データの読み込み
library(readxl)
time <- read_excel("time.xlsx")
記述統計
# 平均
mean(time$time)
## [1] 62.35294
# 中央値
median(time$time)
## [1] 60
# 最大値
max(time$time)
## [1] 120
# 最小値
min(time$time)
## [1] 25
ヒストグラム with
hist
hist(time$time)

データの読み込み
library(readxl)
time2 <- read_excel("time2.xlsx")
グラフ with
ggplot2
# パッケージ
library("ggplot2")
# グラフ
graph <- ggplot(time2, aes(x = school, y = work)) +
geom_point()+
geom_smooth(se = FALSE, method = 'lm') +
theme_bw()
graph

動的グラフ with
plotly
library("plotly")
ggplotly(graph)
# If you would like to save your graph, you can use:
ggsave('my_graph.pdf', graph, width = 14, height = 14, units = 'cm')
確率密度関数の例
x=seq(0,1,0.01)
y=6*(x-x^2)
plot(x,y)

標準正規分布
x=seq(-5,5,0.01)
y=(1/sqrt(2*pi))*exp(-(x^2/2))
plot(x,y)

curve(dnorm,-5,5)

正規分布
x=seq(5,15,0.01)
m=10
s=5
y=(1/(sqrt(2*pi)*s^2))*exp(-((x-m)^2/2*s^2))
plot(x,y)

平均が18、標準偏差10の正規分布
curve(dnorm(x,18,10),0,40)

X=c(28,13,16,28,29,12,14,12,10)
hist(X)

mean<-mean(X)
low<-mean-1.96*(10/3)
upper<-mean+1.96*(10/3)
mean
## [1] 18
low
## [1] 11.46667
upper
## [1] 24.53333
例)身長のデータ
library(readxl)
height <- read_excel("height.xlsx")
hist(height$h)

正規分布
mean(height$h)
## [1] 167.5833
sd(height$h)
## [1] 9.307459
x=seq(147,187,1)
y=dnorm(x,167.5,9.3)
plot(x,y)

中心極限定理
x=runif(1000000)
hist(x, freq=FALSE)

x=x+runif(1000000)+runif(1000000)+runif(1000000)
hist(x,freq = FALSE)
