1. Kütüphanelerin Yüklenmesi
library(readr)
library(tidyverse)
library(tidyr)
library(dendextend)
library(knitr)
library(gridExtra)
library(ggplot2)
library(VIM)
library(corrplot)
library(car)
library(ResourceSelection)
library(glmulti)
library(tree)
library(randomForest)
library(ISLR)
library(class)
library(pROC)
library(gtools)
library(tidyverse)
library(GGally)
library(superml)
library(caret)
library(Boruta)
library("stringr")
library("tidyr")
library("readr")
library("here")
library("skimr")
library("janitor")
library("lubridate")
library(gridExtra)
library(ggplot2)
library(VIM)
library(corrplot)
library(car)
library(ResourceSelection)
library(glmulti)
library(tree)
library(randomForest)
library(ISLR)
library(class)
library(pROC)
library(gtools)
library(tidyverse)
library("scales")
library("ggcorrplot")
library("ggrepel")
library("forcats")
library("corrgram")
library(tidymodels)
library(baguette)
library(discrim)
library(bonsai)
library(ResourceSelection)
library(kableExtra)
library(broom)
library(dplyr)
library(caret)
library(tidyr)
library(corrplot)
library("Hmisc")
library(psych)
library(factoextra)
library("DescTools")
library(ResourceSelection)
library(haven)
library(effectsize)
library(rstatix)
library(ggpubr)
library(biotools)
library(PerformanceAnalytics)
library(heplots)
library(gplots)
clean_df <- read.csv('/home/ilke/Downloads/clean_heart.csv')
10.Kümeleme
10.1 Hiyerarşik Kümeleme
h_kume <- clean_df[, c("Age","RestingBP","Cholesterol","MaxHR","Oldpeak")]
h_kumee <- scale(h_kume)
# Korelasyon matrisinin incelenmesi
rcorr(as.matrix(h_kume),type="pearson")
## Age RestingBP Cholesterol MaxHR Oldpeak
## Age 1.00 0.27 0.07 -0.40 0.28
## RestingBP 0.27 1.00 0.09 -0.13 0.19
## Cholesterol 0.07 0.09 1.00 0.00 0.07
## MaxHR -0.40 -0.13 0.00 1.00 -0.28
## Oldpeak 0.28 0.19 0.07 -0.28 1.00
##
## n= 702
##
##
## P
## Age RestingBP Cholesterol MaxHR Oldpeak
## Age 0.0000 0.0656 0.0000 0.0000
## RestingBP 0.0000 0.0176 0.0006 0.0000
## Cholesterol 0.0656 0.0176 0.9528 0.0576
## MaxHR 0.0000 0.0006 0.9528 0.0000
## Oldpeak 0.0000 0.0000 0.0576 0.0000
# Hiyerarsik Kümeleme
d <- dist(h_kume, method = "euclidean") # uzaklik matrisi
fit <- hclust(d, method="ward.D") # method= "single", "complete", "average", "ward.D", "centroid"
dend<-as.dendrogram(fit) # Dendogram çizimi
plot(dend)

plot(color_branches(dend, k=4))

10.2 K-Means
h_kume <- scale(h_kume)
fviz_nbclust(h_kume, kmeans, method = "wss")

fviz_nbclust(h_kume, kmeans, method = "silhouette")

set.seed(95739487)
km.res <- kmeans(h_kume,2, iter.max=100, algorithm="Lloyd")### i
t(km.res$centers)
## 1 2
## Age -0.5304542 0.6985189
## RestingBP -0.3629667 0.4779661
## Cholesterol -0.1887484 0.2485498
## MaxHR 0.4867892 -0.6410194
## Oldpeak -0.4939088 0.6503948
library(cluster)
clusplot(h_kume, km.res$cluster, main='2D representation of the Cluster solution',
color=TRUE, shade=TRUE,
labels=2, lines=0)
