Area          13937 45 0.068078669
## 621 2015            1              Beaumont          10861 45 0.068078669
## 622 2015            1       Brazoria County           1700 45 0.068078669
## 623 2015            1           Brownsville           4372 45 0.068078669
## 624 2015            1 Bryan-College Station           6582 45 0.068078669
## 625 2015            1         Collin County          14769 45 0.068078669
## 626 2015            1        Corpus Christi          11683 45 0.068078669
## 627 2015            1                Dallas          70122 45 0.068078669
## 628 2015            1         Denton County           9578 45 0.068078669
## 629 2015            1               El Paso          28178 45 0.068078669
## 630 2015            1             Fort Bend          19728 45 0.068078669
## 631 2015            1            Fort Worth          14837 45 0.068078669
## 632 2015            1             Galveston           3759 45 0.068078669
## 633 2015            1               Garland           1322 45 0.068078669
## 634 2015            1             Harlingen          11563 45 0.068078669
## 635 2015            1                Odessa           1928 45 0.068078669
## 636 2015            1                Irving           2177 45 0.068078669
## 637 2015            1             Kerrville           4502 45 0.068078669
## 638 2015            1     Killeen-Fort Hood           8218 45 0.068078669
## 639 2015            1                Laredo           3781 45 0.068078669
## 640 2015            1     Longview-Marshall          12809 45 0.068078669
## 641 2015            1               Lubbock           7232 45 0.068078669
## 642 2015            1                Lufkin           2827 45 0.068078669
## 643 2015            1               McAllen          15297 45 0.068078669
## 644 2015            1               Midland           4290 45 0.068078669
## 645 2015            1     Montgomery County          20813 45 0.068078669
## 646 2015            1     NE Tarrant County           8992 45 0.068078669
## 647 2015            1           Nacogdoches           1951 45 0.068078669
## 648 2015            1         Wichita Falls           5559 45 0.068078669
## 649 2015            1                 Paris           2083 45 0.068078669
## 650 2015            1           Port Arthur           3211 45 0.068078669
## 651 2015            1            San Angelo           3467 45 0.068078669
## 652 2015            1           San Antonio          59185 45 0.068078669
## 653 2015            1            San Marcos            578 45 0.068078669
## 654 2015            1       Sherman-Denison           3773 45 0.068078669
## 655 2015            1    South Padre Island           4992 45 0.068078669
## 656 2015            1         Temple-Belton           5905 45 0.068078669
## 657 2015            1             Texarkana           3999 45 0.068078669
## 658 2015            1                 Tyler          17137 45 0.068078669
## 659 2015            1              Victoria           2066 45 0.068078669
## 660 2015            1                  Waco           7141 45 0.068078669
## 661 2015            2               Houston         144132  1 0.001512859
##     Probability_Class
## 1             Highest
## 2             Highest
## 3             Highest
## 4             Highest
## 5             Highest
## 6             Highest
## 7             Highest
## 8             Highest
## 9             Highest
## 10            Highest
## 11            Highest
## 12            Highest
## 13            Highest
## 14            Highest
## 15            Highest
## 16            Highest
## 17            Highest
## 18            Highest
## 19            Highest
## 20            Highest
## 21            Highest
## 22            Highest
## 23            Highest
## 24            Highest
## 25            Highest
## 26            Highest
## 27            Highest
## 28            Highest
## 29            Highest
## 30            Highest
## 31            Highest
## 32            Highest
## 33            Highest
## 34            Highest
## 35            Highest
## 36            Highest
## 37             Lowest
## 38             Lowest
## 39            Highest
## 40            Highest
## 41            Highest
## 42            Highest
## 43            Highest
## 44            Highest
## 45            Highest
## 46            Highest
## 47            Highest
## 48            Highest
## 49            Highest
## 50            Highest
## 51            Highest
## 52            Highest
## 53            Highest
## 54            Highest
## 55            Highest
## 56            Highest
## 57            Highest
## 58            Highest
## 59            Highest
## 60            Highest
## 61            Highest
## 62            Highest
## 63            Highest
## 64            Highest
## 65            Highest
## 66            Highest
## 67            Highest
## 68            Highest
## 69            Highest
## 70            Highest
## 71            Highest
## 72            Highest
## 73            Highest
## 74            Highest
## 75             Lowest
## 76             Lowest
## 77            Highest
## 78            Highest
## 79            Highest
## 80            Highest
## 81            Highest
## 82            Highest
## 83            Highest
## 84            Highest
## 85            Highest
## 86            Highest
## 87            Highest
## 88            Highest
## 89            Highest
## 90            Highest
## 91            Highest
## 92            Highest
## 93            Highest
## 94            Highest
## 95            Highest
## 96            Highest
## 97            Highest
## 98            Highest
## 99            Highest
## 100           Highest
## 101           Highest
## 102           Highest
## 103           Highest
## 104           Highest
## 105           Highest
## 106           Highest
## 107           Highest
## 108           Highest
## 109           Highest
## 110           Highest
## 111            Lowest
## 112             Other
## 113             Other
## 114           Highest
## 115           Highest
## 116           Highest
## 117           Highest
## 118           Highest
## 119           Highest
## 120           Highest
## 121           Highest
## 122           Highest
## 123           Highest
## 124           Highest
## 125           Highest
## 126           Highest
## 127           Highest
## 128           Highest
## 129           Highest
## 130           Highest
## 131           Highest
## 132           Highest
## 133           Highest
## 134           Highest
## 135           Highest
## 136           Highest
## 137           Highest
## 138           Highest
## 139           Highest
## 140           Highest
## 141           Highest
## 142           Highest
## 143           Highest
## 144           Highest
## 145           Highest
## 146           Highest
## 147           Highest
## 148            Lowest
## 149             Other
## 150             Other
## 151           Highest
## 152           Highest
## 153           Highest
## 154           Highest
## 155           Highest
## 156           Highest
## 157           Highest
## 158           Highest
## 159           Highest
## 160           Highest
## 161           Highest
## 162           Highest
## 163           Highest
## 164           Highest
## 165           Highest
## 166           Highest
## 167           Highest
## 168           Highest
## 169           Highest
## 170           Highest
## 171           Highest
## 172           Highest
## 173           Highest
## 174           Highest
## 175           Highest
## 176           Highest
## 177           Highest
## 178           Highest
## 179           Highest
## 180           Highest
## 181           Highest
## 182           Highest
## 183           Highest
## 184           Highest
## 185           Highest
## 186            Lowest
## 187            Lowest
## 188            Lowest
## 189           Highest
## 190           Highest
## 191           Highest
## 192           Highest
## 193           Highest
## 194           Highest
## 195           Highest
## 196           Highest
## 197           Highest
## 198           Highest
## 199           Highest
## 200           Highest
## 201           Highest
## 202           Highest
## 203           Highest
## 204           Highest
## 205           Highest
## 206           Highest
## 207           Highest
## 208           Highest
## 209           Highest
## 210           Highest
## 211           Highest
## 212           Highest
## 213           Highest
## 214           Highest
## 215           Highest
## 216           Highest
## 217           Highest
## 218           Highest
## 219           Highest
## 220           Highest
## 221           Highest
## 222             Other
## 223             Other
## 224            Lowest
## 225            Lowest
## 226           Highest
## 227           Highest
## 228           Highest
## 229           Highest
## 230           Highest
## 231           Highest
## 232           Highest
## 233           Highest
## 234           Highest
## 235           Highest
## 236           Highest
## 237           Highest
## 238           Highest
## 239           Highest
## 240           Highest
## 241           Highest
## 242           Highest
## 243           Highest
## 244           Highest
## 245           Highest
## 246           Highest
## 247           Highest
## 248           Highest
## 249           Highest
## 250           Highest
## 251           Highest
## 252           Highest
## 253           Highest
## 254           Highest
## 255           Highest
## 256           Highest
## 257           Highest
## 258             Other
## 259             Other
## 260            Lowest
## 261            Lowest
## 262           Highest
## 263           Highest
## 264           Highest
## 265           Highest
## 266           Highest
## 267           Highest
## 268           Highest
## 269           Highest
## 270           Highest
## 271           Highest
## 272           Highest
## 273           Highest
## 274           Highest
## 275           Highest
## 276           Highest
## 277           Highest
## 278           Highest
## 279           Highest
## 280           Highest
## 281           Highest
## 282           Highest
## 283           Highest
## 284           Highest
## 285           Highest
## 286           Highest
## 287           Highest
## 288           Highest
## 289           Highest
## 290           Highest
## 291           Highest
## 292           Highest
## 293           Highest
## 294           Highest
## 295           Highest
## 296           Highest
## 297             Other
## 298             Other
## 299            Lowest
## 300            Lowest
## 301           Highest
## 302           Highest
## 303           Highest
## 304           Highest
## 305           Highest
## 306           Highest
## 307           Highest
## 308           Highest
## 309           Highest
## 310           Highest
## 311           Highest
## 312           Highest
## 313           Highest
## 314           Highest
## 315           Highest
## 316           Highest
## 317           Highest
## 318           Highest
## 319           Highest
## 320           Highest
## 321           Highest
## 322           Highest
## 323           Highest
## 324           Highest
## 325           Highest
## 326           Highest
## 327           Highest
## 328           Highest
## 329           Highest
## 330           Highest
## 331           Highest
## 332           Highest
## 333           Highest
## 334           Highest
## 335           Highest
## 336           Highest
## 337           Highest
## 338           Highest
## 339             Other
## 340             Other
## 341            Lowest
## 342            Lowest
## 343           Highest
## 344           Highest
## 345           Highest
## 346           Highest
## 347           Highest
## 348           Highest
## 349           Highest
## 350           Highest
## 351           Highest
## 352           Highest
## 353           Highest
## 354           Highest
## 355           Highest
## 356           Highest
## 357           Highest
## 358           Highest
## 359           Highest
## 360           Highest
## 361           Highest
## 362           Highest
## 363           Highest
## 364           Highest
## 365           Highest
## 366           Highest
## 367           Highest
## 368           Highest
## 369           Highest
## 370           Highest
## 371           Highest
## 372           Highest
## 373           Highest
## 374           Highest
## 375           Highest
## 376           Highest
## 377           Highest
## 378           Highest
## 379           Highest
## 380           Highest
## 381           Highest
## 382             Other
## 383             Other
## 384            Lowest
## 385            Lowest
## 386           Highest
## 387           Highest
## 388           Highest
## 389           Highest
## 390           Highest
## 391           Highest
## 392           Highest
## 393           Highest
## 394           Highest
## 395           Highest
## 396           Highest
## 397           Highest
## 398           Highest
## 399           Highest
## 400           Highest
## 401           Highest
## 402           Highest
## 403           Highest
## 404           Highest
## 405           Highest
## 406           Highest
## 407           Highest
## 408           Highest
## 409           Highest
## 410           Highest
## 411           Highest
## 412           Highest
## 413           Highest
## 414           Highest
## 415           Highest
## 416           Highest
## 417           Highest
## 418           Highest
## 419           Highest
## 420           Highest
## 421           Highest
## 422           Highest
## 423           Highest
## 424           Highest
## 425           Highest
## 426           Highest
## 427           Highest
## 428             Other
## 429             Other
## 430            Lowest
## 431            Lowest
## 432           Highest
## 433           Highest
## 434           Highest
## 435           Highest
## 436           Highest
## 437           Highest
## 438           Highest
## 439           Highest
## 440           Highest
## 441           Highest
## 442           Highest
## 443           Highest
## 444           Highest
## 445           Highest
## 446           Highest
## 447           Highest
## 448           Highest
## 449           Highest
## 450           Highest
## 451           Highest
## 452           Highest
## 453           Highest
## 454           Highest
## 455           Highest
## 456           Highest
## 457           Highest
## 458           Highest
## 459           Highest
## 460           Highest
## 461           Highest
## 462           Highest
## 463           Highest
## 464           Highest
## 465           Highest
## 466           Highest
## 467           Highest
## 468           Highest
## 469           Highest
## 470           Highest
## 471           Highest
## 472           Highest
## 473           Highest
## 474             Other
## 475             Other
## 476            Lowest
## 477            Lowest
## 478           Highest
## 479           Highest
## 480           Highest
## 481           Highest
## 482           Highest
## 483           Highest
## 484           Highest
## 485           Highest
## 486           Highest
## 487           Highest
## 488           Highest
## 489           Highest
## 490           Highest
## 491           Highest
## 492           Highest
## 493           Highest
## 494           Highest
## 495           Highest
## 496           Highest
## 497           Highest
## 498           Highest
## 499           Highest
## 500           Highest
## 501           Highest
## 502           Highest
## 503           Highest
## 504           Highest
## 505           Highest
## 506           Highest
## 507           Highest
## 508           Highest
## 509           Highest
## 510           Highest
## 511           Highest
## 512           Highest
## 513           Highest
## 514           Highest
## 515           Highest
## 516           Highest
## 517           Highest
## 518           Highest
## 519           Highest
## 520           Highest
## 521            Lowest
## 522            Lowest
## 523            Lowest
## 524           Highest
## 525           Highest
## 526           Highest
## 527           Highest
## 528           Highest
## 529           Highest
## 530           Highest
## 531           Highest
## 532           Highest
## 533           Highest
## 534           Highest
## 535           Highest
## 536           Highest
## 537           Highest
## 538           Highest
## 539           Highest
## 540           Highest
## 541           Highest
## 542           Highest
## 543           Highest
## 544           Highest
## 545           Highest
## 546           Highest
## 547           Highest
## 548           Highest
## 549           Highest
## 550           Highest
## 551           Highest
## 552           Highest
## 553           Highest
## 554           Highest
## 555           Highest
## 556           Highest
## 557           Highest
## 558           Highest
## 559           Highest
## 560           Highest
## 561           Highest
## 562           Highest
## 563           Highest
## 564           Highest
## 565           Highest
## 566           Highest
## 567             Other
## 568             Other
## 569            Lowest
## 570           Highest
## 571           Highest
## 572           Highest
## 573           Highest
## 574           Highest
## 575           Highest
## 576           Highest
## 577           Highest
## 578           Highest
## 579           Highest
## 580           Highest
## 581           Highest
## 582           Highest
## 583           Highest
## 584           Highest
## 585           Highest
## 586           Highest
## 587           Highest
## 588           Highest
## 589           Highest
## 590           Highest
## 591           Highest
## 592           Highest
## 593           Highest
## 594           Highest
## 595           Highest
## 596           Highest
## 597           Highest
## 598           Highest
## 599           Highest
## 600           Highest
## 601           Highest
## 602           Highest
## 603           Highest
## 604           Highest
## 605           Highest
## 606           Highest
## 607           Highest
## 608           Highest
## 609           Highest
## 610           Highest
## 611           Highest
## 612           Highest
## 613             Other
## 614             Other
## 615            Lowest
## 616           Highest
## 617           Highest
## 618           Highest
## 619           Highest
## 620           Highest
## 621           Highest
## 622           Highest
## 623           Highest
## 624           Highest
## 625           Highest
## 626           Highest
## 627           Highest
## 628           Highest
## 629           Highest
## 630           Highest
## 631           Highest
## 632           Highest
## 633           Highest
## 634           Highest
## 635           Highest
## 636           Highest
## 637           Highest
## 638           Highest
## 639           Highest
## 640           Highest
## 641           Highest
## 642           Highest
## 643           Highest
## 644           Highest
## 645           Highest
## 646           Highest
## 647           Highest
## 648           Highest
## 649           Highest
## 650           Highest
## 651           Highest
## 652           Highest
## 653           Highest
## 654           Highest
## 655           Highest
## 656           Highest
## 657           Highest
## 658           Highest
## 659           Highest
## 660           Highest
## 661            Lowest

Evaluating our Results:

From the above boxpplot it appears as though there is a general trend where cities and years Having Lower # of listings have the highest probability of being selected, while those with a Higher number of listings have a lower probability.

However this pattern and distribution is not as extreme as in the first case, where we only grouped by year. It is possible that the inclusion of city as a second grouping parameter, allowed for the distribution to be less extreme. This might be indicative of a Conditional Probability.

Concluding Questions:

    • How does the probability of selecting a given city change, given a specific year? What about month in a year?
    • Is there a correlation between volume and sales? What about listings and sales?
    • How do the months in a year affect sales of houses in Texas?