Done by Lucía García, Miguel Rodríguez, Diego Rivera and Adrián Macías

#The Salaries dataset from the carData consists of nine-month academic salary for Assistant #Professors, Associate Professors and Professors in a college in the U.S. The data were #collected as part of the on-going effort of the college’s administration to monitor salary #differences between male and female faculty members.

knitr::opts_chunk$set(echo = TRUE)
options(scipen = 999, digits=3) 
options(repos = list(CRAN="http://cran.rstudio.com/"))
library(rmdformats)
## Warning: package 'rmdformats' was built under R version 4.3.2
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.2
## Warning: package 'ggplot2' was built under R version 4.3.2
## Warning: package 'tibble' was built under R version 4.3.2
## Warning: package 'tidyr' was built under R version 4.3.2
## Warning: package 'readr' was built under R version 4.3.2
## Warning: package 'purrr' was built under R version 4.3.2
## Warning: package 'dplyr' was built under R version 4.3.2
## Warning: package 'forcats' was built under R version 4.3.2
## Warning: package 'lubridate' was built under R version 4.3.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.3.2
library(rstatix)
## Warning: package 'rstatix' was built under R version 4.3.2
## 
## Attaching package: 'rstatix'
## 
## The following object is masked from 'package:stats':
## 
##     filter
library(datarium)
## Warning: package 'datarium' was built under R version 4.3.2
library(ggplot2)
library(knitr)
set.seed(123)
library(report)
## Warning: package 'report' was built under R version 4.3.2
library(emmeans)
install.packages(c("kableExtra", "qqplotr"))
## Installing packages into 'C:/Users/adria/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'kableExtra' successfully unpacked and MD5 sums checked
## package 'qqplotr' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\adria\AppData\Local\Temp\RtmpAjZbVL\downloaded_packages
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.3.2
## 
## Attaching package: 'kableExtra'
## 
## The following object is masked from 'package:dplyr':
## 
##     group_rows
library(qqplotr)
## Warning: package 'qqplotr' was built under R version 4.3.2
## 
## Attaching package: 'qqplotr'
## 
## The following objects are masked from 'package:ggplot2':
## 
##     stat_qq_line, StatQqLine
data(Salaries)
## Warning in data(Salaries): data set 'Salaries' not found
# Load the necessary library
library(carData)
## Warning: package 'carData' was built under R version 4.3.2
# Load the Salaries dataset
data(Salaries)

#1.Perform the 3-way Anova with and w/o interactions. Interpret the results: ## DESCRIPTIVE STATISTICS # Histogram:

Salaries$rank <- as.factor(Salaries$rank)
Salaries$sex <- as.factor(Salaries$sex)
Salaries$discipline <- as.factor(Salaries$discipline)

ggplot(Salaries, aes(x = salary)) +
  geom_histogram(bins = 10, fill = "blue", color = "black", alpha = 0.7) +
  facet_grid(rank ~ sex * discipline) +
  labs(title = "Salary Distribution",
       x = "Salary",
       y = "Frequency") +
  theme_classic()

# Cross-tabulation for Salaries
xtabs(~ rank + sex + discipline, data = Salaries)
## , , discipline = A
## 
##            sex
## rank        Female Male
##   AsstProf       6   18
##   AssocProf      4   22
##   Prof           8  123
## 
## , , discipline = B
## 
##            sex
## rank        Female Male
##   AsstProf       5   38
##   AssocProf      6   32
##   Prof          10  125
# Calculate the mean and standard deviation of salaries by groups
Salaries %>%
  group_by(rank, sex, discipline) %>%
  get_summary_stats(salary, type = "mean_sd")
## # A tibble: 12 × 7
##    rank      discipline sex    variable     n    mean     sd
##    <fct>     <fct>      <fct>  <fct>    <dbl>   <dbl>  <dbl>
##  1 AsstProf  A          Female salary       6  72933.  5463.
##  2 AsstProf  B          Female salary       5  84190.  9792.
##  3 AsstProf  A          Male   salary      18  74270.  4580.
##  4 AsstProf  B          Male   salary      38  84647.  6900.
##  5 AssocProf A          Female salary       4  72128.  6403.
##  6 AssocProf B          Female salary       6  99436. 14086.
##  7 AssocProf A          Male   salary      22  85049. 10612.
##  8 AssocProf B          Male   salary      32 101622.  9608.
##  9 Prof      A          Female salary       8 109632. 15095.
## 10 Prof      B          Female salary      10 131836. 17504.
## 11 Prof      A          Male   salary     123 120619. 28505.
## 12 Prof      B          Male   salary     125 133518. 26514.

ASSUMPTIONS

Outliers

# Define the remove_outliers function
remove_outliers <- function(data, group_vars, outlier_var) {
  # Identify outliers
  outliers <- data %>%
    group_by(across(all_of(group_vars))) %>%
    identify_outliers(!!sym(outlier_var))

  # Remove outliers from the original dataset
  data_clean <- data %>%
    anti_join(outliers, by = c(group_vars, outlier_var))

  return(data_clean)
}

# Remove outliers for the Salaries dataset
Salaries <- remove_outliers(Salaries, c("rank", "sex", "discipline"), "salary")
Salaries
##          rank discipline yrs.since.phd yrs.service    sex salary
## 1        Prof          B            19          18   Male 139750
## 2        Prof          B            20          16   Male 173200
## 3    AsstProf          B             4           3   Male  79750
## 4        Prof          B            45          39   Male 115000
## 5        Prof          B            40          41   Male 141500
## 6   AssocProf          B             6           6   Male  97000
## 7        Prof          B            30          23   Male 175000
## 8        Prof          B            45          45   Male 147765
## 9        Prof          B            21          20   Male 119250
## 10       Prof          B            18          18 Female 129000
## 11  AssocProf          B            12           8   Male 119800
## 12   AsstProf          B             7           2   Male  79800
## 13   AsstProf          B             1           1   Male  77700
## 14   AsstProf          B             2           0   Male  78000
## 15       Prof          B            20          18   Male 104800
## 16       Prof          B            12           3   Male 117150
## 17       Prof          B            19          20   Male 101000
## 18       Prof          A            38          34   Male 103450
## 19       Prof          A            37          23   Male 124750
## 20       Prof          A            39          36 Female 137000
## 21       Prof          A            31          26   Male  89565
## 22       Prof          A            36          31   Male 102580
## 23       Prof          A            34          30   Male  93904
## 24       Prof          A            24          19   Male 113068
## 25  AssocProf          A            13           8 Female  74830
## 26       Prof          A            21           8   Male 106294
## 27       Prof          A            35          23   Male 134885
## 28   AsstProf          B             5           3   Male  82379
## 29   AsstProf          B            11           0   Male  77000
## 30       Prof          B            12           8   Male 118223
## 31       Prof          B            20           4   Male 132261
## 32   AsstProf          B             7           2   Male  79916
## 33       Prof          B            13           9   Male 117256
## 34   AsstProf          B             4           2   Male  80225
## 35   AsstProf          B             4           2 Female  80225
## 36   AsstProf          B             5           0 Female  77000
## 37       Prof          B            22          21   Male 155750
## 38   AsstProf          B             7           4   Male  86373
## 39       Prof          B            41          31   Male 125196
## 40  AssocProf          B             9           9   Male 100938
## 41       Prof          B            23           2   Male 146500
## 42  AssocProf          B            23          23   Male  93418
## 43       Prof          B            40          27   Male 101299
## 44       Prof          B            19          19   Male  94384
## 45       Prof          B            25          15   Male 114778
## 46       Prof          B            40          28   Male  98193
## 47       Prof          B            23          19 Female 151768
## 48       Prof          B            25          25 Female 140096
## 49   AsstProf          B             1           1   Male  70768
## 50       Prof          B            28          28   Male 126621
## 51       Prof          B            12          11   Male 108875
## 52   AsstProf          B            11           3 Female  74692
## 53       Prof          B            16           9   Male 106639
## 54  AssocProf          B            12          11   Male 103760
## 55  AssocProf          B            14           5   Male  83900
## 56       Prof          B            23          21   Male 117704
## 57  AssocProf          B             9           8   Male  90215
## 58  AssocProf          B            10           9   Male 100135
## 59   AsstProf          B             8           3   Male  75044
## 60  AssocProf          B             9           8   Male  90304
## 61   AsstProf          B             3           2   Male  75243
## 62       Prof          B            33          31   Male 109785
## 63  AssocProf          B            11          11 Female 103613
## 64   AsstProf          B             4           3   Male  68404
## 65  AssocProf          B             9           8   Male 100522
## 66       Prof          B            22          12   Male 101000
## 67       Prof          B            35          31   Male  99418
## 68       Prof          B            17          17 Female 111512
## 69       Prof          B            28          36   Male  91412
## 70       Prof          B            17           2   Male 126320
## 71       Prof          B            45          45   Male 146856
## 72       Prof          B            29          19   Male 100131
## 73       Prof          B            35          34   Male  92391
## 74       Prof          B            28          23   Male 113398
## 75   AsstProf          B             8           3   Male  73266
## 76       Prof          B            17           3   Male 150480
## 77       Prof          B            26          19   Male 193000
## 78   AsstProf          B             3           1   Male  86100
## 79   AsstProf          B             6           2   Male  84240
## 80       Prof          B            43          28   Male 150743
## 81       Prof          B            17          16   Male 135585
## 82       Prof          B            22          20   Male 144640
## 83   AsstProf          B             6           2   Male  88825
## 84       Prof          B            17          18 Female 122960
## 85       Prof          B            15          14   Male 132825
## 86       Prof          B            37          37   Male 152708
## 87   AsstProf          B             2           2   Male  88400
## 88       Prof          B            25          25   Male 172272
## 89  AssocProf          B             9           7   Male 107008
## 90   AsstProf          B            10           5 Female  97032
## 91  AssocProf          B            10           7   Male 105128
## 92  AssocProf          B            10           7   Male 105631
## 93       Prof          B            38          38   Male 166024
## 94       Prof          B            21          20   Male 123683
## 95   AsstProf          B             4           0   Male  84000
## 96  AssocProf          B            17          12   Male  95611
## 97       Prof          B            13           7   Male 129676
## 98       Prof          B            30          14   Male 102235
## 99       Prof          B            41          26   Male 106689
## 100      Prof          B            42          25   Male 133217
## 101      Prof          B            28          23   Male 126933
## 102      Prof          B            16           5   Male 153303
## 103      Prof          B            20          14 Female 127512
## 104 AssocProf          A            18          10   Male  83850
## 105      Prof          A            31          28   Male 113543
## 106 AssocProf          A            11           8   Male  82099
## 107 AssocProf          A            10           8   Male  82600
## 108 AssocProf          A            15           8   Male  81500
## 109      Prof          A            40          31   Male 131205
## 110      Prof          A            20          16   Male 112429
## 111 AssocProf          A            19          16   Male  82100
## 112  AsstProf          A             3           1   Male  72500
## 113      Prof          A            37          37   Male 104279
## 114      Prof          A            12           0 Female 105000
## 115      Prof          A            21           9   Male 120806
## 116      Prof          A            30          29   Male 148500
## 117      Prof          A            39          36   Male 117515
## 118  AsstProf          A             4           1   Male  72500
## 119  AsstProf          A             5           3 Female  73500
## 120      Prof          A            14          14   Male 115313
## 121      Prof          A            32          32   Male 124309
## 122      Prof          A            24          22   Male  97262
## 123      Prof          A            24          22   Male  96614
## 124      Prof          A            54          49   Male  78162
## 125      Prof          A            28          26   Male 155500
## 126  AsstProf          A             2           0 Female  72500
## 127      Prof          A            32          30   Male 113278
## 128  AsstProf          A             4           2   Male  73000
## 129 AssocProf          A            11           9   Male  83001
## 130      Prof          A            56          57   Male  76840
## 131 AssocProf          A            10           8 Female  77500
## 132  AsstProf          A             3           1 Female  72500
## 133      Prof          A            35          25   Male 168635
## 134      Prof          A            20          18   Male 136000
## 135      Prof          A            16          14   Male 108262
## 136      Prof          A            17          14   Male 105668
## 137 AssocProf          A            10           7   Male  73877
## 138      Prof          A            21          18   Male 152664
## 139 AssocProf          A            15          10   Male  81500
## 140      Prof          A            19          11   Male 106608
## 141  AsstProf          B             3           3   Male  89942
## 142      Prof          B            27          27   Male 112696
## 143      Prof          B            28          28   Male 119015
## 144  AsstProf          B             4           4   Male  92000
## 145      Prof          B            27          27   Male 156938
## 146      Prof          B            36          26 Female 144651
## 147  AsstProf          B             4           3   Male  95079
## 148      Prof          B            14          12   Male 128148
## 149  AsstProf          B             4           4   Male  92000
## 150      Prof          B            21           9   Male 111168
## 151 AssocProf          B            12          10 Female 103994
## 152  AsstProf          B             4           0   Male  92000
## 153      Prof          B            21          21   Male 118971
## 154 AssocProf          B            12          18   Male 113341
## 155  AsstProf          B             1           0   Male  88000
## 156 AssocProf          B             6           6   Male  95408
## 157      Prof          B            15          16   Male 137167
## 158  AsstProf          B             2           2   Male  89516
## 159      Prof          B            26          19   Male 176500
## 160 AssocProf          B            22           7   Male  98510
## 161  AsstProf          B             3           3   Male  89942
## 162  AsstProf          B             1           0   Male  88795
## 163      Prof          B            21           8   Male 105890
## 164      Prof          B            16          16   Male 167284
## 165      Prof          B            18          19   Male 130664
## 166 AssocProf          B             8           6   Male 101210
## 167      Prof          B            25          18   Male 181257
## 168  AsstProf          B             5           5   Male  91227
## 169      Prof          B            19          19   Male 151575
## 170      Prof          B            37          24   Male  93164
## 171      Prof          B            20          20   Male 134185
## 172 AssocProf          B            17           6   Male 105000
## 173      Prof          B            28          25   Male 111751
## 174 AssocProf          B            10           7   Male  95436
## 175 AssocProf          B            13           9   Male 100944
## 176      Prof          B            27          14   Male 147349
## 177  AsstProf          B             3           3 Female  92000
## 178      Prof          B            11          11   Male 142467
## 179      Prof          B            18           5   Male 141136
## 180 AssocProf          B             8           8   Male 100000
## 181      Prof          B            26          22   Male 150000
## 182      Prof          B            23          23   Male 101000
## 183      Prof          B            33          30   Male 134000
## 184 AssocProf          B            13          10 Female 103750
## 185      Prof          B            18          10   Male 107500
## 186 AssocProf          B            28          28   Male 106300
## 187      Prof          B            25          19   Male 153750
## 188      Prof          B            22           9   Male 180000
## 189      Prof          B            43          22   Male 133700
## 190      Prof          B            19          18   Male 122100
## 191 AssocProf          B            19          19   Male  86250
## 192 AssocProf          B            48          53   Male  90000
## 193 AssocProf          B             9           7   Male 113600
## 194  AsstProf          B             4           4   Male  92700
## 195  AsstProf          B             4           4   Male  92000
## 196      Prof          B            34          33   Male 189409
## 197      Prof          B            38          22   Male 114500
## 198  AsstProf          B             4           4   Male  92700
## 199      Prof          B            40          40   Male 119700
## 200      Prof          B            28          17   Male 160400
## 201      Prof          B            17          17   Male 152500
## 202      Prof          B            19           5   Male 165000
## 203      Prof          B            21           2   Male  96545
## 204      Prof          B            35          33   Male 162200
## 205      Prof          B            18          18   Male 120000
## 206  AsstProf          B             7           2   Male  91300
## 207      Prof          B            20          20   Male 163200
## 208  AsstProf          B             4           3   Male  91000
## 209      Prof          B            39          39   Male 111350
## 210      Prof          B            15           7   Male 128400
## 211      Prof          B            26          19   Male 126200
## 212 AssocProf          B            11           1   Male 118700
## 213      Prof          B            16          11   Male 145350
## 214      Prof          B            15          11   Male 146000
## 215 AssocProf          B            29          22   Male 105350
## 216      Prof          B            13          11   Male 119500
## 217      Prof          B            21          21   Male 170000
## 218      Prof          B            23          10   Male 145200
## 219 AssocProf          B            13           6   Male 107150
## 220      Prof          B            34          20   Male 129600
## 221      Prof          A            38          35   Male  87800
## 222      Prof          A            20          20   Male 122400
## 223      Prof          A            16          11   Male  88175
## 224      Prof          A            39          38   Male 133900
## 225      Prof          A            29          27 Female  91000
## 226 AssocProf          A            26          24 Female  73300
## 227      Prof          A            38          19   Male 148750
## 228      Prof          A            36          19 Female 117555
## 229  AsstProf          A             8           3   Male  69700
## 230      Prof          A            28          17   Male  81700
## 231      Prof          A            25          25   Male 114000
## 232      Prof          A            46          40   Male  77202
## 233      Prof          A            19           6   Male  96200
## 234  AsstProf          A             5           3   Male  69200
## 235      Prof          A            31          30   Male 122875
## 236      Prof          A            38          37   Male 102600
## 237      Prof          A            23          23   Male 108200
## 238      Prof          A            19          23   Male  84273
## 239      Prof          A            17          11 Female  90450
## 240      Prof          A            30          23   Male  91100
## 241      Prof          A            21          18   Male 101100
## 242      Prof          A            28          23   Male 128800
## 243      Prof          A            39          39   Male 109000
## 244      Prof          A            20           8   Male 102000
## 245      Prof          A            31          12   Male 132000
## 246  AsstProf          A             4           2 Female  77500
## 247      Prof          A            28           7 Female 116450
## 248 AssocProf          A            12           8   Male  83000
## 249      Prof          A            22          22   Male 140300
## 250 AssocProf          A            30          23   Male  74000
## 251  AsstProf          A             9           3   Male  73800
## 252      Prof          A            32          30   Male  92550
## 253 AssocProf          A            41          33   Male  88600
## 254      Prof          A            45          45   Male 107550
## 255      Prof          A            31          26   Male 121200
## 256      Prof          A            31          31   Male 126000
## 257      Prof          A            37          35   Male  99000
## 258      Prof          A            36          30   Male 134800
## 259      Prof          A            43          43   Male 143940
## 260      Prof          A            14          10   Male 104350
## 261      Prof          A            47          44   Male  89650
## 262      Prof          A            13           7   Male 103700
## 263      Prof          A            42          40   Male 143250
## 264  AsstProf          A             4           1   Male  73000
## 265  AsstProf          A             8           4   Male  74000
## 266  AsstProf          A             8           3 Female  78500
## 267      Prof          A            12           6   Male  93000
## 268      Prof          A            52          48   Male 107200
## 269      Prof          A            31          27   Male 163200
## 270      Prof          A            24          18   Male 107100
## 271      Prof          A            46          46   Male 100600
## 272      Prof          A            39          38   Male 136500
## 273      Prof          A            37          27   Male 103600
## 274      Prof          A            51          51   Male  57800
## 275      Prof          A            45          43   Male 155865
## 276 AssocProf          A             8           6   Male  88650
## 277 AssocProf          A            49          49   Male  81800
## 278      Prof          A            28          27   Male 115800
## 279      Prof          A            29          27   Male 150500
## 280  AsstProf          A             8           5   Male  74000
## 281      Prof          A            33           7   Male 174500
## 282      Prof          A            32          28   Male 168500
## 283      Prof          A            39           9   Male 183800
## 284      Prof          A            19           7   Male 107300
## 285      Prof          A            40          36   Male  97150
## 286      Prof          A            18          18   Male 126300
## 287      Prof          A            17          11   Male 148800
## 288      Prof          A            49          43   Male  72300
## 289      Prof          A            39          36   Male  88600
## 290      Prof          A            27          16   Male 127100
## 291      Prof          A            28          13   Male 170500
## 292      Prof          A            14           4   Male 105260
## 293      Prof          A            46          44   Male 144050
## 294      Prof          A            33          31   Male 111350
## 295  AsstProf          A             7           4   Male  74500
## 296      Prof          A            31          28   Male 122500
## 297  AsstProf          A             5           0   Male  74000
## 298      Prof          A            22          15   Male 166800
## 299      Prof          A            20           7   Male  92050
## 300      Prof          A            14           9   Male 108100
## 301      Prof          A            29          19   Male  94350
## 302      Prof          A            35          35   Male 100351
## 303      Prof          A            22           6   Male 146800
## 304  AsstProf          B             6           3   Male  84716
## 305      Prof          B            46          45   Male  67559
## 306      Prof          B            16          16   Male 134550
## 307      Prof          B            16          15   Male 135027
## 308      Prof          B            24          23   Male 104428
## 309 AssocProf          B             9           9   Male  95642
## 310      Prof          B            24          15 Female 161101
## 311      Prof          B            30          31   Male 162221
## 312  AsstProf          B             8           4   Male  84500
## 313      Prof          B            23          15   Male 124714
## 314      Prof          B            37          37   Male 151650
## 315 AssocProf          B            10          10   Male  99247
## 316      Prof          B            23          23   Male 134778
## 317      Prof          B            49          60   Male 192253
## 318      Prof          B            20           9   Male 116518
## 319      Prof          B            18          10 Female 105450
## 320      Prof          B            33          19   Male 145098
## 321 AssocProf          B            19           6 Female 104542
## 322      Prof          B            36          38   Male 151445
## 323      Prof          B            35          23   Male  98053
## 324      Prof          B            13          12   Male 145000
## 325      Prof          B            32          25   Male 128464
## 326      Prof          B            37          15   Male 137317
## 327      Prof          B            13          11   Male 106231
## 328      Prof          B            17          17 Female 124312
## 329      Prof          B            38          38   Male 114596
## 330      Prof          B            31          31   Male 162150
## 331      Prof          B            32          35   Male 150376
## 332      Prof          B            15          10   Male 107986
## 333      Prof          B            41          27   Male 142023
## 334      Prof          B            39          33   Male 128250
## 335  AsstProf          B             4           3   Male  80139
## 336      Prof          B            27          28   Male 144309
## 337      Prof          B            56          49   Male 186960
## 338      Prof          B            38          38   Male  93519
## 339      Prof          B            26          27   Male 142500
## 340      Prof          B            22          20   Male 138000
## 341  AsstProf          B             8           1   Male  83600
## 342      Prof          B            25          21   Male 145028
## 343      Prof          A            49          40   Male  88709
## 344      Prof          A            39          35   Male 107309
## 345      Prof          A            28          14 Female 109954
## 346  AsstProf          A            11           4   Male  78785
## 347      Prof          A            14          11   Male 121946
## 348      Prof          A            23          15 Female 109646
## 349      Prof          A            30          30   Male 138771
## 350 AssocProf          A            20          17   Male  81285
## 351      Prof          A            43          40   Male 101036
## 352      Prof          A            15          10   Male 115435
## 353      Prof          A            35          30   Male 131950
## 354      Prof          A            33          31   Male 134690
## 355 AssocProf          A            13           8   Male  78182
## 356      Prof          A            23          20   Male 110515
## 357      Prof          A            12           7   Male 109707
## 358      Prof          A            30          26   Male 136660
## 359      Prof          A            27          19   Male 103275
## 360      Prof          A            28          26   Male 103649
## 361  AsstProf          A             4           1   Male  74856
## 362  AsstProf          A             6           3   Male  77081
## 363      Prof          A            38          38   Male 150680
## 364  AsstProf          A             8           3   Male  75996
## 365      Prof          A            27          23   Male 172505
## 366 AssocProf          A             8           5   Male  86895
## 367      Prof          A            44          44   Male 105000
## 368      Prof          A            27          21   Male 125192
## 369      Prof          A            15           9   Male 114330
## 370      Prof          A            29          27   Male 139219
## 371      Prof          A            29          15   Male 109305
## 372      Prof          A            38          36   Male 119450
## 373      Prof          A            33          18   Male 186023
## 374      Prof          A            40          19   Male 166605
## 375      Prof          A            30          19   Male 151292
## 376      Prof          A            33          30   Male 103106
## 377      Prof          A            31          19   Male 150564
## 378      Prof          A            42          25   Male 101738
## 379      Prof          A            25          15   Male  95329

Normality

grouped_data_salaries <- Salaries %>%
  group_by(rank, sex, discipline)

normality_test_salaries <- shapiro_test(grouped_data_salaries, salary)

# Create a table for the normality test results
table_salaries <- normality_test_salaries %>%
  kbl() %>%
  kable_material_dark()
table_salaries
rank discipline sex variable statistic p
AsstProf A Female salary 0.813 0.103
AsstProf B Female salary 0.889 0.354
AsstProf A Male salary 0.953 0.581
AsstProf B Male salary 0.941 0.046
AssocProf A Female salary 0.976 0.703
AssocProf B Female salary 0.916 0.514
AssocProf A Male salary 0.899 0.079
AssocProf B Male salary 0.976 0.698
Prof A Female salary 0.934 0.549
Prof B Female salary 0.974 0.923
Prof A Male salary 0.967 0.005
Prof B Male salary 0.986 0.218
# Colors for the QQ plot
colors_salaries <- c("male" = "blue", "female" = "pink")

# QQ plot for Salaries dataset
ggqqplot(Salaries, x = "salary", 
         color = "sex", 
         shape = "sex",
         fill = "sex", 
         title = "QQ Plot of Salaries by Gender and Discipline",
         caption = "Data source: Salaries") +
  scale_color_manual(values = colors_salaries) + 
  theme_dark() +
  theme(plot.title = element_text(hjust = 0.5)) + 
  facet_grid(discipline ~ sex + rank, scales = "free")

Homogeneity of variance

# Levene's test for Salaries dataset
levene_test_result_salaries <- Salaries %>%
  levene_test(salary ~ rank*sex*discipline)

# Styled table for Levene's test results
styled_table_salaries <- levene_test_result_salaries %>%
  kable("html") %>%
  kable_styling("striped", full_width = FALSE) %>%
  add_header_above(c(" " = 2, "Levene's Test" = 2)) %>%
  row_spec(0, bold = T, color = "white", background = "#1a1a1a") %>%
  column_spec(1:4, bold = T, color = "black", background = "#add8e6")
styled_table_salaries
Levene’s Test
df1 df2 statistic p
11 367 10.9 0
# Linear model for Salaries dataset
model_salaries <- lm(salary ~ rank * sex * discipline, data = Salaries)

# Summary of the linear model
summary(model_salaries)
## 
## Call:
## lm(formula = salary ~ rank * sex * discipline, data = Salaries)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -65169 -13128   -467   9034  67424 
## 
## Coefficients:
##                                   Estimate Std. Error t value          Pr(>|t|)
## (Intercept)                          74900       9499    7.88 0.000000000000036
## rankAssocProf                          310      15512    0.02            0.9841
## rankProf                             34732      12109    2.87            0.0044
## sexMale                              -1106      10969   -0.10            0.9198
## disciplineB                           9290      13434    0.69            0.4897
## rankAssocProf:sexMale                 7954      17289    0.46            0.6457
## rankProf:sexMale                     10072      13434    0.75            0.4539
## rankAssocProf:disciplineB            19475      21063    0.92            0.3558
## rankProf:disciplineB                 12914      16792    0.77            0.4423
## sexMale:disciplineB                   1563      14914    0.10            0.9166
## rankAssocProf:sexMale:disciplineB   -11565      22986   -0.50            0.6152
## rankProf:sexMale:disciplineB         -9638      18203   -0.53            0.5968
##                                      
## (Intercept)                       ***
## rankAssocProf                        
## rankProf                          ** 
## sexMale                              
## disciplineB                          
## rankAssocProf:sexMale                
## rankProf:sexMale                     
## rankAssocProf:disciplineB            
## rankProf:disciplineB                 
## sexMale:disciplineB                  
## rankAssocProf:sexMale:disciplineB    
## rankProf:sexMale:disciplineB         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21200 on 367 degrees of freedom
## Multiple R-squared:  0.467,  Adjusted R-squared:  0.451 
## F-statistic: 29.2 on 11 and 367 DF,  p-value: <0.0000000000000002
# Diagnostic plots for the linear model
par(mfrow = c(2, 2))
plot(model_salaries) 

# Predicted salary for Salaries dataset
Salaries$predicted_salary <- predict(model_salaries, newdata = Salaries)

3 way Anova without interactions.

# Perform 3-way ANOVA without interactions
anova_without_interactions <- aov(salary ~ rank * sex * discipline, data = Salaries)

# Display the ANOVA table
summary(anova_without_interactions)
##                      Df       Sum Sq     Mean Sq F value               Pr(>F)
## rank                  2 123716094019 61858047010  137.11 < 0.0000000000000002
## sex                   1    306883104   306883104    0.68                 0.41
## discipline            1  19797898739 19797898739   43.88        0.00000000012
## rank:sex              2    187252599    93626300    0.21                 0.81
## rank:discipline       2    591968714   295984357    0.66                 0.52
## sex:discipline        1    265245132   265245132    0.59                 0.44
## rank:sex:discipline   2    157391053    78695526    0.17                 0.84
## Residuals           367 165579680433   451170791                             
##                        
## rank                ***
## sex                    
## discipline          ***
## rank:sex               
## rank:discipline        
## sex:discipline         
## rank:sex:discipline    
## Residuals              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3 way Anova with interactions.

# Perform 3-way ANOVA with interactions
anova_with_interactions <- aov(salary ~ rank + sex + discipline + rank:sex + rank:discipline + sex:discipline + rank:sex:discipline, data = Salaries)

# Display the ANOVA table
summary(anova_with_interactions)
##                      Df       Sum Sq     Mean Sq F value               Pr(>F)
## rank                  2 123716094019 61858047010  137.11 < 0.0000000000000002
## sex                   1    306883104   306883104    0.68                 0.41
## discipline            1  19797898739 19797898739   43.88        0.00000000012
## rank:sex              2    187252599    93626300    0.21                 0.81
## rank:discipline       2    591968714   295984357    0.66                 0.52
## sex:discipline        1    265245132   265245132    0.59                 0.44
## rank:sex:discipline   2    157391053    78695526    0.17                 0.84
## Residuals           367 165579680433   451170791                             
##                        
## rank                ***
## sex                    
## discipline          ***
## rank:sex               
## rank:discipline        
## sex:discipline         
## rank:sex:discipline    
## Residuals              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interpretations: Rank and discipline have a significant effect on salary, while sex and most interactions are not significant. The highly significant p-values (< 0.05) for rank and discipline suggest that these factors contribute significantly to the variation in salary. The non-significant p-values for sex and most interactions indicate that these factors do not have a significant impact on salary in this analysis.

#———————————————————————————–

#2. Can years since doctorate (yrs.since.phd), length of service (yrs.service) #be significant as covariates?

#In the context of the ANCOVA model we ran, the null hypotheses (H_0) and #alternative hypotheses (H_A) for each of the predictors can be stated as #follows:

#·Years since Ph.D. (yrs.since.phd): #H_0: The number of years since earning a Ph.D. has no effect on the salary. #H_A: The number of years since earning a Ph.D. has a significant effect #on the salary.

#·Years of service (yrs.service): #H_0: The length of service at the college has no effect on the salary. #H_A: The length of service at the college has a significant effect #on the salary.

#·Rank: #H_0: The rank of a faculty member has no effect on the salary. #H_A: The rank of a faculty member has a significant effect on the salary.

# Convert rank to a factor
Salaries$rank <- as.factor(Salaries$rank)

# Fit an ANCOVA model
model <- aov(salary ~ yrs.since.phd + yrs.service + rank, data = Salaries)

# Summary of the model to check the significance of the covariates
summary(model)
##                Df       Sum Sq     Mean Sq F value              Pr(>F)    
## yrs.since.phd   1  50333386805 50333386805  101.42 <0.0000000000000002 ***
## yrs.service     1   2786371451  2786371451    5.61               0.018 *  
## rank            2  71875876270 35937938135   72.42 <0.0000000000000002 ***
## Residuals     374 185606779267   496274811                                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Based on the summary of the ANCOVA model, here are the conclusions:

#·The p-value for yrs.since.phd is less than 2e-16, which is much smaller #than the common significance level of 0.05. Therefore, we reject the null #hypothesis and conclude that the number of years since earning a Ph.D. has #a significant effect on the salary.

#·The p-value for yrs.service is 0.00439, which is less than the common #significance level of 0.05. Therefore, we reject the null hypothesis #and conclude that the length of service at the college has a significant #effect on the salary.

#·The p-value for rank is less than 2e-16, which is much smaller than the #common significance level of 0.05. Therefore, we reject the null hypothesis #and conclude that the rank of a faculty member has a significant effect on #the salary.

#In conclusion, all three variables - yrs.since.phd, yrs.service, and #rank - appear to be significant predictors of academic salary in this dataset.

# Scatter plot for Years since Ph.D. vs Salary
plot(Salaries$yrs.since.phd, Salaries$salary, main="Years since Ph.D. vs Salary", xlab="Years since Ph.D.", ylab="Salary")

# Scatter plot for Years of service vs Salary
plot(Salaries$yrs.service, Salaries$salary, main="Years of service vs Salary", xlab="Years of service", ylab="Salary")

# Boxplot for Rank vs Salary
interaction.plot(Salaries$yrs.since.phd, Salaries$rank, Salaries$salary, main="Interaction Plot", xlab="Years since Ph.D.", ylab="Salary")

#3.Is there any significant difference in years since PhD (yrs.since.phd) and seniority (yrs.service) of different rank professors?

#Null Hypothesis (H_0): There is no significant difference in the years since PhD #(yrs.since.phd) and seniority (yrs.service) among professors of different ranks. #That is, the difference in the means of these two groups is equal to zero.

#Alternative Hypothesis (H_A): There is a significant difference in the years since PhD #(yrs.since.phd) and seniority (yrs.service) among professors of different ranks. #That is, the difference in the means of these two groups is not equal to zero.

#Comparison between years since PhD and years of service (MANOVA)
manova_model <- manova(cbind(yrs.since.phd, yrs.service) ~ rank, data = Salaries)
summary_result_manova <- summary(manova_model)
print(summary_result_manova)  # Look for significant differences between ranks for these two variables
##            Df Pillai approx F num Df den Df              Pr(>F)    
## rank        2  0.495     61.9      4    752 <0.0000000000000002 ***
## Residuals 376                                                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A p-value less than 0.05 (2.2e-16 ) we have generally indicates a significant effect of the variable on salary. We reject H_0.