Exploring and understanding data ——————–
data exploration example using used car data
#getwd()
#setwd("C:/Users/npenaper/Documents")
usedcars <- read.csv("C:/Users/User/OneDrive/Desktop/1 - STU - DATA ANALYTICS/7 - DMML/usedcars.csv", stringsAsFactors = FALSE)
# get structure of used car data
str(usedcars)
## 'data.frame': 150 obs. of 6 variables:
## $ year : int 2011 2011 2011 2011 2012 2010 2011 2010 2011 2010 ...
## $ model : chr "SEL" "SEL" "SEL" "SEL" ...
## $ price : int 21992 20995 19995 17809 17500 17495 17000 16995 16995 16995 ...
## $ mileage : int 7413 10926 7351 11613 8367 25125 27393 21026 32655 36116 ...
## $ color : chr "Yellow" "Gray" "Silver" "Gray" ...
## $ transmission: chr "AUTO" "AUTO" "AUTO" "AUTO" ...
Exploring numeric variables —–
# summarize numeric variables
summary(usedcars$year)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2000 2008 2009 2009 2010 2012
summary(usedcars[c("price", "mileage")])
## price mileage
## Min. : 3800 Min. : 4867
## 1st Qu.:10995 1st Qu.: 27200
## Median :13592 Median : 36385
## Mean :12962 Mean : 44261
## 3rd Qu.:14904 3rd Qu.: 55125
## Max. :21992 Max. :151479
# calculate the mean income
(36000 + 44000 + 56000) / 3
## [1] 45333.33
mean(c(36000, 44000, 56000))
## [1] 45333.33
# the median income
median(c(36000, 44000, 56000))
## [1] 44000
# the min/max of used car prices
range(usedcars$price)
## [1] 3800 21992
# the difference of the range
diff(range(usedcars$price))
## [1] 18192
# IQR for used car prices
IQR(usedcars$price)
## [1] 3909.5
# use quantile to calculate five-number summary
quantile(usedcars$price)
## 0% 25% 50% 75% 100%
## 3800.0 10995.0 13591.5 14904.5 21992.0
# the 99th percentile
quantile(usedcars$price, probs = c(0.01, 0.99))
## 1% 99%
## 5428.69 20505.00
# quintiles
quantile(usedcars$price, seq(from = 0, to = 1, by = 0.20))
## 0% 20% 40% 60% 80% 100%
## 3800.0 10759.4 12993.8 13992.0 14999.0 21992.0
# boxplot of used car prices and mileage
boxplot(usedcars$price, main="Boxplot of Used Car Prices",
ylab="Price ($)")

boxplot(usedcars$mileage, main="Boxplot of Used Car Mileage",
ylab="Odometer (mi.)")

# histograms of used car prices and mileage
hist(usedcars$price, main = "Histogram of Used Car Prices",
xlab = "Price ($)")

hist(usedcars$mileage, main = "Histogram of Used Car Mileage",
xlab = "Odometer (mi.)")

# variance and standard deviation of the used car data
var(usedcars$price)
## [1] 9749892
sd(usedcars$price)
## [1] 3122.482
var(usedcars$mileage)
## [1] 728033954
sd(usedcars$mileage)
## [1] 26982.1
Exploring numeric variables —–
# one-way tables for the used car data
table(usedcars$year)
##
## 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
## 3 1 1 1 3 2 6 11 14 42 49 16 1
table(usedcars$model)
##
## SE SEL SES
## 78 23 49
table(usedcars$color)
##
## Black Blue Gold Gray Green Red Silver White Yellow
## 35 17 1 16 5 25 32 16 3
# compute table proportions
model_table <- table(usedcars$model)
prop.table(model_table)
##
## SE SEL SES
## 0.5200000 0.1533333 0.3266667
# round the data
color_table <- table(usedcars$color)
color_pct <- prop.table(color_table) * 100
round(color_pct, digits = 1)
##
## Black Blue Gold Gray Green Red Silver White Yellow
## 23.3 11.3 0.7 10.7 3.3 16.7 21.3 10.7 2.0
Exploring relationships between variables —–
# scatterplot of price vs. mileage
plot(x = usedcars$mileage, y = usedcars$price,
main = "Scatterplot of Price vs. Mileage",
xlab = "Used Car Odometer (mi.)",
ylab = "Used Car Price ($)")

# new variable indicating conservative colors
usedcars$conservative <-
usedcars$color %in% c("Black", "Gray", "Silver", "White")
# checking our variable
table(usedcars$conservative)
##
## FALSE TRUE
## 51 99
#install.packages("gmodels")
# Crosstab of conservative by model
#library(gmodels)
#CrossTable(x = usedcars$model, y = usedcars$conservative)