Introduction
Multi-environment trials (MET) are crucial steps in plant breeding
programs that aim at increasing crop productivity to ensure global food
security. The analysis of MET data requires the combination of several
approaches including data manipulation, visualization and modelling. As
new methods are proposed, analysing MET data correctly and completely
remains a challenge, often intractable with existing tools.
In 50 years (1967–2017) the world average of cereal yields has
increased by 64%, from 1.68 to 2.76 tons/ha. In the same period, the
total production of cereals has raised from 1.305 × 109 to 3.6 × 109
tons, an increase of 175%, while the cultivated area increased by only
7.9% in the same period (FAOSTAT, 2019). These unparallel increases have
been possible due to the improved cultivation techniques in combination
with superior cultivars. For maize, for example, 50% of the increase in
yield was due to breeding (Duvick, 2005). Plant breeding programs have
been developing new cultivars for adaptation to new locations,
management practices or growing conditions, in a clear and crucial
example of exploitation of genotype-versus-environment interaction
(GEI).
The breeders’ desire to modelling the GEI appropriately has led to
the development of the so-called stability analyses, which includes
ANOVA-based methods (Annicchiarico, 1992; Shukla, 1972; Wricke, 1965;
Yates & Cochran, 1938); regression-based methods (Eberhart &
Russell, 1966); nonparametric methods (Fox, Skovmand, Thompson, Braun,
& Cormier, 1990; Huehn, 1979; Lin & Binns, 1988; Thennarasu,
1995) and some methods that combines different statistical techniques,
such as the additive main effect and multiplicative interaction (AMMI;
Gauch, 2013) and genotype plus genotype-versus-environment interaction
(GGE; Yan & Kang, 2003). Then, it is no surprise that scientific
production related to multi-environment trial analysis has been growing
fast in the recent decades. A bibliometric survey in the SCOPUS database
revealed that in the last half-century (1969–2019) 6,590 documents were
published in 902 sources (journals, books, etc.) by 19,351 authors. In
this period, the number of publications has been increased on average by
11.22% per year but were in the last 10 years the largest amount (~64%)
of the documents that were published (see Appendix S1, item 1 for more
details).
Linear mixed-effect models (LMM) has been more frequently used to
analyse MET data. For example, between 2013 and 2015, the larger number
of papers proposing methods to deal with GEI were related to the best
linear unbiased prediction (BLUP) in LMMs (Eeuwijk, Bustos-Korts, &
Malosetti, 2016). Recent advances in this field showed that BLUP is more
predictively accurate than AMMI and that the main advantages of these
methods can be combined to help researchers to select or recommend
stable and high productive genotypes (Olivoto, Lúcio, Silva, Marchioro,
et al., 2019). Thus, the rapid spread of these methods to users around
the world can be facilitated if these procedures are implemented in
specific software.
In most cases, analysing MET data involves manual checking of the
data subset(s) to identify possible outliers, using some biometrical
model to explore the relationships between traits(or groups of traits),
computing a within-environment ANOVA, computing a joint-ANOVA, and, in
case of a significant GEI, applying some stability method to explore it.
While a spreadsheet program (e.g. Microsoft Excel) may be used to
perform a visual check for outliers, an integrated development
environment (IDE, e.g. R, SAS or Matlab) is often required to process
the complex matrix operations required in some stability methods. IDEs,
however, require a certain degree of expertise to use and have steep
learning curves, which sometimes prevents that a coding layman
implements certain methods. In this sense, R (R Core Team, 2019)
packages have been making easier the life of hundreds of thousands of
researchers by providing freely collections of functions developed by
the community.
Some open-source R software packages that are designed—or are
suitable—for analysing MET data are available. The stability package (https://CRAN.R-project.org/package=stability) contains a
collection of functions to perform stability analysis. The ammistability
package (https://CRAN.R-project.org/package=ammistability)
computes multiple AMMI-based stability parameters. The gge (https://CRAN.R-project.org/package=gge) and GGEBiplots
(https://CRAN.R-project.org/package=GGEBiplots) packages
may be used to produce a GGE biplot. The R packages agricolae (https://CRAN.R-project.org/package=agricolae) and
plantbreeding (http://plantbreeding.r-forge.r-project.org/), while not
specifically coded for MET analysis provide useful functions for
computing parametric and nonparametric stability statistics. Although
useful, these packages do not offer options to perform a complete
analysis of MET data, i.e. to provide tools for all steps of the
analysis (check, manipulation, analysis and visualization of data). For
example, GGEBiplots requires as input data a two-way table containing
genotype by environment means with genotypes in rows and environments in
columns, but doesn’t provide any function to create quickly such table
from data that often is in a ‘long’ format in R. In addition, several
studies often compare different stability methods (e.g. Bornhofen et
al., 2017; Freiria et al., 2018; Scapim et al., 2010; Shahbazi, 2019;
Teodoro et al., 2019; Woyann et al., 2018). This requires a range of
different packages to be used, making the coding tedious and difficult
to follow. Thus, it seems to be value the creation of an R package that
presents an easy workflow, incorporates the most used stability
statistics, recently proposed stability methods (Olivoto, Lúcio, Silva,
Marchioro, et al., 2019; Olivoto, Lúcio, Silva, Sari, Lúcio, Silva,
Sari, & Diel, 2019), options for cross-validation procedures
(Piepho, 1994) and BLUP-based stability statistics (Colombari Filho et
al., 2013). These features are frequently used but are not yet
implemented in any other R package for MET analysis.
Here, we describe the metan (multi-environment trial analysis)
package, an open-source R package designed to provide an efficient and
reproducible workflow for the analysis of MET data. Our main aim in this
paper was to describe the features of metan and how this collection of
functions can be useful for an intuitive and complete analysis of MET
data.
Here we describe the metan R package, a collection of functions that
implement a workflow-based approach to (a) check, manipulate and
summarize typical MET data; (b) analyse individual environments using
both fixed and mixed-effect models; (c) compute parametric and
nonparametric stability statistics; (d) implement biometrical models
widely used in MET analysis and (e) plot typical MET data quickly.
## [1] 10165.55
Scree plot of eigenvalues

Quality of variables representation

Variables contribution to dimension 1

Variables contribution to dimension 2

Variables contribution to both dimensions

Variables loading plot

PCA Bi-plot
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse

Plot of PCA loading
## Scree, Biplot and PCA loading plots on one grid
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse

Pearson’s correlation heatmap for all genotypes

Simulated dataset to matcht the first 3 columns acorsi.grayleafspot
of Dataset.
| G01 |
LD |
R1 |
39 |
96 |
20.15 |
12.33 |
23.81 |
77.27 |
366.37 |
1059.37 |
| G01 |
LD |
R2 |
56 |
81 |
21.02 |
25.52 |
64.30 |
75.92 |
689.44 |
371.22 |
| G01 |
CM |
R1 |
52 |
98 |
19.36 |
21.83 |
37.39 |
95.97 |
367.19 |
852.29 |
| G01 |
CM |
R2 |
32 |
81 |
12.35 |
26.56 |
12.11 |
57.07 |
947.09 |
472.65 |
| G01 |
PG |
R1 |
32 |
95 |
20.99 |
14.35 |
43.39 |
73.09 |
580.27 |
683.20 |
| G01 |
PG |
R2 |
51 |
84 |
16.44 |
27.72 |
57.75 |
33.50 |
244.82 |
145.33 |
Dataset summary and Variables visualisation
## # A tibble: 11 × 10
## Variable Class Missing Levels Valid_n Min Median Max Outlier Text
## <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl> <dbl> <lgl>
## 1 gen factor No 36 648 NA NA NA NA NA
## 2 env factor No 9 648 NA NA NA NA NA
## 3 rep factor No 2 648 NA NA NA NA NA
## 4 DTF numeric No - 648 25 40 56 0 NA
## 5 DTM numeric No - 648 78 97 118 0 NA
## 6 PL numeric No - 648 10.5 17.6 24.7 0 NA
## 7 NSP numeric No - 648 8.73 18.4 28.7 0 NA
## 8 NPP numeric No - 648 5.68 34.5 65.9 0 NA
## 9 GYP numeric No - 648 7.8 62.9 115. 0 NA
## 10 GYR numeric No - 648 82.3 615. 1069. 0 NA
## 11 TW numeric No - 648 100. 586. 1098. 0 NA
## No issues detected while inspecting data.

| gen |
factor |
No |
36 |
648 |
NA |
NA |
NA |
NA |
NA |
| env |
factor |
No |
9 |
648 |
NA |
NA |
NA |
NA |
NA |
| rep |
factor |
No |
2 |
648 |
NA |
NA |
NA |
NA |
NA |
| DTF |
numeric |
No |
- |
648 |
25.00 |
40.00 |
56.00 |
0 |
NA |
| DTM |
numeric |
No |
- |
648 |
78.00 |
97.00 |
118.00 |
0 |
NA |
| PL |
numeric |
No |
- |
648 |
10.51 |
17.62 |
24.71 |
0 |
NA |
| NSP |
numeric |
No |
- |
648 |
8.73 |
18.44 |
28.66 |
0 |
NA |
| NPP |
numeric |
No |
- |
648 |
5.68 |
34.50 |
65.93 |
0 |
NA |
| GYP |
numeric |
No |
- |
648 |
7.80 |
62.92 |
114.60 |
0 |
NA |
| GYR |
numeric |
No |
- |
648 |
82.34 |
615.48 |
1068.70 |
0 |
NA |
| TW |
numeric |
No |
- |
648 |
100.41 |
586.17 |
1098.45 |
0 |
NA |
Individual ANOVA
| CM |
619.7935 |
35 |
95181.72 |
1.8723541 |
0.0338195 |
1 |
73549.5481 |
1.4468198 |
0.2371129 |
35 |
50835.32 |
36.37775 |
0.4659130 |
0.6825782 |
| GO |
608.9446 |
35 |
109523.41 |
1.7939301 |
0.0441434 |
1 |
732.3602 |
0.0119956 |
0.9134120 |
35 |
61052.22 |
40.57635 |
0.4425647 |
0.6652553 |
| GS |
588.2103 |
35 |
105603.53 |
1.3067705 |
0.2163269 |
1 |
78455.5272 |
0.9708328 |
0.3312353 |
35 |
80812.61 |
48.32890 |
0.2347547 |
0.4845149 |
| JT |
609.8557 |
35 |
101362.11 |
1.2613538 |
0.2478824 |
1 |
63167.0196 |
0.7860527 |
0.3813481 |
35 |
80359.78 |
46.48280 |
0.2072010 |
0.4551934 |
| LD |
620.1714 |
35 |
62451.63 |
0.5641662 |
0.9525368 |
1 |
8447.4002 |
0.0763109 |
0.7839852 |
35 |
110697.22 |
53.64838 |
-0.7725274 |
0.0000000 |
| PG |
575.5801 |
35 |
57365.09 |
0.4918532 |
0.9804392 |
1 |
1039.6040 |
0.0089137 |
0.9253202 |
35 |
116630.51 |
59.33354 |
-1.0331268 |
0.0000000 |
GE Plot (heatmap)
## Evaluating trait DTF |===== | 12% 00:00:00
Evaluating trait DTM |=========== | 25% 00:00:00
Evaluating trait PL |================ | 38% 00:00:00
Evaluating trait NSP |====================== | 50% 00:00:00
Evaluating trait NPP |=========================== | 62% 00:00:00
Evaluating trait GYP |================================ | 75% 00:00:01
Evaluating trait GYR |====================================== | 88% 00:00:01
Evaluating trait TW |============================================| 100% 00:00:01
## Method: REML/BLUP
## Random effects: GEN
## Fixed effects: REP
## Denominador DF: Satterthwaite's method
## ---------------------------------------------------------------------------
## P-values for Likelihood Ratio Test of the analyzed traits
## ---------------------------------------------------------------------------
## model DTF DTM PL NSP NPP GYP GYR TW
## Complete NA NA NA NA NA NA NA NA
## Genotype 1 1 1 0.0908 1 0.266 0.0375 1
## ---------------------------------------------------------------------------
## Variables with nonsignificant Genotype effect
## DTF DTM PL NSP NPP GYP TW
## ---------------------------------------------------------------------------

GE Plot (line)
Genotypes seems to show higher values in the second replication.

Winning genotypes by Environment and Trait
| CM |
G28 |
G17 |
G05 |
G01 |
G35 |
G25 |
G09 |
G06 |
| GO |
G28 |
G06 |
G36 |
G17 |
G19 |
G21 |
G29 |
G26 |
| GS |
G24 |
G09 |
G29 |
G07 |
G36 |
G03 |
G05 |
G22 |
| JT |
G09 |
G15 |
G18 |
G35 |
G15 |
G09 |
G08 |
G36 |
| LD |
G26 |
G34 |
G07 |
G09 |
G29 |
G29 |
G21 |
G15 |
| PG |
G05 |
G30 |
G29 |
G12 |
G01 |
G31 |
G04 |
G33 |
Genotype ranking by Environment and Trait
| CM |
G28 |
G17 |
G05 |
G01 |
G35 |
G25 |
G09 |
G06 |
| CM |
G17 |
G31 |
G22 |
G17 |
G05 |
G02 |
G36 |
G11 |
| CM |
G10 |
G12 |
G15 |
G14 |
G34 |
G33 |
G30 |
G05 |
| CM |
G13 |
G35 |
G03 |
G03 |
G23 |
G04 |
G04 |
G09 |
| CM |
G22 |
G20 |
G02 |
G34 |
G09 |
G15 |
G33 |
G18 |
| CM |
G06 |
G29 |
G14 |
G26 |
G30 |
G24 |
G22 |
G23 |
ANOVA for DTF trait
| ENV |
8.00000 |
748.1327 |
93.51659 |
1.0817645 |
0.3755126 |
| REP(ENV) |
9.00000 |
865.3194 |
96.14660 |
1.1121876 |
0.3535028 |
| GEN |
35.00000 |
2449.4244 |
69.98355 |
0.8095433 |
0.7721416 |
| GEN:ENV |
280.00000 |
21910.8673 |
78.25310 |
0.9052022 |
0.8032908 |
| Residuals |
315.00000 |
27231.1806 |
86.44819 |
NA |
NA |
| CV(%) |
22.68342 |
NA |
NA |
NA |
NA |
Classification of evironment favourability
## Evaluating trait TW |============================================| 100% 00:00:02
| CM |
619.7935 |
22.994707 |
favorable |
| GO |
608.9446 |
12.145818 |
favorable |
| GS |
588.2103 |
-8.588488 |
unfavorable |
| JT |
609.8557 |
13.056929 |
favorable |
| LD |
620.1714 |
23.372623 |
favorable |
| PG |
575.5801 |
-21.218626 |
unfavorable |
Plot showing Favourability of Environments (TW)

Ecovalence with regards to TW
## Evaluating trait TW |============================================| 100% 00:00:02
## Variable TW
## ---------------------------------------------------------------------------
## Genotypic confidence index
## ---------------------------------------------------------------------------
## # A tibble: 36 × 13
## GEN CM GO GS JT LD PG PL PM SP
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 G01 156. 144. 186. -127. 209. -47.7 -288. -56.8 -176.
## 2 G02 107. -47.3 182. 98.0 -59.6 -167. -194. 131. -50.7
## 3 G03 -71.1 -131. 339. 71.5 -230. 123. -315. 295. -81.5
## 4 G04 -104. 96.7 101. -197. 24.5 202. 99.4 -239. 16.6
## 5 G05 305. 2.39 -49.8 51.5 50.6 -133. 46.1 43.2 -316.
## 6 G06 381. -378. -15.8 -34.1 -135. 290. -68.9 -134. 95.1
## 7 G07 -118. -241. -106. -217. 277. 229. 185. -61.9 54.5
## 8 G08 184. 263. -325. -213. 30.5 71.6 -332. 182. 140.
## 9 G09 271. 70.1 -234. 212. -2.37 95.0 156. -162. -405.
## 10 G10 -295. 77.6 76.6 -266. 124. 313. -85.1 60.4 -6.37
## # ℹ 26 more rows
## # ℹ 3 more variables: Ecoval <dbl>, Ecov_perc <dbl>, rank <dbl>
| G01 |
156.28585 |
143.584738 |
185.999043 |
-126.62637 |
208.732932 |
-47.705818 |
-287.755957 |
-56.7708179 |
-175.743596 |
516858.5 |
2.0510323 |
10 |
| G02 |
106.74140 |
-47.284707 |
182.389599 |
98.03918 |
-59.576512 |
-166.915262 |
-193.945401 |
131.2897377 |
-50.738040 |
290686.9 |
1.1535231 |
4 |
| G03 |
-71.13304 |
-131.374151 |
339.005154 |
71.53474 |
-230.485957 |
123.175293 |
-314.734846 |
295.4652932 |
-81.452485 |
807298.0 |
3.2035737 |
21 |
| G04 |
-104.49082 |
96.693071 |
101.022376 |
-196.66304 |
24.506265 |
201.947515 |
99.412376 |
-239.0474846 |
16.619738 |
355671.7 |
1.4114001 |
7 |
| G05 |
304.54252 |
2.386404 |
-49.819290 |
51.54029 |
50.564599 |
-132.784151 |
46.075710 |
43.1758488 |
-315.681929 |
443441.6 |
1.7596947 |
9 |
| G06 |
380.88252 |
-378.183596 |
-15.844290 |
-34.14471 |
-134.740401 |
289.955849 |
-68.939290 |
-134.0741512 |
95.088071 |
847021.7 |
3.3612079 |
25 |
| G07 |
-118.27137 |
-241.227485 |
-106.148179 |
-217.27360 |
276.555710 |
228.986960 |
184.786821 |
-61.9180401 |
54.509182 |
601046.8 |
2.3851142 |
14 |
| G08 |
183.83863 |
262.547515 |
-324.963179 |
-213.42860 |
30.510710 |
71.576960 |
-332.228179 |
181.7769599 |
140.369182 |
846113.5 |
3.3576042 |
24 |
| G09 |
270.90529 |
70.079182 |
-233.906512 |
211.55307 |
-2.367624 |
95.038627 |
156.433488 |
-162.4163735 |
-405.319151 |
803879.6 |
3.1900087 |
20 |
| G10 |
-294.61026 |
77.628626 |
76.602932 |
-266.31748 |
124.416821 |
313.393071 |
-85.092068 |
60.3530710 |
-6.374707 |
588465.9 |
2.3351898 |
13 |
| G11 |
273.94585 |
260.794738 |
-379.395957 |
216.80863 |
20.547932 |
55.444182 |
1.034043 |
-234.1408179 |
-215.038596 |
877136.7 |
3.4807124 |
27 |
| G12 |
70.06474 |
127.173626 |
-166.092068 |
125.97252 |
-54.378179 |
-7.626929 |
11.892932 |
79.3530710 |
-186.359707 |
217442.6 |
0.8628702 |
2 |
| G13 |
74.15918 |
-156.506929 |
-231.242624 |
69.63696 |
-386.608735 |
226.872515 |
532.262376 |
-0.3124846 |
-128.260262 |
1178015.9 |
4.6746812 |
36 |
| G14 |
-97.61137 |
-463.477485 |
336.836821 |
243.09640 |
-28.754290 |
130.086960 |
-11.128179 |
-6.0930401 |
-102.955818 |
850809.1 |
3.3762374 |
26 |
| G15 |
-174.16637 |
47.552515 |
-59.913179 |
28.87140 |
398.410710 |
-231.458040 |
-26.428179 |
231.0569599 |
-213.925818 |
698344.5 |
2.7712173 |
18 |
| G16 |
-26.16471 |
142.689182 |
-18.381512 |
-296.30693 |
-131.732623 |
29.018626 |
79.918488 |
166.5286265 |
54.430849 |
328915.0 |
1.3052224 |
6 |
| G17 |
-272.52415 |
-114.640262 |
-409.760957 |
247.10363 |
-240.662068 |
161.209182 |
283.794043 |
39.1641821 |
306.316404 |
1152370.6 |
4.5729139 |
35 |
| G18 |
286.06029 |
-136.515818 |
-335.821512 |
240.77807 |
137.057377 |
-161.246374 |
31.568488 |
-313.6163735 |
251.735849 |
957450.2 |
3.7994176 |
29 |
| G19 |
-47.07582 |
-309.921929 |
61.012377 |
-263.74304 |
109.766265 |
-34.267485 |
65.652377 |
203.5725154 |
215.004738 |
553505.1 |
2.1964560 |
12 |
| G20 |
335.26085 |
-94.880262 |
-193.740957 |
-131.68637 |
-75.202068 |
72.359182 |
75.084043 |
52.0741821 |
-39.268596 |
394123.0 |
1.5639853 |
8 |
| G21 |
-394.07860 |
-112.609707 |
151.849599 |
-64.41082 |
56.458488 |
-257.790262 |
152.054599 |
386.2447377 |
82.281960 |
887810.5 |
3.5230687 |
28 |
| G22 |
-186.06860 |
-400.424707 |
450.224599 |
118.43418 |
-108.376512 |
-100.660262 |
44.879599 |
-137.7252623 |
319.716960 |
1113539.3 |
4.4188208 |
33 |
| G23 |
355.18029 |
-124.130818 |
-12.381512 |
-253.30693 |
88.462377 |
-67.846373 |
36.543488 |
-236.0713735 |
213.550849 |
641954.0 |
2.5474448 |
17 |
| G24 |
227.84585 |
319.539738 |
1.109043 |
-174.84637 |
-154.647068 |
52.054182 |
-246.515957 |
-156.9458179 |
132.406404 |
628301.6 |
2.4932681 |
16 |
| G25 |
-36.87637 |
161.917515 |
164.766821 |
134.61140 |
-110.599290 |
-55.998040 |
99.451821 |
-185.6030401 |
-171.670818 |
324047.0 |
1.2859048 |
5 |
| G26 |
45.91529 |
417.574182 |
-235.321512 |
-275.17693 |
-121.932624 |
-148.526374 |
-44.671512 |
153.5886265 |
208.550849 |
827162.2 |
3.2824001 |
22 |
| G27 |
168.00474 |
-59.856373 |
79.827932 |
206.77752 |
234.421821 |
-187.501929 |
-106.272068 |
-296.2969290 |
-39.104707 |
543326.4 |
2.1560639 |
11 |
| G28 |
-189.22082 |
-352.616929 |
368.017377 |
115.08196 |
247.121265 |
-279.372485 |
32.167377 |
-198.0674846 |
256.889738 |
1108399.1 |
4.3984234 |
32 |
| G29 |
-343.33026 |
240.403627 |
-119.027068 |
212.93252 |
106.616821 |
-178.976929 |
-74.342068 |
-168.7319290 |
324.455293 |
835691.2 |
3.3162456 |
23 |
| G30 |
-337.40360 |
383.875293 |
-46.840401 |
364.95418 |
-57.146512 |
54.999738 |
-382.020401 |
118.9297377 |
-99.348040 |
1145663.2 |
4.5462971 |
34 |
| G31 |
-167.65748 |
56.756404 |
343.350710 |
27.62529 |
196.509599 |
-209.319151 |
6.660710 |
8.2008488 |
-262.126929 |
602471.7 |
2.3907685 |
15 |
| G32 |
91.70196 |
221.965849 |
-94.239846 |
-127.54026 |
-4.600957 |
15.290293 |
71.515154 |
-7.3347068 |
-166.757485 |
232114.0 |
0.9210902 |
3 |
| G33 |
-118.78082 |
223.918071 |
-22.577624 |
-30.64304 |
-160.158735 |
250.607515 |
226.052377 |
-412.3024846 |
43.884738 |
754341.5 |
2.9934283 |
19 |
| G34 |
-14.00415 |
90.844738 |
-61.635957 |
-57.79137 |
-93.422068 |
-2.540818 |
115.184043 |
111.7341821 |
-88.368596 |
115765.5 |
0.4593884 |
1 |
| G35 |
-239.66526 |
69.208626 |
172.097932 |
-453.25248 |
-73.498179 |
18.413071 |
-127.107068 |
321.8780710 |
311.925293 |
1040169.8 |
4.1276711 |
30 |
| G36 |
-98.20137 |
-293.482485 |
102.941821 |
397.80640 |
-81.769290 |
-119.893040 |
-51.243179 |
423.0819599 |
-279.240818 |
1090565.3 |
4.3276538 |
31 |
|
Shukla stability statistics for TW
## Evaluating trait TW |============================================| 100% 00:00:03
| G01 |
483.1894 |
32880.344 |
35 |
10 |
45 |
| G02 |
508.6639 |
17913.107 |
33 |
4 |
37 |
| G03 |
626.6133 |
52100.606 |
9 |
21 |
30 |
| G04 |
510.7361 |
22213.572 |
32 |
7 |
39 |
| G05 |
591.6528 |
28021.877 |
21 |
9 |
30 |
| G06 |
602.6828 |
54729.380 |
18 |
25 |
43 |
| G07 |
602.8317 |
38451.633 |
17 |
14 |
31 |
| G08 |
568.9267 |
54669.283 |
28 |
24 |
52 |
| G09 |
615.2450 |
51874.390 |
14 |
20 |
34 |
| G10 |
610.7956 |
37619.074 |
15 |
13 |
28 |
| G11 |
665.9944 |
56722.287 |
6 |
27 |
33 |
| G12 |
677.3256 |
13066.058 |
5 |
2 |
7 |
| G13 |
480.1361 |
76633.408 |
36 |
36 |
72 |
| G14 |
626.2117 |
54980.019 |
10 |
26 |
36 |
| G15 |
585.8967 |
44890.450 |
24 |
18 |
42 |
| G16 |
589.8200 |
20442.909 |
23 |
6 |
29 |
| G17 |
590.4494 |
74936.295 |
22 |
35 |
57 |
| G18 |
598.5450 |
62037.147 |
20 |
29 |
49 |
| G19 |
681.8261 |
35305.491 |
4 |
12 |
16 |
| G20 |
490.1544 |
24758.146 |
34 |
8 |
42 |
| G21 |
641.3589 |
57428.639 |
8 |
28 |
36 |
| G22 |
605.8039 |
72366.573 |
16 |
33 |
49 |
| G23 |
527.9550 |
41158.726 |
31 |
17 |
48 |
| G24 |
575.7144 |
40255.254 |
25 |
16 |
41 |
| G25 |
620.5367 |
20120.760 |
12 |
5 |
17 |
| G26 |
598.8800 |
53415.148 |
19 |
22 |
41 |
| G27 |
691.2856 |
34631.896 |
1 |
11 |
12 |
| G28 |
571.4961 |
72026.418 |
26 |
32 |
58 |
| G29 |
540.5206 |
53979.569 |
30 |
23 |
53 |
| G30 |
569.0239 |
74492.422 |
27 |
34 |
61 |
| G31 |
616.8628 |
38545.927 |
13 |
15 |
28 |
| G32 |
681.8683 |
14036.959 |
3 |
3 |
6 |
| G33 |
685.6811 |
48596.135 |
2 |
19 |
21 |
| G34 |
562.9194 |
6337.428 |
29 |
1 |
30 |
| G35 |
626.0456 |
67511.241 |
11 |
30 |
41 |
| G36 |
661.1067 |
70846.235 |
7 |
31 |
38 |
|
Regression model estimates for TW
## Evaluating trait TW |============================================| 100% 00:00:07
| G01 |
483.1894 |
2.5516184 |
0.53731624 |
0.59142854 |
-6259.5080 |
0.8490509 |
0.5474145 |
165.48150 |
0.1161143 |
| G02 |
508.6639 |
-0.1021069 |
-0.38165308 |
0.70297603 |
-21567.2013 |
0.4799033 |
0.8490057 |
124.41119 |
0.0003720 |
| G03 |
626.6133 |
-5.5654479 |
-2.27357566 |
0.02366428 |
-14425.3132 |
0.6521311 |
0.7125144 |
145.02740 |
0.4486370 |
| G04 |
510.7361 |
2.1367022 |
0.39363324 |
0.69411814 |
-16980.4520 |
0.5905135 |
0.7636134 |
138.00586 |
0.1169584 |
| G05 |
591.6528 |
2.9167532 |
0.66376027 |
0.50732926 |
-12403.2325 |
0.7008939 |
0.6713189 |
150.35184 |
0.1721447 |
| G06 |
602.6828 |
1.2706668 |
0.09373032 |
0.92538297 |
18981.8313 |
1.4577501 |
0.1817780 |
216.83238 |
0.0186213 |
| G07 |
602.8317 |
0.8800724 |
-0.04153020 |
0.96689953 |
1454.0267 |
1.0350641 |
0.4063401 |
182.71164 |
0.0126570 |
| G08 |
568.9267 |
-0.2711152 |
-0.44017964 |
0.66010889 |
17821.1942 |
1.4297611 |
0.1925504 |
214.74069 |
0.0008799 |
| G09 |
615.2450 |
4.8728814 |
1.34115584 |
0.18083606 |
5296.8898 |
1.1277354 |
0.3452403 |
190.71559 |
0.2650888 |
| G10 |
610.7956 |
-2.5931804 |
-1.24429705 |
0.21431531 |
-8606.3008 |
0.7924576 |
0.5940745 |
159.87134 |
0.1269214 |
| G11 |
665.9944 |
6.4464221 |
1.88606367 |
0.06020619 |
112.0488 |
1.0027021 |
0.4292213 |
179.83265 |
0.4152043 |
| G12 |
677.3256 |
1.1011063 |
0.03501252 |
0.97209193 |
-25943.3214 |
0.3743724 |
0.9169608 |
109.88401 |
0.0525649 |
| G13 |
480.1361 |
-0.2053035 |
-0.41738945 |
0.67667791 |
41644.2832 |
2.0042590 |
0.0542018 |
254.24915 |
0.0003601 |
| G14 |
626.2117 |
-1.2211199 |
-0.76916063 |
0.44237429 |
15799.7472 |
1.3810136 |
0.2125889 |
211.04816 |
0.0181615 |
| G15 |
585.8967 |
0.6748456 |
-0.11259905 |
0.91042016 |
8338.9705 |
1.2010957 |
0.3016774 |
196.82099 |
0.0064537 |
| G16 |
589.8200 |
-1.8900649 |
-1.00081232 |
0.31768573 |
-23907.3260 |
0.4234708 |
0.8874174 |
116.86765 |
0.1262698 |
| G17 |
590.4494 |
-0.7054675 |
-0.59059328 |
0.55521645 |
38778.2365 |
1.9351438 |
0.0636452 |
249.82691 |
0.0043866 |
| G18 |
598.5450 |
8.1383888 |
2.47198170 |
0.01396475 |
-9277.8389 |
0.7762633 |
0.6076275 |
158.22938 |
0.5937776 |
| G19 |
681.8261 |
-2.0979851 |
-1.07281384 |
0.28417583 |
-8749.6446 |
0.7890008 |
0.5969613 |
159.52227 |
0.0872327 |
| G20 |
490.1544 |
1.2127665 |
0.07367979 |
0.94131195 |
-13348.1870 |
0.6781062 |
0.6906125 |
147.88750 |
0.0358265 |
| G21 |
641.3589 |
-4.0288958 |
-1.74147679 |
0.08257626 |
3981.5424 |
1.0960156 |
0.3653993 |
188.01433 |
0.2023710 |
| G22 |
605.8039 |
0.3586878 |
-0.22208259 |
0.82439350 |
37778.6721 |
1.9110391 |
0.0672823 |
248.26608 |
0.0011520 |
| G23 |
527.9550 |
5.1515112 |
1.43764369 |
0.15152782 |
-7857.5561 |
0.8105137 |
0.5790571 |
161.68241 |
0.3593522 |
| G24 |
575.7144 |
2.6922907 |
0.58603022 |
0.55827486 |
1376.5373 |
1.0331954 |
0.4076401 |
182.54664 |
0.1072910 |
| G25 |
620.5367 |
3.1635065 |
0.74920948 |
0.45429007 |
-21646.6632 |
0.4779870 |
0.8503783 |
124.16256 |
0.2639943 |
| G26 |
598.8800 |
0.3052403 |
-0.24059117 |
0.81002850 |
17272.4359 |
1.4165277 |
0.1978275 |
213.74459 |
0.0011255 |
| G27 |
691.2856 |
6.9353787 |
2.05538644 |
0.04066582 |
-27685.0600 |
0.3323701 |
0.9389058 |
103.53652 |
0.7125771 |
| G28 |
571.4961 |
3.6309196 |
0.91107185 |
0.36295418 |
32786.5058 |
1.7906522 |
0.0884821 |
240.31906 |
0.1120021 |
| G29 |
540.5206 |
3.8684470 |
0.99332618 |
0.32131344 |
12379.4095 |
1.2985316 |
0.2503792 |
204.64864 |
0.1648780 |
| G30 |
569.0239 |
-1.2153563 |
-0.76716475 |
0.44355818 |
36878.9191 |
1.8893414 |
0.0707195 |
246.85267 |
0.0132163 |
| G31 |
616.8628 |
1.4623708 |
0.16011628 |
0.87289211 |
1414.1479 |
1.0341024 |
0.4070088 |
182.62674 |
0.0342156 |
| G32 |
681.8683 |
1.8568428 |
0.29671958 |
0.76687616 |
-25409.6629 |
0.3872417 |
0.9096033 |
111.75672 |
0.1323449 |
| G33 |
685.6811 |
4.1189621 |
1.08007806 |
0.28093369 |
5503.1664 |
1.1327098 |
0.3421511 |
191.13575 |
0.2041989 |
| G34 |
562.9194 |
-0.3404259 |
-0.46418155 |
0.64283831 |
-34475.1099 |
0.1686269 |
0.9912117 |
73.74727 |
0.0116366 |
| G35 |
626.0456 |
-5.4803635 |
-2.24411143 |
0.02551942 |
2996.9262 |
1.0722714 |
0.3810069 |
185.96660 |
0.3242561 |
| G36 |
661.1067 |
-4.0295487 |
-1.74170289 |
0.08253660 |
18459.3619 |
1.4451507 |
0.1865625 |
215.89330 |
0.1614134 |
Regression plot for TW trait
plot(reg_model)

Factor Analysis (FA) plot for TW trait
## Warning: ggrepel: 5 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Plot of explained variance by each PC for TW trait

Plot showing CV for each environment

Anova fot TW trait
## variable TW
## ---------------------------------------------------------------------------
## AMMI analysis table
## ---------------------------------------------------------------------------
## Source Df Sum Sq Mean Sq F value Pr(>F) Proportion Accumulated
## ENV 8 358041 44755 1.196 0.3947 NA NA
## REP(ENV) 9 336710 37412 0.451 0.9062 NA NA
## GEN 35 2123026 60658 0.731 0.8688 NA NA
## GEN:ENV 280 25199919 90000 1.085 0.2401 NA NA
## PC1 42 5920582 140966 1.700 0.0063 23.5 23.5
## PC2 40 4464626 111616 1.350 0.0850 17.7 41.2
## PC3 38 3900661 102649 1.240 0.1654 15.5 56.7
## PC4 36 3155772 87660 1.060 0.3815 12.5 69.2
## PC5 34 2798200 82300 0.990 0.4883 11.1 80.3
## PC6 32 2025169 63287 0.760 0.8248 8.0 88.4
## PC7 30 1844578 61486 0.740 0.8394 7.3 95.7
## PC8 28 1090332 38940 0.470 0.9908 4.3 100.0
## Residuals 315 26124634 82935 NA NA NA NA
## Total 927 79342249 85590 NA NA NA NA
## ---------------------------------------------------------------------------
##
## ------------------------------------------------------------
## Variables with nonsignificant GxE interaction
## TW
## ------------------------------------------------------------
## Done!
| ENV |
8 |
358040.6 |
44755.07 |
1.1962673 |
0.3946646 |
NA |
NA |
| REP(ENV) |
9 |
336710.4 |
37412.27 |
0.4511016 |
0.9061622 |
NA |
NA |
| GEN |
35 |
2123025.8 |
60657.88 |
0.7313875 |
0.8687849 |
NA |
NA |
| GEN:ENV |
280 |
25199919.2 |
89999.71 |
1.0851792 |
0.2401222 |
NA |
NA |
| PC1 |
42 |
5920581.6 |
140966.23 |
1.7000000 |
0.0063000 |
23.5 |
23.5 |
| PC2 |
40 |
4464625.6 |
111615.64 |
1.3500000 |
0.0850000 |
17.7 |
41.2 |
| PC3 |
38 |
3900660.6 |
102648.96 |
1.2400000 |
0.1654000 |
15.5 |
56.7 |
| PC4 |
36 |
3155772.0 |
87660.33 |
1.0600000 |
0.3815000 |
12.5 |
69.2 |
| PC5 |
34 |
2798200.0 |
82300.00 |
0.9900000 |
0.4883000 |
11.1 |
80.3 |
| PC6 |
32 |
2025169.5 |
63286.55 |
0.7600000 |
0.8248000 |
8.0 |
88.4 |
| PC7 |
30 |
1844577.8 |
61485.93 |
0.7400000 |
0.8394000 |
7.3 |
95.7 |
| PC8 |
28 |
1090332.2 |
38940.43 |
0.4700000 |
0.9908000 |
4.3 |
100.0 |
| Residuals |
315 |
26124634.1 |
82935.35 |
NA |
NA |
NA |
NA |
| Total |
927 |
79342249.4 |
85590.34 |
NA |
NA |
NA |
NA |
PCA values TW trait
| PC1 |
42 |
5920582 |
140966.23 |
1.70 |
0.0063 |
23.5 |
23.5 |
| PC2 |
40 |
4464626 |
111615.64 |
1.35 |
0.0850 |
17.7 |
41.2 |
| PC3 |
38 |
3900661 |
102648.96 |
1.24 |
0.1654 |
15.5 |
56.7 |
| PC4 |
36 |
3155772 |
87660.33 |
1.06 |
0.3815 |
12.5 |
69.2 |
| PC5 |
34 |
2798200 |
82300.00 |
0.99 |
0.4883 |
11.1 |
80.3 |
| PC6 |
32 |
2025169 |
63286.55 |
0.76 |
0.8248 |
8.0 |
88.4 |
Fitted model TW trait
| GEN |
G01 |
483.1894 |
-0.5183478 |
-3.7969043 |
6.152771 |
-10.706029 |
-3.949483 |
-3.676603 |
-1.876482 |
2.370032 |
| GEN |
G02 |
508.6639 |
3.6887684 |
0.0277292 |
5.632924 |
-3.136529 |
-4.048111 |
1.110091 |
5.699752 |
-4.266189 |
| GEN |
G03 |
626.6133 |
8.5389938 |
-2.4742045 |
4.460207 |
2.612873 |
-8.635438 |
-6.561361 |
10.199000 |
1.311148 |
| GEN |
G04 |
510.7361 |
-1.0733219 |
-1.2247274 |
-5.407674 |
-1.604350 |
2.648156 |
-9.337538 |
-5.658264 |
1.934181 |
| GEN |
G05 |
591.6528 |
-4.6716350 |
3.9564299 |
6.964733 |
-2.029996 |
-6.747380 |
3.215490 |
-3.756800 |
-3.690296 |
| GEN |
G06 |
602.6828 |
-2.8838127 |
9.2358531 |
-7.664246 |
-3.467487 |
-8.784701 |
-2.351215 |
8.265601 |
5.478665 |
AMMI stability plot for TW

Predicted values for TW
| TW |
CM |
G01 |
662.470 |
156.28585 |
506.1842 |
130.17536 |
636.3595 |
506.1842 |
| TW |
CM |
G02 |
638.400 |
106.74140 |
531.6586 |
-28.80103 |
502.8576 |
531.6586 |
| TW |
CM |
G03 |
578.475 |
-71.13304 |
649.6080 |
-246.13642 |
403.4716 |
649.6080 |
| TW |
CM |
G04 |
429.240 |
-104.49082 |
533.7308 |
32.62515 |
566.3560 |
533.7308 |
| TW |
CM |
G05 |
919.190 |
304.54252 |
614.6475 |
173.84645 |
788.4939 |
614.6475 |
| TW |
CM |
G06 |
1006.560 |
380.88252 |
625.6775 |
218.74420 |
844.4217 |
625.6775 |
Mean of GxE for TW
| CM |
G01 |
662.470 |
-20.8552 |
-0.5183478 |
493.9997 |
| CM |
G02 |
638.400 |
-20.8552 |
3.6887684 |
431.7339 |
| CM |
G03 |
578.475 |
-20.8552 |
8.5389938 |
448.5309 |
| CM |
G04 |
429.240 |
-20.8552 |
-1.0733219 |
533.1205 |
| CM |
G05 |
919.190 |
-20.8552 |
-4.6716350 |
689.0806 |
| CM |
G06 |
1006.560 |
-20.8552 |
-2.8838127 |
662.8253 |
A plot of AMMI stability scores for TW trait

AMMI2 Biplot with polygon

Y x WAAS Biplot for TW

WAASB_model for Random effects
## Evaluating trait DTF |===== | 12% 00:00:05
Evaluating trait DTM |=========== | 25% 00:00:10
Evaluating trait PL |================ | 38% 00:00:15
Evaluating trait NSP |====================== | 50% 00:00:20
Evaluating trait NPP |=========================== | 62% 00:00:25
Evaluating trait GYP |================================ | 75% 00:00:30
Evaluating trait GYR |====================================== | 88% 00:00:35
Evaluating trait TW |============================================| 100% 00:00:40
## ---------------------------------------------------------------------------
## P-values for Likelihood Ratio Test of the analyzed traits
## ---------------------------------------------------------------------------
## model DTF DTM PL NSP NPP GYP GYR TW
## COMPLETE NA NA NA NA NA NA NA NA
## GEN 1 1 1 0.0788 1.000 0.414 0.0369 1.000
## GEN:ENV 1 1 1 1.0000 0.621 0.365 1.0000 0.691
## ---------------------------------------------------------------------------
## Variables with nonsignificant GxE interaction
## DTF DTM PL NSP NPP GYP GYR TW
## ---------------------------------------------------------------------------
## The following traits had p-value for GE interaction = 1
## DTM PL NSP GYR
## WAASBY value for these traits is based on mean performance only (PctResp)
## ---------------------------------------------------------------------------

The variance components for the random effects for TW
## Class of the model: waasb
## Variable extracted: vcomp
| GEN |
0.00000 |
0.000 |
0.00000 |
0.8944214 |
0.000000 |
12.74489 |
2645.17 |
0.00 |
| GEN:ENV |
0.00000 |
0.000 |
0.00000 |
0.0000000 |
8.028362 |
51.15377 |
0.00 |
1902.08 |
| Residual |
81.89123 |
127.902 |
16.16779 |
32.0866246 |
280.474581 |
922.96059 |
77755.71 |
82935.35 |
The genetic parameter in the model for TW
## Class of the model: waasb
## Variable extracted: genpar
| GEN |
0.00000 |
0.000 |
0.00000 |
0.8944214 |
0.000000 |
12.74489 |
2645.17 |
0.00 |
| GEN:ENV |
0.00000 |
0.000 |
0.00000 |
0.0000000 |
8.028362 |
51.15377 |
0.00 |
1902.08 |
| Residual |
81.89123 |
127.902 |
16.16779 |
32.0866246 |
280.474581 |
922.96059 |
77755.71 |
82935.35 |
Predicted means for each genotypes for TW
## Class of the model: waasb
## Variable extracted: blupg
| G01 |
40.9892 |
97.81944 |
17.6188 |
19.30042 |
35.53596 |
61.85278 |
618.2667 |
596.7988 |
| G02 |
40.9892 |
97.81944 |
17.6188 |
18.38978 |
35.53596 |
66.75265 |
565.3474 |
596.7988 |
| G03 |
40.9892 |
97.81944 |
17.6188 |
19.28576 |
35.53596 |
63.73311 |
556.2845 |
596.7988 |
| G04 |
40.9892 |
97.81944 |
17.6188 |
17.21742 |
35.53596 |
61.20298 |
619.5210 |
596.7988 |
| G05 |
40.9892 |
97.81944 |
17.6188 |
17.82216 |
35.53596 |
62.42904 |
551.1903 |
596.7988 |
| G06 |
40.9892 |
97.81944 |
17.6188 |
18.39405 |
35.53596 |
63.20998 |
619.5858 |
596.7988 |
| G07 |
40.9892 |
97.81944 |
17.6188 |
19.32233 |
35.53596 |
61.28983 |
600.8283 |
596.7988 |
| G08 |
40.9892 |
97.81944 |
17.6188 |
18.56204 |
35.53596 |
63.38267 |
679.6396 |
596.7988 |
| G09 |
40.9892 |
97.81944 |
17.6188 |
18.61828 |
35.53596 |
62.09058 |
630.0438 |
596.7988 |
| G10 |
40.9892 |
97.81944 |
17.6188 |
17.46838 |
35.53596 |
64.17803 |
602.0183 |
596.7988 |
| G11 |
40.9892 |
97.81944 |
17.6188 |
17.50661 |
35.53596 |
60.14737 |
647.1818 |
596.7988 |
| G12 |
40.9892 |
97.81944 |
17.6188 |
18.98747 |
35.53596 |
61.64932 |
533.9013 |
596.7988 |
| G13 |
40.9892 |
97.81944 |
17.6188 |
18.38403 |
35.53596 |
59.42250 |
605.3372 |
596.7988 |
| G14 |
40.9892 |
97.81944 |
17.6188 |
18.93104 |
35.53596 |
61.92927 |
571.1452 |
596.7988 |
| G15 |
40.9892 |
97.81944 |
17.6188 |
18.55424 |
35.53596 |
62.96579 |
568.2939 |
596.7988 |
| G16 |
40.9892 |
97.81944 |
17.6188 |
18.99731 |
35.53596 |
61.90764 |
592.7733 |
596.7988 |
| G17 |
40.9892 |
97.81944 |
17.6188 |
19.20056 |
35.53596 |
60.63901 |
587.3630 |
596.7988 |
| G18 |
40.9892 |
97.81944 |
17.6188 |
18.10653 |
35.53596 |
61.63124 |
627.8069 |
596.7988 |
| G19 |
40.9892 |
97.81944 |
17.6188 |
18.24611 |
35.53596 |
62.06711 |
615.6935 |
596.7988 |
| G20 |
40.9892 |
97.81944 |
17.6188 |
19.11610 |
35.53596 |
60.05839 |
569.1895 |
596.7988 |
| G21 |
40.9892 |
97.81944 |
17.6188 |
19.21504 |
35.53596 |
60.82887 |
592.2821 |
596.7988 |
| G22 |
40.9892 |
97.81944 |
17.6188 |
18.97039 |
35.53596 |
63.50090 |
610.1813 |
596.7988 |
| G23 |
40.9892 |
97.81944 |
17.6188 |
17.63228 |
35.53596 |
63.38033 |
618.2161 |
596.7988 |
| G24 |
40.9892 |
97.81944 |
17.6188 |
18.47851 |
35.53596 |
60.65781 |
562.2604 |
596.7988 |
| G25 |
40.9892 |
97.81944 |
17.6188 |
18.99007 |
35.53596 |
63.81072 |
626.4021 |
596.7988 |
| G26 |
40.9892 |
97.81944 |
17.6188 |
18.83656 |
35.53596 |
62.68898 |
590.4142 |
596.7988 |
| G27 |
40.9892 |
97.81944 |
17.6188 |
18.70719 |
35.53596 |
61.68091 |
626.6781 |
596.7988 |
| G28 |
40.9892 |
97.81944 |
17.6188 |
18.59767 |
35.53596 |
61.81449 |
570.8576 |
596.7988 |
| G29 |
40.9892 |
97.81944 |
17.6188 |
18.26263 |
35.53596 |
63.40471 |
590.0015 |
596.7988 |
| G30 |
40.9892 |
97.81944 |
17.6188 |
18.65447 |
35.53596 |
63.14111 |
631.9220 |
596.7988 |
| G31 |
40.9892 |
97.81944 |
17.6188 |
18.17409 |
35.53596 |
62.14726 |
627.2883 |
596.7988 |
| G32 |
40.9892 |
97.81944 |
17.6188 |
18.49837 |
35.53596 |
62.33315 |
547.2133 |
596.7988 |
| G33 |
40.9892 |
97.81944 |
17.6188 |
19.19425 |
35.53596 |
62.38506 |
571.7501 |
596.7988 |
| G34 |
40.9892 |
97.81944 |
17.6188 |
18.86793 |
35.53596 |
58.70535 |
606.0953 |
596.7988 |
| G35 |
40.9892 |
97.81944 |
17.6188 |
18.49744 |
35.53596 |
64.03968 |
565.6681 |
596.7988 |
| G36 |
40.9892 |
97.81944 |
17.6188 |
18.75415 |
35.53596 |
63.32192 |
603.2207 |
596.7988 |
Predicted means for each genotype environment combination for
TW
## Class of the model: waasb
## Variable extracted: blupge
| CM |
G01 |
40.36111 |
97.06944 |
17.58889 |
19.76704 |
34.21876 |
64.56077 |
585.8479 |
621.6651 |
| CM |
G02 |
40.36111 |
97.06944 |
17.58889 |
18.85640 |
34.65087 |
70.95096 |
532.9286 |
620.6095 |
| CM |
G03 |
40.36111 |
97.06944 |
17.58889 |
19.75238 |
34.83254 |
66.29988 |
523.8657 |
617.9814 |
| CM |
G04 |
40.36111 |
97.06944 |
17.58889 |
17.68404 |
34.38040 |
65.39677 |
587.1022 |
611.4363 |
| CM |
G05 |
40.36111 |
97.06944 |
17.58889 |
18.28878 |
35.93310 |
64.16998 |
518.7715 |
632.9242 |
| CM |
G06 |
40.36111 |
97.06944 |
17.58889 |
18.86067 |
34.20116 |
62.59587 |
587.1670 |
636.7560 |
BLUP-based stability statistics for TW
## Class of the model: waasb
## Variable extracted: WAASB
| G01 |
0 |
NA |
NA |
NA |
0.2695868 |
0.4270761 |
NA |
0.9562070 |
| G02 |
0 |
NA |
NA |
NA |
0.2799436 |
0.5783926 |
NA |
0.7676005 |
| G03 |
0 |
NA |
NA |
NA |
0.2717804 |
0.6458621 |
NA |
1.1745007 |
| G04 |
0 |
NA |
NA |
NA |
0.2599578 |
0.3954558 |
NA |
0.7933199 |
| G05 |
0 |
NA |
NA |
NA |
0.2620333 |
0.3551057 |
NA |
0.9341366 |
| G06 |
0 |
NA |
NA |
NA |
0.3039891 |
0.4195486 |
NA |
1.1684429 |
| G07 |
0 |
NA |
NA |
NA |
0.2265533 |
0.4381595 |
NA |
0.6917625 |
| G08 |
0 |
NA |
NA |
NA |
0.2576913 |
0.6791135 |
NA |
1.1737995 |
| G09 |
0 |
NA |
NA |
NA |
0.3053211 |
0.8262474 |
NA |
1.2627679 |
| G10 |
0 |
NA |
NA |
NA |
0.1796253 |
0.4284019 |
NA |
0.7600957 |
| G11 |
0 |
NA |
NA |
NA |
0.3251487 |
0.4638800 |
NA |
1.3088633 |
| G12 |
0 |
NA |
NA |
NA |
0.2955460 |
0.3948612 |
NA |
0.7319039 |
| G13 |
0 |
NA |
NA |
NA |
0.3063619 |
0.6481795 |
NA |
1.6645755 |
| G14 |
0 |
NA |
NA |
NA |
0.2305216 |
0.2392062 |
NA |
1.1911121 |
| G15 |
0 |
NA |
NA |
NA |
0.2391759 |
0.4997047 |
NA |
0.9808916 |
| G16 |
0 |
NA |
NA |
NA |
0.2202117 |
0.4427403 |
NA |
0.6980696 |
| G17 |
0 |
NA |
NA |
NA |
0.2574044 |
0.5685601 |
NA |
1.2112311 |
| G18 |
0 |
NA |
NA |
NA |
0.2051573 |
0.4930683 |
NA |
1.3726120 |
| G19 |
0 |
NA |
NA |
NA |
0.2601689 |
0.4038787 |
NA |
0.9741786 |
| G20 |
0 |
NA |
NA |
NA |
0.1765342 |
0.6125393 |
NA |
1.0299161 |
| G21 |
0 |
NA |
NA |
NA |
0.4474713 |
0.8083378 |
NA |
1.2100021 |
| G22 |
0 |
NA |
NA |
NA |
0.2219202 |
0.8334188 |
NA |
1.4299000 |
| G23 |
0 |
NA |
NA |
NA |
0.2897713 |
0.5731086 |
NA |
1.0301319 |
| G24 |
0 |
NA |
NA |
NA |
0.3503508 |
0.4521088 |
NA |
1.0692269 |
| G25 |
0 |
NA |
NA |
NA |
0.2756768 |
0.5607946 |
NA |
0.5874401 |
| G26 |
0 |
NA |
NA |
NA |
0.2450095 |
0.4135830 |
NA |
1.0552992 |
| G27 |
0 |
NA |
NA |
NA |
0.3053265 |
0.3877358 |
NA |
1.0557091 |
| G28 |
0 |
NA |
NA |
NA |
0.2874898 |
0.4944244 |
NA |
1.4685137 |
| G29 |
0 |
NA |
NA |
NA |
0.4112468 |
0.5093441 |
NA |
0.8248561 |
| G30 |
0 |
NA |
NA |
NA |
0.2208286 |
0.5409334 |
NA |
1.2281428 |
| G31 |
0 |
NA |
NA |
NA |
0.3109397 |
0.6500136 |
NA |
0.9694722 |
| G32 |
0 |
NA |
NA |
NA |
0.3601010 |
0.3118052 |
NA |
0.7460982 |
| G33 |
0 |
NA |
NA |
NA |
0.3037760 |
0.3008292 |
NA |
1.0729206 |
| G34 |
0 |
NA |
NA |
NA |
0.2802086 |
0.7495773 |
NA |
0.4369744 |
| G35 |
0 |
NA |
NA |
NA |
0.3531763 |
0.5081832 |
NA |
1.3377268 |
| G36 |
0 |
NA |
NA |
NA |
0.2684776 |
0.5246280 |
NA |
1.5604072 |
GGE model prdictions for TW
| 595.0802 |
725.8355 |
541.6196 |
517.7406 |
609.5521 |
576.5280 |
551.7907 |
584.7806 |
615.8514 |
| 556.6302 |
564.6001 |
668.9390 |
614.6332 |
639.3224 |
555.8905 |
597.3168 |
587.7336 |
623.4617 |
| 421.2965 |
510.6095 |
818.0190 |
596.1492 |
674.8205 |
516.3473 |
560.8324 |
692.1165 |
677.8584 |
| 631.9503 |
681.7954 |
535.2176 |
563.9076 |
607.8077 |
583.5148 |
584.2369 |
545.5898 |
597.8728 |
| 761.1034 |
592.6848 |
474.8466 |
680.0084 |
592.9059 |
612.1884 |
672.9317 |
420.2336 |
538.3986 |
| 785.8223 |
465.9052 |
527.1912 |
779.0490 |
604.8582 |
610.6047 |
731.9419 |
376.1585 |
521.1161 |
| 615.8375 |
543.8935 |
629.5322 |
653.7537 |
629.7731 |
570.3335 |
630.2598 |
533.9540 |
597.2802 |
| 643.6036 |
995.0227 |
342.6769 |
349.4587 |
563.1164 |
606.8071 |
469.1641 |
593.0807 |
609.7804 |
| 927.2131 |
593.3121 |
330.0914 |
748.6521 |
558.1918 |
656.4936 |
742.8597 |
280.0990 |
468.1022 |
| 461.6490 |
730.2023 |
655.0607 |
459.1910 |
636.7797 |
541.2528 |
493.7536 |
698.2382 |
672.5804 |
| 936.8630 |
739.8508 |
236.3650 |
650.0713 |
536.4084 |
668.5092 |
690.7979 |
298.7724 |
471.8956 |
| 709.0525 |
662.6723 |
479.3335 |
609.3618 |
594.3141 |
602.8285 |
624.1325 |
476.9909 |
564.1998 |
| 859.8177 |
541.3626 |
418.9277 |
756.9939 |
579.2511 |
635.1861 |
734.2919 |
327.4938 |
493.8439 |
| 541.3500 |
195.7267 |
897.0384 |
866.5323 |
692.2778 |
528.0455 |
732.1752 |
533.1201 |
610.0977 |
| 502.0257 |
624.0002 |
681.8114 |
550.3369 |
642.6915 |
545.1678 |
551.4949 |
644.7092 |
649.7748 |
| 551.8127 |
796.3845 |
538.1446 |
450.3537 |
609.0534 |
569.5448 |
506.4867 |
634.2247 |
637.9640 |
| 695.2769 |
568.5886 |
546.0985 |
669.5022 |
609.8801 |
593.0940 |
654.3563 |
471.4017 |
564.9737 |
| 867.3803 |
522.5831 |
423.2905 |
773.2869 |
580.2084 |
635.9910 |
744.6808 |
317.6714 |
489.6322 |
| 457.4217 |
506.0392 |
789.2789 |
614.3730 |
667.9060 |
525.6794 |
577.8434 |
660.7788 |
662.3174 |
| 786.9584 |
692.4998 |
394.2440 |
620.8792 |
574.0483 |
625.5111 |
645.6149 |
416.6729 |
532.8186 |
| 315.0387 |
505.9545 |
913.0938 |
555.2171 |
697.6005 |
487.7318 |
517.7302 |
780.9798 |
722.5973 |
| 438.3493 |
224.9290 |
969.5648 |
803.2507 |
709.8106 |
502.4800 |
677.4783 |
625.4303 |
655.2779 |
| 737.5377 |
629.6030 |
473.8312 |
644.3607 |
592.8375 |
608.2879 |
648.8338 |
446.8877 |
550.3613 |
| 683.7436 |
881.1676 |
374.0902 |
445.8642 |
570.1100 |
610.1658 |
529.7373 |
538.3509 |
586.6636 |
| 666.5526 |
556.6381 |
578.0264 |
665.9228 |
617.4808 |
584.6694 |
646.8006 |
493.4669 |
576.4929 |
| 592.7436 |
1005.7468 |
380.6415 |
320.7986 |
572.2724 |
593.9451 |
443.5714 |
637.9856 |
631.8910 |
| 706.9246 |
436.5672 |
612.8578 |
766.7765 |
625.2647 |
587.6894 |
709.8530 |
437.4035 |
552.9436 |
| 447.1572 |
247.9362 |
948.5101 |
790.8061 |
704.8702 |
506.3099 |
672.3850 |
622.2047 |
652.7857 |
| 546.7789 |
693.5271 |
602.4203 |
520.2723 |
623.9808 |
561.5745 |
543.7643 |
619.6488 |
634.5648 |
| 517.5355 |
773.8167 |
581.0825 |
451.8983 |
619.2442 |
558.9562 |
500.6528 |
659.0350 |
651.2634 |
| 472.5070 |
491.3381 |
784.7275 |
630.9393 |
666.7447 |
528.7518 |
589.8476 |
645.3513 |
655.1400 |
| 691.5750 |
753.0487 |
441.8941 |
538.8192 |
585.7637 |
603.9957 |
582.1270 |
508.2890 |
576.4591 |
| 746.9336 |
659.1797 |
448.4396 |
627.5612 |
586.8881 |
612.6979 |
641.4722 |
444.3680 |
547.9734 |
| 632.8879 |
692.0773 |
528.4148 |
557.0990 |
606.2249 |
584.4273 |
580.6941 |
546.6800 |
598.0287 |
| 296.2703 |
796.5331 |
760.1868 |
343.9729 |
662.3072 |
501.4577 |
398.4831 |
850.0110 |
746.1676 |
| 511.8846 |
320.3730 |
850.0619 |
767.0112 |
681.6028 |
528.2268 |
671.9772 |
580.8123 |
629.2752 |
|
Which-won-where (genotypes and environment are coloured)

Discriminativeness vs. representativeness (genotypes and environment
are coloured)

Biplot type 5: Examine an environment (genotypes and environment are
coloured)

Biplot type 6: Ranking environments (genotypes and environment are
coloured)

Examine a genotype (genotypes and environment are coloured)

Ranking genotypes (genotypes and environment are coloured)
## Warning: Removed 2597 rows containing missing values (`geom_arc()`).

Relationship among environments (environment are coloured)

Plot of genotype stability indices (Interpret type III hypotheses
with care)
## Warning: Invalid length in 'mresp'. Setting mresp = h to all the 8 variables.
## Warning: Invalid length in 'wresp'. Setting wresp = 65 to all the 8 variables.
## Evaluating trait DTF |===== | 12% 00:00:05
Evaluating trait DTM |=========== | 25% 00:00:10
Evaluating trait PL |================ | 38% 00:00:15
Evaluating trait NSP |====================== | 50% 00:00:20
Evaluating trait NPP |=========================== | 62% 00:00:25
Evaluating trait GYP |================================ | 75% 00:00:29
Evaluating trait GYR |====================================== | 88% 00:00:34
Evaluating trait TW |============================================| 100% 00:00:39
## Method: REML/BLUP
## Random effects: GEN, GEN:ENV
## Fixed effects: ENV, REP(ENV)
## Denominador DF: Satterthwaite's method
## ---------------------------------------------------------------------------
## P-values for Likelihood Ratio Test of the analyzed traits
## ---------------------------------------------------------------------------
## model DTF DTM PL NSP NPP GYP GYR TW
## COMPLETE NA NA NA NA NA NA NA NA
## GEN 1 1 1 0.0788 1.000 0.414 0.0369 1.000
## GEN:ENV 1 1 1 1.0000 0.621 0.365 1.0000 0.691
## ---------------------------------------------------------------------------
## Variables with nonsignificant GxE interaction
## DTF DTM PL NSP NPP GYP GYR TW
## ---------------------------------------------------------------------------
## The following traits had p-value for GE interaction = 1
## DTM PL NSP GYR
## WAASBY value for these traits is based on mean performance only (PctResp)
## ---------------------------------------------------------------------------
## Warning: NA values removed to compute the function. Use 'na.rm = TRUE' to
## suppress this warning.

Estimating the WAAS index
The waas() function computes the Weighted Average of Absolute Scores
(Olivoto, Lúcio, Da silva, Marchioro, et al. 2019) considering (i) all
principal component axes that were significant (p<0.05 by default);
or (ii) declaring a specific number of axes to be used

Ranks of genotypes depending on the number of PCA used to estimate
the WAAS (type = 2)
## Ranks considering 0 for GY and 100 for WAASB | | 1% 00:00:00
Ranks considering 0 for GY and 100 for WAASB | | 1% 00:00:00
Ranks considering 0 for GY and 100 for WAASB | | 2% 00:00:00
Ranks considering 0 for GY and 100 for WAASB | | 2% 00:00:00
Ranks considering 0 for GY and 100 for WAASB |= | 3% 00:00:00
Ranks considering 0 for GY and 100 for WAASB |= | 4% 00:00:00
Ranks considering 0 for GY and 100 for WAASB |= | 4% 00:00:00
Ranks considering 0 for GY and 100 for WAASB |= | 5% 00:00:00
Ranks considering 5 for GY and 95 for WAASB |= | 5% 00:00:00
Ranks considering 5 for GY and 95 for WAASB |= | 6% 00:00:00
Ranks considering 5 for GY and 95 for WAASB |= | 7% 00:00:00
Ranks considering 5 for GY and 95 for WAASB |= | 7% 00:00:00
Ranks considering 5 for GY and 95 for WAASB |== | 8% 00:00:00
Ranks considering 5 for GY and 95 for WAASB |== | 8% 00:00:00
Ranks considering 5 for GY and 95 for WAASB |== | 9% 00:00:00
Ranks considering 5 for GY and 95 for WAASB |== | 10% 00:00:00
Ranks considering 10 for GY and 90 for WAASB |== | 10% 00:00:00
Ranks considering 10 for GY and 90 for WAASB |== | 11% 00:00:00
Ranks considering 10 for GY and 90 for WAASB |== | 11% 00:00:00
Ranks considering 10 for GY and 90 for WAASB |== | 12% 00:00:00
Ranks considering 10 for GY and 90 for WAASB |== | 12% 00:00:00
Ranks considering 10 for GY and 90 for WAASB |== | 13% 00:00:00
Ranks considering 10 for GY and 90 for WAASB |=== | 14% 00:00:00
Ranks considering 10 for GY and 90 for WAASB |=== | 14% 00:00:00
Ranks considering 15 for GY and 85 for WAASB |=== | 15% 00:00:00
Ranks considering 15 for GY and 85 for WAASB |=== | 15% 00:00:00
Ranks considering 15 for GY and 85 for WAASB |=== | 16% 00:00:01
Ranks considering 15 for GY and 85 for WAASB |=== | 17% 00:00:01
Ranks considering 15 for GY and 85 for WAASB |=== | 17% 00:00:01
Ranks considering 15 for GY and 85 for WAASB |=== | 18% 00:00:01
Ranks considering 15 for GY and 85 for WAASB |==== | 18% 00:00:01
Ranks considering 15 for GY and 85 for WAASB |==== | 19% 00:00:01
Ranks considering 20 for GY and 80 for WAASB |==== | 20% 00:00:01
Ranks considering 20 for GY and 80 for WAASB |==== | 20% 00:00:01
Ranks considering 20 for GY and 80 for WAASB |==== | 21% 00:00:01
Ranks considering 20 for GY and 80 for WAASB |==== | 21% 00:00:01
Ranks considering 20 for GY and 80 for WAASB |==== | 22% 00:00:01
Ranks considering 20 for GY and 80 for WAASB |==== | 23% 00:00:01
Ranks considering 20 for GY and 80 for WAASB |==== | 23% 00:00:01
Ranks considering 20 for GY and 80 for WAASB |===== | 24% 00:00:01
Ranks considering 25 for GY and 75 for WAASB |===== | 24% 00:00:01
Ranks considering 25 for GY and 75 for WAASB |===== | 25% 00:00:01
Ranks considering 25 for GY and 75 for WAASB |===== | 26% 00:00:01
Ranks considering 25 for GY and 75 for WAASB |===== | 26% 00:00:01
Ranks considering 25 for GY and 75 for WAASB |===== | 27% 00:00:01
Ranks considering 25 for GY and 75 for WAASB |===== | 27% 00:00:01
Ranks considering 25 for GY and 75 for WAASB |===== | 28% 00:00:01
Ranks considering 25 for GY and 75 for WAASB |===== | 29% 00:00:01
Ranks considering 30 for GY and 70 for WAASB |====== | 29% 00:00:01
Ranks considering 30 for GY and 70 for WAASB |====== | 30% 00:00:01
Ranks considering 30 for GY and 70 for WAASB |====== | 30% 00:00:01
Ranks considering 30 for GY and 70 for WAASB |====== | 31% 00:00:01
Ranks considering 30 for GY and 70 for WAASB |====== | 32% 00:00:01
Ranks considering 30 for GY and 70 for WAASB |====== | 32% 00:00:01
Ranks considering 30 for GY and 70 for WAASB |====== | 33% 00:00:01
Ranks considering 30 for GY and 70 for WAASB |====== | 33% 00:00:01
Ranks considering 35 for GY and 65 for WAASB |====== | 34% 00:00:01
Ranks considering 35 for GY and 65 for WAASB |======= | 35% 00:00:01
Ranks considering 35 for GY and 65 for WAASB |======= | 35% 00:00:01
Ranks considering 35 for GY and 65 for WAASB |======= | 36% 00:00:02
Ranks considering 35 for GY and 65 for WAASB |======= | 36% 00:00:02
Ranks considering 35 for GY and 65 for WAASB |======= | 37% 00:00:02
Ranks considering 35 for GY and 65 for WAASB |======= | 38% 00:00:02
Ranks considering 35 for GY and 65 for WAASB |======= | 38% 00:00:02
Ranks considering 40 for GY and 60 for WAASB |======= | 39% 00:00:02
Ranks considering 40 for GY and 60 for WAASB |======= | 39% 00:00:02
Ranks considering 40 for GY and 60 for WAASB |======== | 40% 00:00:02
Ranks considering 40 for GY and 60 for WAASB |======== | 40% 00:00:02
Ranks considering 40 for GY and 60 for WAASB |======== | 41% 00:00:02
Ranks considering 40 for GY and 60 for WAASB |======== | 42% 00:00:02
Ranks considering 40 for GY and 60 for WAASB |======== | 42% 00:00:02
Ranks considering 40 for GY and 60 for WAASB |======== | 43% 00:00:02
Ranks considering 45 for GY and 55 for WAASB |======== | 43% 00:00:02
Ranks considering 45 for GY and 55 for WAASB |======== | 44% 00:00:02
Ranks considering 45 for GY and 55 for WAASB |======== | 45% 00:00:02
Ranks considering 45 for GY and 55 for WAASB |========= | 45% 00:00:02
Ranks considering 45 for GY and 55 for WAASB |========= | 46% 00:00:02
Ranks considering 45 for GY and 55 for WAASB |========= | 46% 00:00:02
Ranks considering 45 for GY and 55 for WAASB |========= | 47% 00:00:02
Ranks considering 45 for GY and 55 for WAASB |========= | 48% 00:00:02
Ranks considering 50 for GY and 50 for WAASB |========= | 48% 00:00:02
Ranks considering 50 for GY and 50 for WAASB |========= | 49% 00:00:02
Ranks considering 50 for GY and 50 for WAASB |========= | 49% 00:00:02
Ranks considering 50 for GY and 50 for WAASB |========== | 50% 00:00:02
Ranks considering 50 for GY and 50 for WAASB |========== | 51% 00:00:02
Ranks considering 50 for GY and 50 for WAASB |========== | 51% 00:00:02
Ranks considering 50 for GY and 50 for WAASB |========== | 52% 00:00:02
Ranks considering 50 for GY and 50 for WAASB |========== | 52% 00:00:02
Ranks considering 55 for GY and 45 for WAASB |========== | 53% 00:00:02
Ranks considering 55 for GY and 45 for WAASB |========== | 54% 00:00:02
Ranks considering 55 for GY and 45 for WAASB |========== | 54% 00:00:02
Ranks considering 55 for GY and 45 for WAASB |========== | 55% 00:00:02
Ranks considering 55 for GY and 45 for WAASB |=========== | 55% 00:00:03
Ranks considering 55 for GY and 45 for WAASB |=========== | 56% 00:00:03
Ranks considering 55 for GY and 45 for WAASB |=========== | 57% 00:00:03
Ranks considering 55 for GY and 45 for WAASB |=========== | 57% 00:00:03
Ranks considering 60 for GY and 40 for WAASB |=========== | 58% 00:00:03
Ranks considering 60 for GY and 40 for WAASB |=========== | 58% 00:00:03
Ranks considering 60 for GY and 40 for WAASB |=========== | 59% 00:00:03
Ranks considering 60 for GY and 40 for WAASB |=========== | 60% 00:00:03
Ranks considering 60 for GY and 40 for WAASB |=========== | 60% 00:00:03
Ranks considering 60 for GY and 40 for WAASB |============ | 61% 00:00:03
Ranks considering 60 for GY and 40 for WAASB |============ | 61% 00:00:03
Ranks considering 60 for GY and 40 for WAASB |============ | 62% 00:00:03
Ranks considering 65 for GY and 35 for WAASB |============ | 62% 00:00:03
Ranks considering 65 for GY and 35 for WAASB |============ | 63% 00:00:03
Ranks considering 65 for GY and 35 for WAASB |============ | 64% 00:00:03
Ranks considering 65 for GY and 35 for WAASB |============ | 64% 00:00:03
Ranks considering 65 for GY and 35 for WAASB |============ | 65% 00:00:03
Ranks considering 65 for GY and 35 for WAASB |============ | 65% 00:00:03
Ranks considering 65 for GY and 35 for WAASB |============= | 66% 00:00:03
Ranks considering 65 for GY and 35 for WAASB |============= | 67% 00:00:03
Ranks considering 70 for GY and 30 for WAASB |============= | 67% 00:00:03
Ranks considering 70 for GY and 30 for WAASB |============= | 68% 00:00:03
Ranks considering 70 for GY and 30 for WAASB |============= | 68% 00:00:03
Ranks considering 70 for GY and 30 for WAASB |============= | 69% 00:00:03
Ranks considering 70 for GY and 30 for WAASB |============= | 70% 00:00:03
Ranks considering 70 for GY and 30 for WAASB |============= | 70% 00:00:03
Ranks considering 70 for GY and 30 for WAASB |============= | 71% 00:00:03
Ranks considering 70 for GY and 30 for WAASB |============== | 71% 00:00:04
Ranks considering 75 for GY and 25 for WAASB |============== | 72% 00:00:04
Ranks considering 75 for GY and 25 for WAASB |============== | 73% 00:00:04
Ranks considering 75 for GY and 25 for WAASB |============== | 73% 00:00:04
Ranks considering 75 for GY and 25 for WAASB |============== | 74% 00:00:04
Ranks considering 75 for GY and 25 for WAASB |============== | 74% 00:00:04
Ranks considering 75 for GY and 25 for WAASB |============== | 75% 00:00:04
Ranks considering 75 for GY and 25 for WAASB |============== | 76% 00:00:04
Ranks considering 75 for GY and 25 for WAASB |============== | 76% 00:00:04
Ranks considering 80 for GY and 20 for WAASB |=============== | 77% 00:00:04
Ranks considering 80 for GY and 20 for WAASB |=============== | 77% 00:00:04
Ranks considering 80 for GY and 20 for WAASB |=============== | 78% 00:00:04
Ranks considering 80 for GY and 20 for WAASB |=============== | 79% 00:00:04
Ranks considering 80 for GY and 20 for WAASB |=============== | 79% 00:00:04
Ranks considering 80 for GY and 20 for WAASB |=============== | 80% 00:00:04
Ranks considering 80 for GY and 20 for WAASB |=============== | 80% 00:00:04
Ranks considering 80 for GY and 20 for WAASB |=============== | 81% 00:00:04
Ranks considering 85 for GY and 15 for WAASB |=============== | 82% 00:00:04
Ranks considering 85 for GY and 15 for WAASB |================ | 82% 00:00:04
Ranks considering 85 for GY and 15 for WAASB |================ | 83% 00:00:04
Ranks considering 85 for GY and 15 for WAASB |================ | 83% 00:00:04
Ranks considering 85 for GY and 15 for WAASB |================ | 84% 00:00:04
Ranks considering 85 for GY and 15 for WAASB |================ | 85% 00:00:04
Ranks considering 85 for GY and 15 for WAASB |================ | 85% 00:00:04
Ranks considering 85 for GY and 15 for WAASB |================ | 86% 00:00:04
Ranks considering 90 for GY and 10 for WAASB |================ | 86% 00:00:04
Ranks considering 90 for GY and 10 for WAASB |================= | 87% 00:00:04
Ranks considering 90 for GY and 10 for WAASB |================= | 88% 00:00:04
Ranks considering 90 for GY and 10 for WAASB |================= | 88% 00:00:04
Ranks considering 90 for GY and 10 for WAASB |================= | 89% 00:00:04
Ranks considering 90 for GY and 10 for WAASB |================= | 89% 00:00:04
Ranks considering 90 for GY and 10 for WAASB |================= | 90% 00:00:04
Ranks considering 90 for GY and 10 for WAASB |================= | 90% 00:00:05
Ranks considering 95 for GY and 5 for WAASB |================== | 91% 00:00:05
Ranks considering 95 for GY and 5 for WAASB |================== | 92% 00:00:05
Ranks considering 95 for GY and 5 for WAASB |================== | 92% 00:00:05
Ranks considering 95 for GY and 5 for WAASB |=================== | 93% 00:00:05
Ranks considering 95 for GY and 5 for WAASB |=================== | 93% 00:00:05
Ranks considering 95 for GY and 5 for WAASB |=================== | 94% 00:00:05
Ranks considering 95 for GY and 5 for WAASB |=================== | 95% 00:00:05
Ranks considering 95 for GY and 5 for WAASB |=================== | 95% 00:00:05
Ranks considering 100 for GY and 0 for WAASB |================== | 96% 00:00:05
Ranks considering 100 for GY and 0 for WAASB |================== | 96% 00:00:05
Ranks considering 100 for GY and 0 for WAASB |================== | 97% 00:00:05
Ranks considering 100 for GY and 0 for WAASB |===================| 98% 00:00:05
Ranks considering 100 for GY and 0 for WAASB |===================| 98% 00:00:05
Ranks considering 100 for GY and 0 for WAASB |===================| 99% 00:00:05
Ranks considering 100 for GY and 0 for WAASB |===================| 99% 00:00:05
Ranks considering 100 for GY and 0 for WAASB |===================| 100% 00:00:05
## Warning: Vectorized input to `element_text()` is not officially supported.
## ℹ Results may be unexpected or may change in future versions of ggplot2.

Ranks of genotypes depending on the number of PCA used to estimate
the WAAS (type = 2)
## Warning: Vectorized input to `element_text()` is not officially supported.
## ℹ Results may be unexpected or may change in future versions of ggplot2.

Compare two genotypes (genotypes and environments coloured)

Heatmap of stability indices by trait

95% CI plot for Pearsons’s correlation coefficient

Path analysis
## --------------------------------------------------------------------------
## The algorithm has selected a set of 6 predictors with largest VIF = 1.006.
## Selected predictors: DTF GYR PL NPP GYP DTM
## A forward stepwise-based selection procedure will fit 4 models.
## --------------------------------------------------------------------------
## Adjusting the model 1 with 5 predictors (25% concluded)
## Adjusting the model 2 with 4 predictors (50% concluded)
## Adjusting the model 3 with 3 predictors (75% concluded)
## Adjusting the model 4 with 2 predictors (100% concluded)
## Done!
## --------------------------------------------------------------------------
## Summary of the adjusted models
## --------------------------------------------------------------------------
## Model AIC Numpred CN Determinant R2 Residual maxVIF
## MODEL_1 9189 5 1.15 0.993 0.0114 0.994 1
## MODEL_2 9188 4 1.10 0.997 0.0109 0.995 1
## MODEL_3 9186 3 1.06 0.999 0.0101 0.995 1
## MODEL_4 9185 2 1.01 1.000 0.0083 0.996 1
## --------------------------------------------------------------------------
| MODEL_1 |
9189.465 |
5 |
1.145011 |
0.9930011 |
0.0113791 |
0.9942942 |
1.004274 |
| MODEL_2 |
9187.774 |
4 |
1.098561 |
0.9972457 |
0.0109075 |
0.9945313 |
1.002017 |
| MODEL_3 |
9186.297 |
3 |
1.055867 |
0.9992570 |
0.0101100 |
0.9949322 |
1.000711 |
| MODEL_4 |
9185.483 |
2 |
1.011374 |
0.9999680 |
0.0082956 |
0.9958436 |
1.000032 |
Eigenvalues
## Weak multicollinearity.
## Condition Number: 1.286
## You will probably have path coefficients close to being unbiased.
| 1.1172115 |
0.2576760 |
-0.5266012 |
0.0722500 |
0.5700519 |
0.0634110 |
-0.5186110 |
0.2305141 |
| 1.0532951 |
0.3263705 |
-0.2252058 |
0.3310816 |
-0.2937862 |
-0.0948458 |
-0.2366140 |
-0.7627957 |
| 1.0348677 |
-0.2543191 |
-0.0346701 |
0.6716048 |
0.2005871 |
0.6035551 |
0.2766074 |
-0.0451785 |
| 1.0180412 |
0.1736781 |
-0.4349575 |
-0.4429163 |
-0.4133937 |
0.6304649 |
0.1138276 |
0.0559995 |
| 0.9819359 |
0.8378637 |
0.2146473 |
0.2179340 |
0.0007212 |
-0.0179075 |
0.3527581 |
0.2822344 |
| 0.9261234 |
-0.0829918 |
-0.5807921 |
-0.0552848 |
0.2070820 |
-0.3897801 |
0.6649460 |
-0.1255861 |
Correlation heatmap based on path analysis

Variable contribution to DIM 1 for raw dataset

Variable contribution to DIM 2 for raw dataset

Covariance
## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced
## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced
## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced
## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced
| DTF |
121.542857 |
-17.9095238 |
-0.131619 |
-11.5531905 |
25.262571 |
| DTM |
-17.909524 |
77.7567460 |
-5.146294 |
0.1203492 |
-43.232952 |
| PL |
-0.131619 |
-5.1462937 |
21.048368 |
-8.6689387 |
4.329168 |
| NSP |
-11.553190 |
0.1203492 |
-8.668939 |
41.9212584 |
-6.870458 |
| NPP |
25.262571 |
-43.2329524 |
4.329168 |
-6.8704576 |
285.817574 |
Hierrachical clustering dendrogram 1
## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced
## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced
## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced
## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced

Hierrachical clustering dendrogram (circular)
## Registered S3 method overwritten by 'dendextend':
## method from
## text.pvclust pvclust
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## ℹ The deprecated feature was likely used in the factoextra package.
## Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

Hierrachical clustering dendrogram (horizontal)

Qualitative and quantitative visualization 1

Qualitative and quantitative visualization 2
