aus_mar <- read_csv("../challenge_datasets/australian_marriage_tidy.csv")
## Rows: 16 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): territory, resp
## dbl (2): count, percent
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
territory_summary <- function(df) {
df %>%
summarize(
total = sum(count),
percent_yes = sum(ifelse(resp=="yes", count, 0)) / total * 100
)
}
# Apply function to each territory
aus_mar %>%
split(.$territory) %>%
map_dfr(territory_summary)
## # A tibble: 8 × 2
## total percent_yes
## <dbl> <dbl>
## 1 236979 74.0
## 2 4111200 57.8
## 3 80376 60.6
## 4 2448075 60.7
## 5 948775 62.5
## 6 301603 63.6
## 7 3306727 64.9
## 8 1257499 63.7
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.