Introduction

Multi-environment trials (MET) are crucial steps in plant breeding programs that aim at increasing crop productivity to ensure global food security. The analysis of MET data requires the combination of several approaches including data manipulation, visualization and modelling. As new methods are proposed, analysing MET data correctly and completely remains a challenge, often intractable with existing tools.

In 50 years (1967–2017) the world average of cereal yields has increased by 64%, from 1.68 to 2.76 tons/ha. In the same period, the total production of cereals has raised from 1.305 × 109 to 3.6 × 109 tons, an increase of 175%, while the cultivated area increased by only 7.9% in the same period (FAOSTAT, 2019). These unparallel increases have been possible due to the improved cultivation techniques in combination with superior cultivars. For maize, for example, 50% of the increase in yield was due to breeding (Duvick, 2005). Plant breeding programs have been developing new cultivars for adaptation to new locations, management practices or growing conditions, in a clear and crucial example of exploitation of genotype-versus-environment interaction (GEI).

The breeders’ desire to modelling the GEI appropriately has led to the development of the so-called stability analyses, which includes ANOVA-based methods (Annicchiarico, 1992; Shukla, 1972; Wricke, 1965; Yates & Cochran, 1938); regression-based methods (Eberhart & Russell, 1966); nonparametric methods (Fox, Skovmand, Thompson, Braun, & Cormier, 1990; Huehn, 1979; Lin & Binns, 1988; Thennarasu, 1995) and some methods that combines different statistical techniques, such as the additive main effect and multiplicative interaction (AMMI; Gauch, 2013) and genotype plus genotype-versus-environment interaction (GGE; Yan & Kang, 2003). Then, it is no surprise that scientific production related to multi-environment trial analysis has been growing fast in the recent decades. A bibliometric survey in the SCOPUS database revealed that in the last half-century (1969–2019) 6,590 documents were published in 902 sources (journals, books, etc.) by 19,351 authors. In this period, the number of publications has been increased on average by 11.22% per year but were in the last 10 years the largest amount (~64%) of the documents that were published (see Appendix S1, item 1 for more details).

Linear mixed-effect models (LMM) has been more frequently used to analyse MET data. For example, between 2013 and 2015, the larger number of papers proposing methods to deal with GEI were related to the best linear unbiased prediction (BLUP) in LMMs (Eeuwijk, Bustos-Korts, & Malosetti, 2016). Recent advances in this field showed that BLUP is more predictively accurate than AMMI and that the main advantages of these methods can be combined to help researchers to select or recommend stable and high productive genotypes (Olivoto, Lúcio, Silva, Marchioro, et al., 2019). Thus, the rapid spread of these methods to users around the world can be facilitated if these procedures are implemented in specific software.

In most cases, analysing MET data involves manual checking of the data subset(s) to identify possible outliers, using some biometrical model to explore the relationships between traits(or groups of traits), computing a within-environment ANOVA, computing a joint-ANOVA, and, in case of a significant GEI, applying some stability method to explore it. While a spreadsheet program (e.g. Microsoft Excel) may be used to perform a visual check for outliers, an integrated development environment (IDE, e.g. R, SAS or Matlab) is often required to process the complex matrix operations required in some stability methods. IDEs, however, require a certain degree of expertise to use and have steep learning curves, which sometimes prevents that a coding layman implements certain methods. In this sense, R (R Core Team, 2019) packages have been making easier the life of hundreds of thousands of researchers by providing freely collections of functions developed by the community.

Some open-source R software packages that are designed—or are suitable—for analysing MET data are available. The stability package (https://CRAN.R-project.org/package=stability) contains a collection of functions to perform stability analysis. The ammistability package (https://CRAN.R-project.org/package=ammistability) computes multiple AMMI-based stability parameters. The gge (https://CRAN.R-project.org/package=gge) and GGEBiplots (https://CRAN.R-project.org/package=GGEBiplots) packages may be used to produce a GGE biplot. The R packages agricolae (https://CRAN.R-project.org/package=agricolae) and plantbreeding (http://plantbreeding.r-forge.r-project.org/), while not specifically coded for MET analysis provide useful functions for computing parametric and nonparametric stability statistics. Although useful, these packages do not offer options to perform a complete analysis of MET data, i.e. to provide tools for all steps of the analysis (check, manipulation, analysis and visualization of data). For example, GGEBiplots requires as input data a two-way table containing genotype by environment means with genotypes in rows and environments in columns, but doesn’t provide any function to create quickly such table from data that often is in a ‘long’ format in R. In addition, several studies often compare different stability methods (e.g. Bornhofen et al., 2017; Freiria et al., 2018; Scapim et al., 2010; Shahbazi, 2019; Teodoro et al., 2019; Woyann et al., 2018). This requires a range of different packages to be used, making the coding tedious and difficult to follow. Thus, it seems to be value the creation of an R package that presents an easy workflow, incorporates the most used stability statistics, recently proposed stability methods (Olivoto, Lúcio, Silva, Marchioro, et al., 2019; Olivoto, Lúcio, Silva, Sari, Lúcio, Silva, Sari, & Diel, 2019), options for cross-validation procedures (Piepho, 1994) and BLUP-based stability statistics (Colombari Filho et al., 2013). These features are frequently used but are not yet implemented in any other R package for MET analysis.

Here, we describe the metan (multi-environment trial analysis) package, an open-source R package designed to provide an efficient and reproducible workflow for the analysis of MET data. Our main aim in this paper was to describe the features of metan and how this collection of functions can be useful for an intuitive and complete analysis of MET data.

Here we describe the metan R package, a collection of functions that implement a workflow-based approach to (a) check, manipulate and summarize typical MET data; (b) analyse individual environments using both fixed and mixed-effect models; (c) compute parametric and nonparametric stability statistics; (d) implement biometrical models widely used in MET analysis and (e) plot typical MET data quickly.

## [1] 10165.55

Scree plot of eigenvalues

Quality of variables representation

Variables contribution to dimension 1

Variables contribution to dimension 2

Variables contribution to both dimensions

Variables loading plot

PCA Bi-plot

## Too few points to calculate an ellipse
## Too few points to calculate an ellipse

Plot of PCA loading

## Scree, Biplot and PCA loading plots on one grid

## Too few points to calculate an ellipse
## Too few points to calculate an ellipse

Pearson’s correlation heatmap for all genotypes

Simulated dataset to matcht the first 3 columns acorsi.grayleafspot of Dataset.

gen env rep DTF DTM PL NSP NPP GYP GYR TW
G01 LD R1 39 96 20.15 12.33 23.81 77.27 366.37 1059.37
G01 LD R2 56 81 21.02 25.52 64.30 75.92 689.44 371.22
G01 CM R1 52 98 19.36 21.83 37.39 95.97 367.19 852.29
G01 CM R2 32 81 12.35 26.56 12.11 57.07 947.09 472.65
G01 PG R1 32 95 20.99 14.35 43.39 73.09 580.27 683.20
G01 PG R2 51 84 16.44 27.72 57.75 33.50 244.82 145.33

Dataset summary and Variables visualisation

## # A tibble: 11 × 10
##    Variable Class   Missing Levels Valid_n    Min Median    Max Outlier Text 
##    <chr>    <chr>   <chr>   <chr>    <int>  <dbl>  <dbl>  <dbl>   <dbl> <lgl>
##  1 gen      factor  No      36         648  NA      NA     NA        NA NA   
##  2 env      factor  No      9          648  NA      NA     NA        NA NA   
##  3 rep      factor  No      2          648  NA      NA     NA        NA NA   
##  4 DTF      numeric No      -          648  25      40     56         0 NA   
##  5 DTM      numeric No      -          648  78      97    118         0 NA   
##  6 PL       numeric No      -          648  10.5    17.6   24.7       0 NA   
##  7 NSP      numeric No      -          648   8.73   18.4   28.7       0 NA   
##  8 NPP      numeric No      -          648   5.68   34.5   65.9       0 NA   
##  9 GYP      numeric No      -          648   7.8    62.9  115.        0 NA   
## 10 GYR      numeric No      -          648  82.3   615.  1069.        0 NA   
## 11 TW       numeric No      -          648 100.    586.  1098.        0 NA
## No issues detected while inspecting data.

Variable Class Missing Levels Valid_n Min Median Max Outlier Text
gen factor No 36 648 NA NA NA NA NA
env factor No 9 648 NA NA NA NA NA
rep factor No 2 648 NA NA NA NA NA
DTF numeric No - 648 25.00 40.00 56.00 0 NA
DTM numeric No - 648 78.00 97.00 118.00 0 NA
PL numeric No - 648 10.51 17.62 24.71 0 NA
NSP numeric No - 648 8.73 18.44 28.66 0 NA
NPP numeric No - 648 5.68 34.50 65.93 0 NA
GYP numeric No - 648 7.80 62.92 114.60 0 NA
GYR numeric No - 648 82.34 615.48 1068.70 0 NA
TW numeric No - 648 100.41 586.17 1098.45 0 NA

Individual ANOVA

ENV MEAN DFG MSG FCG PFG DFB MSB FCB PFB DFE MSE CV h2 AS
CM 619.7935 35 95181.72 1.8723541 0.0338195 1 73549.5481 1.4468198 0.2371129 35 50835.32 36.37775 0.4659130 0.6825782
GO 608.9446 35 109523.41 1.7939301 0.0441434 1 732.3602 0.0119956 0.9134120 35 61052.22 40.57635 0.4425647 0.6652553
GS 588.2103 35 105603.53 1.3067705 0.2163269 1 78455.5272 0.9708328 0.3312353 35 80812.61 48.32890 0.2347547 0.4845149
JT 609.8557 35 101362.11 1.2613538 0.2478824 1 63167.0196 0.7860527 0.3813481 35 80359.78 46.48280 0.2072010 0.4551934
LD 620.1714 35 62451.63 0.5641662 0.9525368 1 8447.4002 0.0763109 0.7839852 35 110697.22 53.64838 -0.7725274 0.0000000
PG 575.5801 35 57365.09 0.4918532 0.9804392 1 1039.6040 0.0089137 0.9253202 35 116630.51 59.33354 -1.0331268 0.0000000

GE Plot (heatmap)

## Evaluating trait DTF |=====                                      | 12% 00:00:00 
Evaluating trait DTM |===========                                | 25% 00:00:00 
Evaluating trait PL |================                            | 38% 00:00:00 
Evaluating trait NSP |======================                     | 50% 00:00:00 
Evaluating trait NPP |===========================                | 62% 00:00:00 
Evaluating trait GYP |================================           | 75% 00:00:01 
Evaluating trait GYR |======================================     | 88% 00:00:01 
Evaluating trait TW |============================================| 100% 00:00:01 
## Method: REML/BLUP
## Random effects: GEN
## Fixed effects: REP
## Denominador DF: Satterthwaite's method
## ---------------------------------------------------------------------------
## P-values for Likelihood Ratio Test of the analyzed traits
## ---------------------------------------------------------------------------
##     model DTF DTM PL    NSP NPP   GYP    GYR TW
##  Complete  NA  NA NA     NA  NA    NA     NA NA
##  Genotype   1   1  1 0.0908   1 0.266 0.0375  1
## ---------------------------------------------------------------------------
## Variables with nonsignificant Genotype effect
## DTF DTM PL NSP NPP GYP TW 
## ---------------------------------------------------------------------------

GE Plot (line)

Genotypes seems to show higher values in the second replication.

Winning genotypes by Environment and Trait

ENV DTF DTM PL NSP NPP GYP GYR TW
CM G28 G17 G05 G01 G35 G25 G09 G06
GO G28 G06 G36 G17 G19 G21 G29 G26
GS G24 G09 G29 G07 G36 G03 G05 G22
JT G09 G15 G18 G35 G15 G09 G08 G36
LD G26 G34 G07 G09 G29 G29 G21 G15
PG G05 G30 G29 G12 G01 G31 G04 G33

Genotype ranking by Environment and Trait

ENV DTF DTM PL NSP NPP GYP GYR TW
CM G28 G17 G05 G01 G35 G25 G09 G06
CM G17 G31 G22 G17 G05 G02 G36 G11
CM G10 G12 G15 G14 G34 G33 G30 G05
CM G13 G35 G03 G03 G23 G04 G04 G09
CM G22 G20 G02 G34 G09 G15 G33 G18
CM G06 G29 G14 G26 G30 G24 G22 G23

ANOVA for DTF trait

Source Df Sum Sq Mean Sq F value Pr(>F)
ENV 8.00000 748.1327 93.51659 1.0817645 0.3755126
REP(ENV) 9.00000 865.3194 96.14660 1.1121876 0.3535028
GEN 35.00000 2449.4244 69.98355 0.8095433 0.7721416
GEN:ENV 280.00000 21910.8673 78.25310 0.9052022 0.8032908
Residuals 315.00000 27231.1806 86.44819 NA NA
CV(%) 22.68342 NA NA NA NA

Classification of evironment favourability

## Evaluating trait TW |============================================| 100% 00:00:02 
ENV Y index class
CM 619.7935 22.994707 favorable
GO 608.9446 12.145818 favorable
GS 588.2103 -8.588488 unfavorable
JT 609.8557 13.056929 favorable
LD 620.1714 23.372623 favorable
PG 575.5801 -21.218626 unfavorable

Plot showing Favourability of Environments (TW)

Ecovalence with regards to TW

## Evaluating trait TW |============================================| 100% 00:00:02 
## Variable TW 
## ---------------------------------------------------------------------------
## Genotypic confidence index
## ---------------------------------------------------------------------------
## # A tibble: 36 × 13
##    GEN       CM      GO     GS     JT      LD     PG     PL     PM      SP
##    <chr>  <dbl>   <dbl>  <dbl>  <dbl>   <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
##  1 G01    156.   144.    186.  -127.   209.    -47.7 -288.   -56.8 -176.  
##  2 G02    107.   -47.3   182.    98.0  -59.6  -167.  -194.   131.   -50.7 
##  3 G03    -71.1 -131.    339.    71.5 -230.    123.  -315.   295.   -81.5 
##  4 G04   -104.    96.7   101.  -197.    24.5   202.    99.4 -239.    16.6 
##  5 G05    305.     2.39  -49.8   51.5   50.6  -133.    46.1   43.2 -316.  
##  6 G06    381.  -378.    -15.8  -34.1 -135.    290.   -68.9 -134.    95.1 
##  7 G07   -118.  -241.   -106.  -217.   277.    229.   185.   -61.9   54.5 
##  8 G08    184.   263.   -325.  -213.    30.5    71.6 -332.   182.   140.  
##  9 G09    271.    70.1  -234.   212.    -2.37   95.0  156.  -162.  -405.  
## 10 G10   -295.    77.6    76.6 -266.   124.    313.   -85.1   60.4   -6.37
## # ℹ 26 more rows
## # ℹ 3 more variables: Ecoval <dbl>, Ecov_perc <dbl>, rank <dbl>
GEN CM GO GS JT LD PG PL PM SP Ecoval Ecov_perc rank
G01 156.28585 143.584738 185.999043 -126.62637 208.732932 -47.705818 -287.755957 -56.7708179 -175.743596 516858.5 2.0510323 10
G02 106.74140 -47.284707 182.389599 98.03918 -59.576512 -166.915262 -193.945401 131.2897377 -50.738040 290686.9 1.1535231 4
G03 -71.13304 -131.374151 339.005154 71.53474 -230.485957 123.175293 -314.734846 295.4652932 -81.452485 807298.0 3.2035737 21
G04 -104.49082 96.693071 101.022376 -196.66304 24.506265 201.947515 99.412376 -239.0474846 16.619738 355671.7 1.4114001 7
G05 304.54252 2.386404 -49.819290 51.54029 50.564599 -132.784151 46.075710 43.1758488 -315.681929 443441.6 1.7596947 9
G06 380.88252 -378.183596 -15.844290 -34.14471 -134.740401 289.955849 -68.939290 -134.0741512 95.088071 847021.7 3.3612079 25
G07 -118.27137 -241.227485 -106.148179 -217.27360 276.555710 228.986960 184.786821 -61.9180401 54.509182 601046.8 2.3851142 14
G08 183.83863 262.547515 -324.963179 -213.42860 30.510710 71.576960 -332.228179 181.7769599 140.369182 846113.5 3.3576042 24
G09 270.90529 70.079182 -233.906512 211.55307 -2.367624 95.038627 156.433488 -162.4163735 -405.319151 803879.6 3.1900087 20
G10 -294.61026 77.628626 76.602932 -266.31748 124.416821 313.393071 -85.092068 60.3530710 -6.374707 588465.9 2.3351898 13
G11 273.94585 260.794738 -379.395957 216.80863 20.547932 55.444182 1.034043 -234.1408179 -215.038596 877136.7 3.4807124 27
G12 70.06474 127.173626 -166.092068 125.97252 -54.378179 -7.626929 11.892932 79.3530710 -186.359707 217442.6 0.8628702 2
G13 74.15918 -156.506929 -231.242624 69.63696 -386.608735 226.872515 532.262376 -0.3124846 -128.260262 1178015.9 4.6746812 36
G14 -97.61137 -463.477485 336.836821 243.09640 -28.754290 130.086960 -11.128179 -6.0930401 -102.955818 850809.1 3.3762374 26
G15 -174.16637 47.552515 -59.913179 28.87140 398.410710 -231.458040 -26.428179 231.0569599 -213.925818 698344.5 2.7712173 18
G16 -26.16471 142.689182 -18.381512 -296.30693 -131.732623 29.018626 79.918488 166.5286265 54.430849 328915.0 1.3052224 6
G17 -272.52415 -114.640262 -409.760957 247.10363 -240.662068 161.209182 283.794043 39.1641821 306.316404 1152370.6 4.5729139 35
G18 286.06029 -136.515818 -335.821512 240.77807 137.057377 -161.246374 31.568488 -313.6163735 251.735849 957450.2 3.7994176 29
G19 -47.07582 -309.921929 61.012377 -263.74304 109.766265 -34.267485 65.652377 203.5725154 215.004738 553505.1 2.1964560 12
G20 335.26085 -94.880262 -193.740957 -131.68637 -75.202068 72.359182 75.084043 52.0741821 -39.268596 394123.0 1.5639853 8
G21 -394.07860 -112.609707 151.849599 -64.41082 56.458488 -257.790262 152.054599 386.2447377 82.281960 887810.5 3.5230687 28
G22 -186.06860 -400.424707 450.224599 118.43418 -108.376512 -100.660262 44.879599 -137.7252623 319.716960 1113539.3 4.4188208 33
G23 355.18029 -124.130818 -12.381512 -253.30693 88.462377 -67.846373 36.543488 -236.0713735 213.550849 641954.0 2.5474448 17
G24 227.84585 319.539738 1.109043 -174.84637 -154.647068 52.054182 -246.515957 -156.9458179 132.406404 628301.6 2.4932681 16
G25 -36.87637 161.917515 164.766821 134.61140 -110.599290 -55.998040 99.451821 -185.6030401 -171.670818 324047.0 1.2859048 5
G26 45.91529 417.574182 -235.321512 -275.17693 -121.932624 -148.526374 -44.671512 153.5886265 208.550849 827162.2 3.2824001 22
G27 168.00474 -59.856373 79.827932 206.77752 234.421821 -187.501929 -106.272068 -296.2969290 -39.104707 543326.4 2.1560639 11
G28 -189.22082 -352.616929 368.017377 115.08196 247.121265 -279.372485 32.167377 -198.0674846 256.889738 1108399.1 4.3984234 32
G29 -343.33026 240.403627 -119.027068 212.93252 106.616821 -178.976929 -74.342068 -168.7319290 324.455293 835691.2 3.3162456 23
G30 -337.40360 383.875293 -46.840401 364.95418 -57.146512 54.999738 -382.020401 118.9297377 -99.348040 1145663.2 4.5462971 34
G31 -167.65748 56.756404 343.350710 27.62529 196.509599 -209.319151 6.660710 8.2008488 -262.126929 602471.7 2.3907685 15
G32 91.70196 221.965849 -94.239846 -127.54026 -4.600957 15.290293 71.515154 -7.3347068 -166.757485 232114.0 0.9210902 3
G33 -118.78082 223.918071 -22.577624 -30.64304 -160.158735 250.607515 226.052377 -412.3024846 43.884738 754341.5 2.9934283 19
G34 -14.00415 90.844738 -61.635957 -57.79137 -93.422068 -2.540818 115.184043 111.7341821 -88.368596 115765.5 0.4593884 1
G35 -239.66526 69.208626 172.097932 -453.25248 -73.498179 18.413071 -127.107068 321.8780710 311.925293 1040169.8 4.1276711 30
G36 -98.20137 -293.482485 102.941821 397.80640 -81.769290 -119.893040 -51.243179 423.0819599 -279.240818 1090565.3 4.3276538 31

Shukla stability statistics for TW

## Evaluating trait TW |============================================| 100% 00:00:03 
GEN Y ShuklaVar rMean rShukaVar ssiShukaVar
G01 483.1894 32880.344 35 10 45
G02 508.6639 17913.107 33 4 37
G03 626.6133 52100.606 9 21 30
G04 510.7361 22213.572 32 7 39
G05 591.6528 28021.877 21 9 30
G06 602.6828 54729.380 18 25 43
G07 602.8317 38451.633 17 14 31
G08 568.9267 54669.283 28 24 52
G09 615.2450 51874.390 14 20 34
G10 610.7956 37619.074 15 13 28
G11 665.9944 56722.287 6 27 33
G12 677.3256 13066.058 5 2 7
G13 480.1361 76633.408 36 36 72
G14 626.2117 54980.019 10 26 36
G15 585.8967 44890.450 24 18 42
G16 589.8200 20442.909 23 6 29
G17 590.4494 74936.295 22 35 57
G18 598.5450 62037.147 20 29 49
G19 681.8261 35305.491 4 12 16
G20 490.1544 24758.146 34 8 42
G21 641.3589 57428.639 8 28 36
G22 605.8039 72366.573 16 33 49
G23 527.9550 41158.726 31 17 48
G24 575.7144 40255.254 25 16 41
G25 620.5367 20120.760 12 5 17
G26 598.8800 53415.148 19 22 41
G27 691.2856 34631.896 1 11 12
G28 571.4961 72026.418 26 32 58
G29 540.5206 53979.569 30 23 53
G30 569.0239 74492.422 27 34 61
G31 616.8628 38545.927 13 15 28
G32 681.8683 14036.959 3 3 6
G33 685.6811 48596.135 2 19 21
G34 562.9194 6337.428 29 1 30
G35 626.0456 67511.241 11 30 41
G36 661.1067 70846.235 7 31 38

Regression model estimates for TW

## Evaluating trait TW |============================================| 100% 00:00:07 
GEN b0 b1 t(b1=1) pval_t s2di F(s2di=0) pval_f RMSE R2
G01 483.1894 2.5516184 0.53731624 0.59142854 -6259.5080 0.8490509 0.5474145 165.48150 0.1161143
G02 508.6639 -0.1021069 -0.38165308 0.70297603 -21567.2013 0.4799033 0.8490057 124.41119 0.0003720
G03 626.6133 -5.5654479 -2.27357566 0.02366428 -14425.3132 0.6521311 0.7125144 145.02740 0.4486370
G04 510.7361 2.1367022 0.39363324 0.69411814 -16980.4520 0.5905135 0.7636134 138.00586 0.1169584
G05 591.6528 2.9167532 0.66376027 0.50732926 -12403.2325 0.7008939 0.6713189 150.35184 0.1721447
G06 602.6828 1.2706668 0.09373032 0.92538297 18981.8313 1.4577501 0.1817780 216.83238 0.0186213
G07 602.8317 0.8800724 -0.04153020 0.96689953 1454.0267 1.0350641 0.4063401 182.71164 0.0126570
G08 568.9267 -0.2711152 -0.44017964 0.66010889 17821.1942 1.4297611 0.1925504 214.74069 0.0008799
G09 615.2450 4.8728814 1.34115584 0.18083606 5296.8898 1.1277354 0.3452403 190.71559 0.2650888
G10 610.7956 -2.5931804 -1.24429705 0.21431531 -8606.3008 0.7924576 0.5940745 159.87134 0.1269214
G11 665.9944 6.4464221 1.88606367 0.06020619 112.0488 1.0027021 0.4292213 179.83265 0.4152043
G12 677.3256 1.1011063 0.03501252 0.97209193 -25943.3214 0.3743724 0.9169608 109.88401 0.0525649
G13 480.1361 -0.2053035 -0.41738945 0.67667791 41644.2832 2.0042590 0.0542018 254.24915 0.0003601
G14 626.2117 -1.2211199 -0.76916063 0.44237429 15799.7472 1.3810136 0.2125889 211.04816 0.0181615
G15 585.8967 0.6748456 -0.11259905 0.91042016 8338.9705 1.2010957 0.3016774 196.82099 0.0064537
G16 589.8200 -1.8900649 -1.00081232 0.31768573 -23907.3260 0.4234708 0.8874174 116.86765 0.1262698
G17 590.4494 -0.7054675 -0.59059328 0.55521645 38778.2365 1.9351438 0.0636452 249.82691 0.0043866
G18 598.5450 8.1383888 2.47198170 0.01396475 -9277.8389 0.7762633 0.6076275 158.22938 0.5937776
G19 681.8261 -2.0979851 -1.07281384 0.28417583 -8749.6446 0.7890008 0.5969613 159.52227 0.0872327
G20 490.1544 1.2127665 0.07367979 0.94131195 -13348.1870 0.6781062 0.6906125 147.88750 0.0358265
G21 641.3589 -4.0288958 -1.74147679 0.08257626 3981.5424 1.0960156 0.3653993 188.01433 0.2023710
G22 605.8039 0.3586878 -0.22208259 0.82439350 37778.6721 1.9110391 0.0672823 248.26608 0.0011520
G23 527.9550 5.1515112 1.43764369 0.15152782 -7857.5561 0.8105137 0.5790571 161.68241 0.3593522
G24 575.7144 2.6922907 0.58603022 0.55827486 1376.5373 1.0331954 0.4076401 182.54664 0.1072910
G25 620.5367 3.1635065 0.74920948 0.45429007 -21646.6632 0.4779870 0.8503783 124.16256 0.2639943
G26 598.8800 0.3052403 -0.24059117 0.81002850 17272.4359 1.4165277 0.1978275 213.74459 0.0011255
G27 691.2856 6.9353787 2.05538644 0.04066582 -27685.0600 0.3323701 0.9389058 103.53652 0.7125771
G28 571.4961 3.6309196 0.91107185 0.36295418 32786.5058 1.7906522 0.0884821 240.31906 0.1120021
G29 540.5206 3.8684470 0.99332618 0.32131344 12379.4095 1.2985316 0.2503792 204.64864 0.1648780
G30 569.0239 -1.2153563 -0.76716475 0.44355818 36878.9191 1.8893414 0.0707195 246.85267 0.0132163
G31 616.8628 1.4623708 0.16011628 0.87289211 1414.1479 1.0341024 0.4070088 182.62674 0.0342156
G32 681.8683 1.8568428 0.29671958 0.76687616 -25409.6629 0.3872417 0.9096033 111.75672 0.1323449
G33 685.6811 4.1189621 1.08007806 0.28093369 5503.1664 1.1327098 0.3421511 191.13575 0.2041989
G34 562.9194 -0.3404259 -0.46418155 0.64283831 -34475.1099 0.1686269 0.9912117 73.74727 0.0116366
G35 626.0456 -5.4803635 -2.24411143 0.02551942 2996.9262 1.0722714 0.3810069 185.96660 0.3242561
G36 661.1067 -4.0295487 -1.74170289 0.08253660 18459.3619 1.4451507 0.1865625 215.89330 0.1614134

Regression plot for TW trait

plot(reg_model)

Factor Analysis (FA) plot for TW trait

## Warning: ggrepel: 5 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Plot of explained variance by each PC for TW trait

Plot showing CV for each environment

Anova fot TW trait

## variable TW 
## ---------------------------------------------------------------------------
## AMMI analysis table
## ---------------------------------------------------------------------------
##     Source  Df   Sum Sq Mean Sq F value Pr(>F) Proportion Accumulated
##        ENV   8   358041   44755   1.196 0.3947         NA          NA
##   REP(ENV)   9   336710   37412   0.451 0.9062         NA          NA
##        GEN  35  2123026   60658   0.731 0.8688         NA          NA
##    GEN:ENV 280 25199919   90000   1.085 0.2401         NA          NA
##        PC1  42  5920582  140966   1.700 0.0063       23.5        23.5
##        PC2  40  4464626  111616   1.350 0.0850       17.7        41.2
##        PC3  38  3900661  102649   1.240 0.1654       15.5        56.7
##        PC4  36  3155772   87660   1.060 0.3815       12.5        69.2
##        PC5  34  2798200   82300   0.990 0.4883       11.1        80.3
##        PC6  32  2025169   63287   0.760 0.8248        8.0        88.4
##        PC7  30  1844578   61486   0.740 0.8394        7.3        95.7
##        PC8  28  1090332   38940   0.470 0.9908        4.3       100.0
##  Residuals 315 26124634   82935      NA     NA         NA          NA
##      Total 927 79342249   85590      NA     NA         NA          NA
## ---------------------------------------------------------------------------
## 
## ------------------------------------------------------------
## Variables with nonsignificant GxE interaction
## TW 
## ------------------------------------------------------------
## Done!
Source Df Sum Sq Mean Sq F value Pr(>F) Proportion Accumulated
ENV 8 358040.6 44755.07 1.1962673 0.3946646 NA NA
REP(ENV) 9 336710.4 37412.27 0.4511016 0.9061622 NA NA
GEN 35 2123025.8 60657.88 0.7313875 0.8687849 NA NA
GEN:ENV 280 25199919.2 89999.71 1.0851792 0.2401222 NA NA
PC1 42 5920581.6 140966.23 1.7000000 0.0063000 23.5 23.5
PC2 40 4464625.6 111615.64 1.3500000 0.0850000 17.7 41.2
PC3 38 3900660.6 102648.96 1.2400000 0.1654000 15.5 56.7
PC4 36 3155772.0 87660.33 1.0600000 0.3815000 12.5 69.2
PC5 34 2798200.0 82300.00 0.9900000 0.4883000 11.1 80.3
PC6 32 2025169.5 63286.55 0.7600000 0.8248000 8.0 88.4
PC7 30 1844577.8 61485.93 0.7400000 0.8394000 7.3 95.7
PC8 28 1090332.2 38940.43 0.4700000 0.9908000 4.3 100.0
Residuals 315 26124634.1 82935.35 NA NA NA NA
Total 927 79342249.4 85590.34 NA NA NA NA

PCA values TW trait

PC Df Sum Sq Mean Sq F value Pr(>F) Proportion Accumulated
PC1 42 5920582 140966.23 1.70 0.0063 23.5 23.5
PC2 40 4464626 111615.64 1.35 0.0850 17.7 41.2
PC3 38 3900661 102648.96 1.24 0.1654 15.5 56.7
PC4 36 3155772 87660.33 1.06 0.3815 12.5 69.2
PC5 34 2798200 82300.00 0.99 0.4883 11.1 80.3
PC6 32 2025169 63286.55 0.76 0.8248 8.0 88.4

Fitted model TW trait

type Code Y PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
GEN G01 483.1894 -0.5183478 -3.7969043 6.152771 -10.706029 -3.949483 -3.676603 -1.876482 2.370032
GEN G02 508.6639 3.6887684 0.0277292 5.632924 -3.136529 -4.048111 1.110091 5.699752 -4.266189
GEN G03 626.6133 8.5389938 -2.4742045 4.460207 2.612873 -8.635438 -6.561361 10.199000 1.311148
GEN G04 510.7361 -1.0733219 -1.2247274 -5.407674 -1.604350 2.648156 -9.337538 -5.658264 1.934181
GEN G05 591.6528 -4.6716350 3.9564299 6.964733 -2.029996 -6.747380 3.215490 -3.756800 -3.690296
GEN G06 602.6828 -2.8838127 9.2358531 -7.664246 -3.467487 -8.784701 -2.351215 8.265601 5.478665

AMMI stability plot for TW

Predicted values for TW

TRAIT ENV GEN Y RESIDUAL Ypred ResAMMI YpredAMMI AMMI0
TW CM G01 662.470 156.28585 506.1842 130.17536 636.3595 506.1842
TW CM G02 638.400 106.74140 531.6586 -28.80103 502.8576 531.6586
TW CM G03 578.475 -71.13304 649.6080 -246.13642 403.4716 649.6080
TW CM G04 429.240 -104.49082 533.7308 32.62515 566.3560 533.7308
TW CM G05 919.190 304.54252 614.6475 173.84645 788.4939 614.6475
TW CM G06 1006.560 380.88252 625.6775 218.74420 844.4217 625.6775

Mean of GxE for TW

ENV GEN Y envPC1 genPC1 nominal
CM G01 662.470 -20.8552 -0.5183478 493.9997
CM G02 638.400 -20.8552 3.6887684 431.7339
CM G03 578.475 -20.8552 8.5389938 448.5309
CM G04 429.240 -20.8552 -1.0733219 533.1205
CM G05 919.190 -20.8552 -4.6716350 689.0806
CM G06 1006.560 -20.8552 -2.8838127 662.8253

A plot of AMMI stability scores for TW trait

AMMI2 Biplot with polygon

Y x WAAS Biplot for TW

WAASB_model for Random effects

## Evaluating trait DTF |=====                                      | 12% 00:00:05 
Evaluating trait DTM |===========                                | 25% 00:00:10 
Evaluating trait PL |================                            | 38% 00:00:15 
Evaluating trait NSP |======================                     | 50% 00:00:20 
Evaluating trait NPP |===========================                | 62% 00:00:25 
Evaluating trait GYP |================================           | 75% 00:00:30 
Evaluating trait GYR |======================================     | 88% 00:00:35 
Evaluating trait TW |============================================| 100% 00:00:40 
## ---------------------------------------------------------------------------
## P-values for Likelihood Ratio Test of the analyzed traits
## ---------------------------------------------------------------------------
##     model DTF DTM PL    NSP   NPP   GYP    GYR    TW
##  COMPLETE  NA  NA NA     NA    NA    NA     NA    NA
##       GEN   1   1  1 0.0788 1.000 0.414 0.0369 1.000
##   GEN:ENV   1   1  1 1.0000 0.621 0.365 1.0000 0.691
## ---------------------------------------------------------------------------
## Variables with nonsignificant GxE interaction
## DTF DTM PL NSP NPP GYP GYR TW 
## ---------------------------------------------------------------------------
## The following traits had p-value for GE interaction = 1
## DTM PL NSP GYR 
## WAASBY value for these traits is based on mean performance only (PctResp)
## ---------------------------------------------------------------------------

The variance components for the random effects for TW

## Class of the model: waasb
## Variable extracted: vcomp
Group DTF DTM PL NSP NPP GYP GYR TW
GEN 0.00000 0.000 0.00000 0.8944214 0.000000 12.74489 2645.17 0.00
GEN:ENV 0.00000 0.000 0.00000 0.0000000 8.028362 51.15377 0.00 1902.08
Residual 81.89123 127.902 16.16779 32.0866246 280.474581 922.96059 77755.71 82935.35

The genetic parameter in the model for TW

## Class of the model: waasb
## Variable extracted: genpar
Group DTF DTM PL NSP NPP GYP GYR TW
GEN 0.00000 0.000 0.00000 0.8944214 0.000000 12.74489 2645.17 0.00
GEN:ENV 0.00000 0.000 0.00000 0.0000000 8.028362 51.15377 0.00 1902.08
Residual 81.89123 127.902 16.16779 32.0866246 280.474581 922.96059 77755.71 82935.35

Predicted means for each genotypes for TW

## Class of the model: waasb
## Variable extracted: blupg
GEN DTF DTM PL NSP NPP GYP GYR TW
G01 40.9892 97.81944 17.6188 19.30042 35.53596 61.85278 618.2667 596.7988
G02 40.9892 97.81944 17.6188 18.38978 35.53596 66.75265 565.3474 596.7988
G03 40.9892 97.81944 17.6188 19.28576 35.53596 63.73311 556.2845 596.7988
G04 40.9892 97.81944 17.6188 17.21742 35.53596 61.20298 619.5210 596.7988
G05 40.9892 97.81944 17.6188 17.82216 35.53596 62.42904 551.1903 596.7988
G06 40.9892 97.81944 17.6188 18.39405 35.53596 63.20998 619.5858 596.7988
G07 40.9892 97.81944 17.6188 19.32233 35.53596 61.28983 600.8283 596.7988
G08 40.9892 97.81944 17.6188 18.56204 35.53596 63.38267 679.6396 596.7988
G09 40.9892 97.81944 17.6188 18.61828 35.53596 62.09058 630.0438 596.7988
G10 40.9892 97.81944 17.6188 17.46838 35.53596 64.17803 602.0183 596.7988
G11 40.9892 97.81944 17.6188 17.50661 35.53596 60.14737 647.1818 596.7988
G12 40.9892 97.81944 17.6188 18.98747 35.53596 61.64932 533.9013 596.7988
G13 40.9892 97.81944 17.6188 18.38403 35.53596 59.42250 605.3372 596.7988
G14 40.9892 97.81944 17.6188 18.93104 35.53596 61.92927 571.1452 596.7988
G15 40.9892 97.81944 17.6188 18.55424 35.53596 62.96579 568.2939 596.7988
G16 40.9892 97.81944 17.6188 18.99731 35.53596 61.90764 592.7733 596.7988
G17 40.9892 97.81944 17.6188 19.20056 35.53596 60.63901 587.3630 596.7988
G18 40.9892 97.81944 17.6188 18.10653 35.53596 61.63124 627.8069 596.7988
G19 40.9892 97.81944 17.6188 18.24611 35.53596 62.06711 615.6935 596.7988
G20 40.9892 97.81944 17.6188 19.11610 35.53596 60.05839 569.1895 596.7988
G21 40.9892 97.81944 17.6188 19.21504 35.53596 60.82887 592.2821 596.7988
G22 40.9892 97.81944 17.6188 18.97039 35.53596 63.50090 610.1813 596.7988
G23 40.9892 97.81944 17.6188 17.63228 35.53596 63.38033 618.2161 596.7988
G24 40.9892 97.81944 17.6188 18.47851 35.53596 60.65781 562.2604 596.7988
G25 40.9892 97.81944 17.6188 18.99007 35.53596 63.81072 626.4021 596.7988
G26 40.9892 97.81944 17.6188 18.83656 35.53596 62.68898 590.4142 596.7988
G27 40.9892 97.81944 17.6188 18.70719 35.53596 61.68091 626.6781 596.7988
G28 40.9892 97.81944 17.6188 18.59767 35.53596 61.81449 570.8576 596.7988
G29 40.9892 97.81944 17.6188 18.26263 35.53596 63.40471 590.0015 596.7988
G30 40.9892 97.81944 17.6188 18.65447 35.53596 63.14111 631.9220 596.7988
G31 40.9892 97.81944 17.6188 18.17409 35.53596 62.14726 627.2883 596.7988
G32 40.9892 97.81944 17.6188 18.49837 35.53596 62.33315 547.2133 596.7988
G33 40.9892 97.81944 17.6188 19.19425 35.53596 62.38506 571.7501 596.7988
G34 40.9892 97.81944 17.6188 18.86793 35.53596 58.70535 606.0953 596.7988
G35 40.9892 97.81944 17.6188 18.49744 35.53596 64.03968 565.6681 596.7988
G36 40.9892 97.81944 17.6188 18.75415 35.53596 63.32192 603.2207 596.7988

Predicted means for each genotype environment combination for TW

## Class of the model: waasb
## Variable extracted: blupge
ENV GEN DTF DTM PL NSP NPP GYP GYR TW
CM G01 40.36111 97.06944 17.58889 19.76704 34.21876 64.56077 585.8479 621.6651
CM G02 40.36111 97.06944 17.58889 18.85640 34.65087 70.95096 532.9286 620.6095
CM G03 40.36111 97.06944 17.58889 19.75238 34.83254 66.29988 523.8657 617.9814
CM G04 40.36111 97.06944 17.58889 17.68404 34.38040 65.39677 587.1022 611.4363
CM G05 40.36111 97.06944 17.58889 18.28878 35.93310 64.16998 518.7715 632.9242
CM G06 40.36111 97.06944 17.58889 18.86067 34.20116 62.59587 587.1670 636.7560

BLUP-based stability statistics for TW

## Class of the model: waasb
## Variable extracted: WAASB
GEN DTF DTM PL NSP NPP GYP GYR TW
G01 0 NA NA NA 0.2695868 0.4270761 NA 0.9562070
G02 0 NA NA NA 0.2799436 0.5783926 NA 0.7676005
G03 0 NA NA NA 0.2717804 0.6458621 NA 1.1745007
G04 0 NA NA NA 0.2599578 0.3954558 NA 0.7933199
G05 0 NA NA NA 0.2620333 0.3551057 NA 0.9341366
G06 0 NA NA NA 0.3039891 0.4195486 NA 1.1684429
G07 0 NA NA NA 0.2265533 0.4381595 NA 0.6917625
G08 0 NA NA NA 0.2576913 0.6791135 NA 1.1737995
G09 0 NA NA NA 0.3053211 0.8262474 NA 1.2627679
G10 0 NA NA NA 0.1796253 0.4284019 NA 0.7600957
G11 0 NA NA NA 0.3251487 0.4638800 NA 1.3088633
G12 0 NA NA NA 0.2955460 0.3948612 NA 0.7319039
G13 0 NA NA NA 0.3063619 0.6481795 NA 1.6645755
G14 0 NA NA NA 0.2305216 0.2392062 NA 1.1911121
G15 0 NA NA NA 0.2391759 0.4997047 NA 0.9808916
G16 0 NA NA NA 0.2202117 0.4427403 NA 0.6980696
G17 0 NA NA NA 0.2574044 0.5685601 NA 1.2112311
G18 0 NA NA NA 0.2051573 0.4930683 NA 1.3726120
G19 0 NA NA NA 0.2601689 0.4038787 NA 0.9741786
G20 0 NA NA NA 0.1765342 0.6125393 NA 1.0299161
G21 0 NA NA NA 0.4474713 0.8083378 NA 1.2100021
G22 0 NA NA NA 0.2219202 0.8334188 NA 1.4299000
G23 0 NA NA NA 0.2897713 0.5731086 NA 1.0301319
G24 0 NA NA NA 0.3503508 0.4521088 NA 1.0692269
G25 0 NA NA NA 0.2756768 0.5607946 NA 0.5874401
G26 0 NA NA NA 0.2450095 0.4135830 NA 1.0552992
G27 0 NA NA NA 0.3053265 0.3877358 NA 1.0557091
G28 0 NA NA NA 0.2874898 0.4944244 NA 1.4685137
G29 0 NA NA NA 0.4112468 0.5093441 NA 0.8248561
G30 0 NA NA NA 0.2208286 0.5409334 NA 1.2281428
G31 0 NA NA NA 0.3109397 0.6500136 NA 0.9694722
G32 0 NA NA NA 0.3601010 0.3118052 NA 0.7460982
G33 0 NA NA NA 0.3037760 0.3008292 NA 1.0729206
G34 0 NA NA NA 0.2802086 0.7495773 NA 0.4369744
G35 0 NA NA NA 0.3531763 0.5081832 NA 1.3377268
G36 0 NA NA NA 0.2684776 0.5246280 NA 1.5604072

GGE model prdictions for TW

CM GO GS JT LD PG PL PM SP
595.0802 725.8355 541.6196 517.7406 609.5521 576.5280 551.7907 584.7806 615.8514
556.6302 564.6001 668.9390 614.6332 639.3224 555.8905 597.3168 587.7336 623.4617
421.2965 510.6095 818.0190 596.1492 674.8205 516.3473 560.8324 692.1165 677.8584
631.9503 681.7954 535.2176 563.9076 607.8077 583.5148 584.2369 545.5898 597.8728
761.1034 592.6848 474.8466 680.0084 592.9059 612.1884 672.9317 420.2336 538.3986
785.8223 465.9052 527.1912 779.0490 604.8582 610.6047 731.9419 376.1585 521.1161
615.8375 543.8935 629.5322 653.7537 629.7731 570.3335 630.2598 533.9540 597.2802
643.6036 995.0227 342.6769 349.4587 563.1164 606.8071 469.1641 593.0807 609.7804
927.2131 593.3121 330.0914 748.6521 558.1918 656.4936 742.8597 280.0990 468.1022
461.6490 730.2023 655.0607 459.1910 636.7797 541.2528 493.7536 698.2382 672.5804
936.8630 739.8508 236.3650 650.0713 536.4084 668.5092 690.7979 298.7724 471.8956
709.0525 662.6723 479.3335 609.3618 594.3141 602.8285 624.1325 476.9909 564.1998
859.8177 541.3626 418.9277 756.9939 579.2511 635.1861 734.2919 327.4938 493.8439
541.3500 195.7267 897.0384 866.5323 692.2778 528.0455 732.1752 533.1201 610.0977
502.0257 624.0002 681.8114 550.3369 642.6915 545.1678 551.4949 644.7092 649.7748
551.8127 796.3845 538.1446 450.3537 609.0534 569.5448 506.4867 634.2247 637.9640
695.2769 568.5886 546.0985 669.5022 609.8801 593.0940 654.3563 471.4017 564.9737
867.3803 522.5831 423.2905 773.2869 580.2084 635.9910 744.6808 317.6714 489.6322
457.4217 506.0392 789.2789 614.3730 667.9060 525.6794 577.8434 660.7788 662.3174
786.9584 692.4998 394.2440 620.8792 574.0483 625.5111 645.6149 416.6729 532.8186
315.0387 505.9545 913.0938 555.2171 697.6005 487.7318 517.7302 780.9798 722.5973
438.3493 224.9290 969.5648 803.2507 709.8106 502.4800 677.4783 625.4303 655.2779
737.5377 629.6030 473.8312 644.3607 592.8375 608.2879 648.8338 446.8877 550.3613
683.7436 881.1676 374.0902 445.8642 570.1100 610.1658 529.7373 538.3509 586.6636
666.5526 556.6381 578.0264 665.9228 617.4808 584.6694 646.8006 493.4669 576.4929
592.7436 1005.7468 380.6415 320.7986 572.2724 593.9451 443.5714 637.9856 631.8910
706.9246 436.5672 612.8578 766.7765 625.2647 587.6894 709.8530 437.4035 552.9436
447.1572 247.9362 948.5101 790.8061 704.8702 506.3099 672.3850 622.2047 652.7857
546.7789 693.5271 602.4203 520.2723 623.9808 561.5745 543.7643 619.6488 634.5648
517.5355 773.8167 581.0825 451.8983 619.2442 558.9562 500.6528 659.0350 651.2634
472.5070 491.3381 784.7275 630.9393 666.7447 528.7518 589.8476 645.3513 655.1400
691.5750 753.0487 441.8941 538.8192 585.7637 603.9957 582.1270 508.2890 576.4591
746.9336 659.1797 448.4396 627.5612 586.8881 612.6979 641.4722 444.3680 547.9734
632.8879 692.0773 528.4148 557.0990 606.2249 584.4273 580.6941 546.6800 598.0287
296.2703 796.5331 760.1868 343.9729 662.3072 501.4577 398.4831 850.0110 746.1676
511.8846 320.3730 850.0619 767.0112 681.6028 528.2268 671.9772 580.8123 629.2752

Biplot type 2: Mean performance vs. stability (colored by genotype)

Biplot type 2: Mean performance for genotype (colored by genotype)

gge_model2 <- gge(df, env, gen, TW, svp = "genotype")
b3 <- plot(gge_model2,type = 2, col.gen = "#00AFBB", col.env = "#FC4E07", axis_expand = 1.5)
b3

Which-won-where (genotypes and environment are coloured)

Discriminativeness vs. representativeness (genotypes and environment are coloured)

Biplot type 5: Examine an environment (genotypes and environment are coloured)

Biplot type 6: Ranking environments (genotypes and environment are coloured)

Examine a genotype (genotypes and environment are coloured)

Ranking genotypes (genotypes and environment are coloured)

## Warning: Removed 2597 rows containing missing values (`geom_arc()`).

Relationship among environments (environment are coloured)

Plot of genotype stability indices (Interpret type III hypotheses with care)

## Warning: Invalid length in 'mresp'. Setting mresp = h to all the 8 variables.
## Warning: Invalid length in 'wresp'. Setting wresp = 65 to all the 8 variables.
## Evaluating trait DTF |=====                                      | 12% 00:00:05 
Evaluating trait DTM |===========                                | 25% 00:00:10 
Evaluating trait PL |================                            | 38% 00:00:15 
Evaluating trait NSP |======================                     | 50% 00:00:20 
Evaluating trait NPP |===========================                | 62% 00:00:25 
Evaluating trait GYP |================================           | 75% 00:00:29 
Evaluating trait GYR |======================================     | 88% 00:00:34 
Evaluating trait TW |============================================| 100% 00:00:39 
## Method: REML/BLUP
## Random effects: GEN, GEN:ENV
## Fixed effects: ENV, REP(ENV)
## Denominador DF: Satterthwaite's method
## ---------------------------------------------------------------------------
## P-values for Likelihood Ratio Test of the analyzed traits
## ---------------------------------------------------------------------------
##     model DTF DTM PL    NSP   NPP   GYP    GYR    TW
##  COMPLETE  NA  NA NA     NA    NA    NA     NA    NA
##       GEN   1   1  1 0.0788 1.000 0.414 0.0369 1.000
##   GEN:ENV   1   1  1 1.0000 0.621 0.365 1.0000 0.691
## ---------------------------------------------------------------------------
## Variables with nonsignificant GxE interaction
## DTF DTM PL NSP NPP GYP GYR TW 
## ---------------------------------------------------------------------------
## The following traits had p-value for GE interaction = 1
## DTM PL NSP GYR 
## WAASBY value for these traits is based on mean performance only (PctResp)
## ---------------------------------------------------------------------------
## Warning: NA values removed to compute the function. Use 'na.rm = TRUE' to
## suppress this warning.

Estimating the WAAS index

The waas() function computes the Weighted Average of Absolute Scores (Olivoto, Lúcio, Da silva, Marchioro, et al. 2019) considering (i) all principal component axes that were significant (p<0.05 by default); or (ii) declaring a specific number of axes to be used

Ranks of genotypes depending on the number of PCA used to estimate the WAAS (type = 2)

## Ranks considering 0 for GY and 100 for WAASB |                   | 1% 00:00:00 
Ranks considering 0 for GY and 100 for WAASB |                   | 1% 00:00:00 
Ranks considering 0 for GY and 100 for WAASB |                   | 2% 00:00:00 
Ranks considering 0 for GY and 100 for WAASB |                   | 2% 00:00:00 
Ranks considering 0 for GY and 100 for WAASB |=                  | 3% 00:00:00 
Ranks considering 0 for GY and 100 for WAASB |=                  | 4% 00:00:00 
Ranks considering 0 for GY and 100 for WAASB |=                  | 4% 00:00:00 
Ranks considering 0 for GY and 100 for WAASB |=                  | 5% 00:00:00 
Ranks considering 5 for GY and 95 for WAASB |=                   | 5% 00:00:00 
Ranks considering 5 for GY and 95 for WAASB |=                   | 6% 00:00:00 
Ranks considering 5 for GY and 95 for WAASB |=                   | 7% 00:00:00 
Ranks considering 5 for GY and 95 for WAASB |=                   | 7% 00:00:00 
Ranks considering 5 for GY and 95 for WAASB |==                  | 8% 00:00:00 
Ranks considering 5 for GY and 95 for WAASB |==                  | 8% 00:00:00 
Ranks considering 5 for GY and 95 for WAASB |==                  | 9% 00:00:00 
Ranks considering 5 for GY and 95 for WAASB |==                  | 10% 00:00:00 
Ranks considering 10 for GY and 90 for WAASB |==                 | 10% 00:00:00 
Ranks considering 10 for GY and 90 for WAASB |==                 | 11% 00:00:00 
Ranks considering 10 for GY and 90 for WAASB |==                 | 11% 00:00:00 
Ranks considering 10 for GY and 90 for WAASB |==                 | 12% 00:00:00 
Ranks considering 10 for GY and 90 for WAASB |==                 | 12% 00:00:00 
Ranks considering 10 for GY and 90 for WAASB |==                 | 13% 00:00:00 
Ranks considering 10 for GY and 90 for WAASB |===                | 14% 00:00:00 
Ranks considering 10 for GY and 90 for WAASB |===                | 14% 00:00:00 
Ranks considering 15 for GY and 85 for WAASB |===                | 15% 00:00:00 
Ranks considering 15 for GY and 85 for WAASB |===                | 15% 00:00:00 
Ranks considering 15 for GY and 85 for WAASB |===                | 16% 00:00:01 
Ranks considering 15 for GY and 85 for WAASB |===                | 17% 00:00:01 
Ranks considering 15 for GY and 85 for WAASB |===                | 17% 00:00:01 
Ranks considering 15 for GY and 85 for WAASB |===                | 18% 00:00:01 
Ranks considering 15 for GY and 85 for WAASB |====               | 18% 00:00:01 
Ranks considering 15 for GY and 85 for WAASB |====               | 19% 00:00:01 
Ranks considering 20 for GY and 80 for WAASB |====               | 20% 00:00:01 
Ranks considering 20 for GY and 80 for WAASB |====               | 20% 00:00:01 
Ranks considering 20 for GY and 80 for WAASB |====               | 21% 00:00:01 
Ranks considering 20 for GY and 80 for WAASB |====               | 21% 00:00:01 
Ranks considering 20 for GY and 80 for WAASB |====               | 22% 00:00:01 
Ranks considering 20 for GY and 80 for WAASB |====               | 23% 00:00:01 
Ranks considering 20 for GY and 80 for WAASB |====               | 23% 00:00:01 
Ranks considering 20 for GY and 80 for WAASB |=====              | 24% 00:00:01 
Ranks considering 25 for GY and 75 for WAASB |=====              | 24% 00:00:01 
Ranks considering 25 for GY and 75 for WAASB |=====              | 25% 00:00:01 
Ranks considering 25 for GY and 75 for WAASB |=====              | 26% 00:00:01 
Ranks considering 25 for GY and 75 for WAASB |=====              | 26% 00:00:01 
Ranks considering 25 for GY and 75 for WAASB |=====              | 27% 00:00:01 
Ranks considering 25 for GY and 75 for WAASB |=====              | 27% 00:00:01 
Ranks considering 25 for GY and 75 for WAASB |=====              | 28% 00:00:01 
Ranks considering 25 for GY and 75 for WAASB |=====              | 29% 00:00:01 
Ranks considering 30 for GY and 70 for WAASB |======             | 29% 00:00:01 
Ranks considering 30 for GY and 70 for WAASB |======             | 30% 00:00:01 
Ranks considering 30 for GY and 70 for WAASB |======             | 30% 00:00:01 
Ranks considering 30 for GY and 70 for WAASB |======             | 31% 00:00:01 
Ranks considering 30 for GY and 70 for WAASB |======             | 32% 00:00:01 
Ranks considering 30 for GY and 70 for WAASB |======             | 32% 00:00:01 
Ranks considering 30 for GY and 70 for WAASB |======             | 33% 00:00:01 
Ranks considering 30 for GY and 70 for WAASB |======             | 33% 00:00:01 
Ranks considering 35 for GY and 65 for WAASB |======             | 34% 00:00:01 
Ranks considering 35 for GY and 65 for WAASB |=======            | 35% 00:00:01 
Ranks considering 35 for GY and 65 for WAASB |=======            | 35% 00:00:01 
Ranks considering 35 for GY and 65 for WAASB |=======            | 36% 00:00:02 
Ranks considering 35 for GY and 65 for WAASB |=======            | 36% 00:00:02 
Ranks considering 35 for GY and 65 for WAASB |=======            | 37% 00:00:02 
Ranks considering 35 for GY and 65 for WAASB |=======            | 38% 00:00:02 
Ranks considering 35 for GY and 65 for WAASB |=======            | 38% 00:00:02 
Ranks considering 40 for GY and 60 for WAASB |=======            | 39% 00:00:02 
Ranks considering 40 for GY and 60 for WAASB |=======            | 39% 00:00:02 
Ranks considering 40 for GY and 60 for WAASB |========           | 40% 00:00:02 
Ranks considering 40 for GY and 60 for WAASB |========           | 40% 00:00:02 
Ranks considering 40 for GY and 60 for WAASB |========           | 41% 00:00:02 
Ranks considering 40 for GY and 60 for WAASB |========           | 42% 00:00:02 
Ranks considering 40 for GY and 60 for WAASB |========           | 42% 00:00:02 
Ranks considering 40 for GY and 60 for WAASB |========           | 43% 00:00:02 
Ranks considering 45 for GY and 55 for WAASB |========           | 43% 00:00:02 
Ranks considering 45 for GY and 55 for WAASB |========           | 44% 00:00:02 
Ranks considering 45 for GY and 55 for WAASB |========           | 45% 00:00:02 
Ranks considering 45 for GY and 55 for WAASB |=========          | 45% 00:00:02 
Ranks considering 45 for GY and 55 for WAASB |=========          | 46% 00:00:02 
Ranks considering 45 for GY and 55 for WAASB |=========          | 46% 00:00:02 
Ranks considering 45 for GY and 55 for WAASB |=========          | 47% 00:00:02 
Ranks considering 45 for GY and 55 for WAASB |=========          | 48% 00:00:02 
Ranks considering 50 for GY and 50 for WAASB |=========          | 48% 00:00:02 
Ranks considering 50 for GY and 50 for WAASB |=========          | 49% 00:00:02 
Ranks considering 50 for GY and 50 for WAASB |=========          | 49% 00:00:02 
Ranks considering 50 for GY and 50 for WAASB |==========         | 50% 00:00:02 
Ranks considering 50 for GY and 50 for WAASB |==========         | 51% 00:00:02 
Ranks considering 50 for GY and 50 for WAASB |==========         | 51% 00:00:02 
Ranks considering 50 for GY and 50 for WAASB |==========         | 52% 00:00:02 
Ranks considering 50 for GY and 50 for WAASB |==========         | 52% 00:00:02 
Ranks considering 55 for GY and 45 for WAASB |==========         | 53% 00:00:02 
Ranks considering 55 for GY and 45 for WAASB |==========         | 54% 00:00:02 
Ranks considering 55 for GY and 45 for WAASB |==========         | 54% 00:00:02 
Ranks considering 55 for GY and 45 for WAASB |==========         | 55% 00:00:02 
Ranks considering 55 for GY and 45 for WAASB |===========        | 55% 00:00:03 
Ranks considering 55 for GY and 45 for WAASB |===========        | 56% 00:00:03 
Ranks considering 55 for GY and 45 for WAASB |===========        | 57% 00:00:03 
Ranks considering 55 for GY and 45 for WAASB |===========        | 57% 00:00:03 
Ranks considering 60 for GY and 40 for WAASB |===========        | 58% 00:00:03 
Ranks considering 60 for GY and 40 for WAASB |===========        | 58% 00:00:03 
Ranks considering 60 for GY and 40 for WAASB |===========        | 59% 00:00:03 
Ranks considering 60 for GY and 40 for WAASB |===========        | 60% 00:00:03 
Ranks considering 60 for GY and 40 for WAASB |===========        | 60% 00:00:03 
Ranks considering 60 for GY and 40 for WAASB |============       | 61% 00:00:03 
Ranks considering 60 for GY and 40 for WAASB |============       | 61% 00:00:03 
Ranks considering 60 for GY and 40 for WAASB |============       | 62% 00:00:03 
Ranks considering 65 for GY and 35 for WAASB |============       | 62% 00:00:03 
Ranks considering 65 for GY and 35 for WAASB |============       | 63% 00:00:03 
Ranks considering 65 for GY and 35 for WAASB |============       | 64% 00:00:03 
Ranks considering 65 for GY and 35 for WAASB |============       | 64% 00:00:03 
Ranks considering 65 for GY and 35 for WAASB |============       | 65% 00:00:03 
Ranks considering 65 for GY and 35 for WAASB |============       | 65% 00:00:03 
Ranks considering 65 for GY and 35 for WAASB |=============      | 66% 00:00:03 
Ranks considering 65 for GY and 35 for WAASB |=============      | 67% 00:00:03 
Ranks considering 70 for GY and 30 for WAASB |=============      | 67% 00:00:03 
Ranks considering 70 for GY and 30 for WAASB |=============      | 68% 00:00:03 
Ranks considering 70 for GY and 30 for WAASB |=============      | 68% 00:00:03 
Ranks considering 70 for GY and 30 for WAASB |=============      | 69% 00:00:03 
Ranks considering 70 for GY and 30 for WAASB |=============      | 70% 00:00:03 
Ranks considering 70 for GY and 30 for WAASB |=============      | 70% 00:00:03 
Ranks considering 70 for GY and 30 for WAASB |=============      | 71% 00:00:03 
Ranks considering 70 for GY and 30 for WAASB |==============     | 71% 00:00:04 
Ranks considering 75 for GY and 25 for WAASB |==============     | 72% 00:00:04 
Ranks considering 75 for GY and 25 for WAASB |==============     | 73% 00:00:04 
Ranks considering 75 for GY and 25 for WAASB |==============     | 73% 00:00:04 
Ranks considering 75 for GY and 25 for WAASB |==============     | 74% 00:00:04 
Ranks considering 75 for GY and 25 for WAASB |==============     | 74% 00:00:04 
Ranks considering 75 for GY and 25 for WAASB |==============     | 75% 00:00:04 
Ranks considering 75 for GY and 25 for WAASB |==============     | 76% 00:00:04 
Ranks considering 75 for GY and 25 for WAASB |==============     | 76% 00:00:04 
Ranks considering 80 for GY and 20 for WAASB |===============    | 77% 00:00:04 
Ranks considering 80 for GY and 20 for WAASB |===============    | 77% 00:00:04 
Ranks considering 80 for GY and 20 for WAASB |===============    | 78% 00:00:04 
Ranks considering 80 for GY and 20 for WAASB |===============    | 79% 00:00:04 
Ranks considering 80 for GY and 20 for WAASB |===============    | 79% 00:00:04 
Ranks considering 80 for GY and 20 for WAASB |===============    | 80% 00:00:04 
Ranks considering 80 for GY and 20 for WAASB |===============    | 80% 00:00:04 
Ranks considering 80 for GY and 20 for WAASB |===============    | 81% 00:00:04 
Ranks considering 85 for GY and 15 for WAASB |===============    | 82% 00:00:04 
Ranks considering 85 for GY and 15 for WAASB |================   | 82% 00:00:04 
Ranks considering 85 for GY and 15 for WAASB |================   | 83% 00:00:04 
Ranks considering 85 for GY and 15 for WAASB |================   | 83% 00:00:04 
Ranks considering 85 for GY and 15 for WAASB |================   | 84% 00:00:04 
Ranks considering 85 for GY and 15 for WAASB |================   | 85% 00:00:04 
Ranks considering 85 for GY and 15 for WAASB |================   | 85% 00:00:04 
Ranks considering 85 for GY and 15 for WAASB |================   | 86% 00:00:04 
Ranks considering 90 for GY and 10 for WAASB |================   | 86% 00:00:04 
Ranks considering 90 for GY and 10 for WAASB |=================  | 87% 00:00:04 
Ranks considering 90 for GY and 10 for WAASB |=================  | 88% 00:00:04 
Ranks considering 90 for GY and 10 for WAASB |=================  | 88% 00:00:04 
Ranks considering 90 for GY and 10 for WAASB |=================  | 89% 00:00:04 
Ranks considering 90 for GY and 10 for WAASB |=================  | 89% 00:00:04 
Ranks considering 90 for GY and 10 for WAASB |=================  | 90% 00:00:04 
Ranks considering 90 for GY and 10 for WAASB |=================  | 90% 00:00:05 
Ranks considering 95 for GY and 5 for WAASB |==================  | 91% 00:00:05 
Ranks considering 95 for GY and 5 for WAASB |==================  | 92% 00:00:05 
Ranks considering 95 for GY and 5 for WAASB |==================  | 92% 00:00:05 
Ranks considering 95 for GY and 5 for WAASB |=================== | 93% 00:00:05 
Ranks considering 95 for GY and 5 for WAASB |=================== | 93% 00:00:05 
Ranks considering 95 for GY and 5 for WAASB |=================== | 94% 00:00:05 
Ranks considering 95 for GY and 5 for WAASB |=================== | 95% 00:00:05 
Ranks considering 95 for GY and 5 for WAASB |=================== | 95% 00:00:05 
Ranks considering 100 for GY and 0 for WAASB |================== | 96% 00:00:05 
Ranks considering 100 for GY and 0 for WAASB |================== | 96% 00:00:05 
Ranks considering 100 for GY and 0 for WAASB |================== | 97% 00:00:05 
Ranks considering 100 for GY and 0 for WAASB |===================| 98% 00:00:05 
Ranks considering 100 for GY and 0 for WAASB |===================| 98% 00:00:05 
Ranks considering 100 for GY and 0 for WAASB |===================| 99% 00:00:05 
Ranks considering 100 for GY and 0 for WAASB |===================| 99% 00:00:05 
Ranks considering 100 for GY and 0 for WAASB |===================| 100% 00:00:05 
## Warning: Vectorized input to `element_text()` is not officially supported.
## ℹ Results may be unexpected or may change in future versions of ggplot2.

Ranks of genotypes depending on the number of PCA used to estimate the WAAS (type = 2)

## Warning: Vectorized input to `element_text()` is not officially supported.
## ℹ Results may be unexpected or may change in future versions of ggplot2.

Compare two genotypes (genotypes and environments coloured)

Heatmap of stability indices by trait

95% CI plot for Pearsons’s correlation coefficient

Path analysis

## --------------------------------------------------------------------------
## The algorithm has selected a set of 6 predictors with largest VIF = 1.006. 
## Selected predictors: DTF GYR PL NPP GYP DTM 
## A forward stepwise-based selection procedure will fit 4 models.
## --------------------------------------------------------------------------
## Adjusting the model 1 with 5 predictors (25% concluded)
## Adjusting the model 2 with 4 predictors (50% concluded)
## Adjusting the model 3 with 3 predictors (75% concluded)
## Adjusting the model 4 with 2 predictors (100% concluded)
## Done!
## --------------------------------------------------------------------------
## Summary of the adjusted models 
## --------------------------------------------------------------------------
##    Model  AIC Numpred   CN Determinant     R2 Residual maxVIF
##  MODEL_1 9189       5 1.15       0.993 0.0114    0.994      1
##  MODEL_2 9188       4 1.10       0.997 0.0109    0.995      1
##  MODEL_3 9186       3 1.06       0.999 0.0101    0.995      1
##  MODEL_4 9185       2 1.01       1.000 0.0083    0.996      1
## --------------------------------------------------------------------------
Model AIC Numpred CN Determinant R2 Residual maxVIF
MODEL_1 9189.465 5 1.145011 0.9930011 0.0113791 0.9942942 1.004274
MODEL_2 9187.774 4 1.098561 0.9972457 0.0109075 0.9945313 1.002017
MODEL_3 9186.297 3 1.055867 0.9992570 0.0101100 0.9949322 1.000711
MODEL_4 9185.483 2 1.011374 0.9999680 0.0082956 0.9958436 1.000032

Eigenvalues

## Weak multicollinearity. 
## Condition Number: 1.286
## You will probably have path coefficients close to being unbiased.
Eigenvalues DTF DTM PL NSP NPP GYP GYR
1.1172115 0.2576760 -0.5266012 0.0722500 0.5700519 0.0634110 -0.5186110 0.2305141
1.0532951 0.3263705 -0.2252058 0.3310816 -0.2937862 -0.0948458 -0.2366140 -0.7627957
1.0348677 -0.2543191 -0.0346701 0.6716048 0.2005871 0.6035551 0.2766074 -0.0451785
1.0180412 0.1736781 -0.4349575 -0.4429163 -0.4133937 0.6304649 0.1138276 0.0559995
0.9819359 0.8378637 0.2146473 0.2179340 0.0007212 -0.0179075 0.3527581 0.2822344
0.9261234 -0.0829918 -0.5807921 -0.0552848 0.2070820 -0.3897801 0.6649460 -0.1255861

Correlation heatmap based on path analysis

Variable contribution to DIM 1 for raw dataset

Variable contribution to DIM 2 for raw dataset

Covariance

## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced

## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced

## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced

## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced
DTF DTM PL NSP NPP
DTF 121.542857 -17.9095238 -0.131619 -11.5531905 25.262571
DTM -17.909524 77.7567460 -5.146294 0.1203492 -43.232952
PL -0.131619 -5.1462937 21.048368 -8.6689387 4.329168
NSP -11.553190 0.1203492 -8.668939 41.9212584 -6.870458
NPP 25.262571 -43.2329524 4.329168 -6.8704576 285.817574

Hierrachical clustering dendrogram 1

## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced

## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced

## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced

## Warning in sqrt((ms[index[i, 1], 3]/NREP) * (ms[index[i, 2], 3]/NREP)): NaNs
## produced

Hierrachical clustering dendrogram (circular)

## Registered S3 method overwritten by 'dendextend':
##   method       from   
##   text.pvclust pvclust
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## ℹ The deprecated feature was likely used in the factoextra package.
##   Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

Hierrachical clustering dendrogram (horizontal)

Qualitative and quantitative visualization 1

Qualitative and quantitative visualization 2