## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
##
## Attaching package: 'kableExtra'
##
##
## The following object is masked from 'package:dplyr':
##
## group_rows
##
##
## Loading required package: carData
##
##
## Attaching package: 'car'
##
##
## The following object is masked from 'package:dplyr':
##
## recode
##
##
## The following object is masked from 'package:purrr':
##
## some
##
##
##
## Attaching package: 'gridExtra'
##
##
## The following object is masked from 'package:dplyr':
##
## combine
##
##
## ------------------------------------------------------------------------------
##
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
##
## ------------------------------------------------------------------------------
##
##
## Attaching package: 'plyr'
##
##
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
##
##
## The following object is masked from 'package:purrr':
##
## compact
##
##
##
## Attaching package: 'magrittr'
##
##
## The following object is masked from 'package:purrr':
##
## set_names
##
##
## The following object is masked from 'package:tidyr':
##
## extract
#PREGUNTA 1. Si la distribución de los datos es asimétrica, ¿qué estadístico(s) emplearías?
#RESPUESTA: Si tengo datos asimétricos, lo más factible es utilizar los estadísticos de medidas de centralidad (media, mediana y moda), posición (máxima, mínima, cuartiles y percentiles) y de dispersión (recorrido, rango intercuartílico, desviación típica y varianza).
#PREGUNTA 2. Cuando los datos presentan potenciales “outliers”, ¿qué estadístico(s) emplearías?
#RESPUESTA: Los datos que presentan potenciales “outliers”, es conveniente utilizar los estadísticos de posición como lo son los cuartiles, deciles y percentiles, que dan valores considerablemente más estables frente a valores extremos.
#PREGUNTA 3. Un boxplot, ¿permite identificar rápidamente la desviación estándar? ¿por qué?
#RESPUESTA: El gráfico boxplot no se puede identificar la desviación estándar, sino que este se centra es mostrar la distribución que tienen los datos a través del rango intercuartílico, mostrando con ello la mediana, primer y tercer cuartil, limites superiores e inferiores y aquellos datos atípicos.
#PREGUNTA 4. ¿Con qué otros nombres podemos referirnos a las variables cualitativas?
#RESPUESTA: A las variables cualitativas también se le nombran como variables categóricas y están medidas en una escala nominal.
#PREGUNTA 5.- Calcula los estadísticos de 1 de las variables numéricas y de 1 de las variables factor. #### NOTA:Para que no salga error se debe cargar siempre las librerias tidyverse, kableExtra , antes de entrar a configurar tablas
| sex | weight | height | repwt | repht |
|---|---|---|---|---|
| M | 77 | 182 | 77 | 180 |
| F | 58 | 161 | 51 | 159 |
| F | 53 | 161 | 54 | 158 |
| M | 68 | 177 | 70 | 175 |
| F | 59 | 157 | 59 | 155 |
| M | 76 | 170 | 76 | 165 |
## 'data.frame': 200 obs. of 5 variables:
## $ sex : Factor w/ 2 levels "F","M": 2 1 1 2 1 2 2 2 2 2 ...
## $ weight: int 77 58 53 68 59 76 76 69 71 65 ...
## $ height: int 182 161 161 177 157 170 167 186 178 171 ...
## $ repwt : int 77 51 54 70 59 76 77 73 71 64 ...
## $ repht : int 180 159 158 175 155 165 165 180 175 170 ...
## 'data.frame': 200 obs. of 5 variables:
## $ sex : Factor w/ 2 levels "F","M": 2 1 1 2 1 2 2 2 2 2 ...
## $ weight: num 77 58 53 68 59 76 76 69 71 65 ...
## $ height: num 182 161 161 177 157 170 167 186 178 171 ...
## $ repwt : num 77 51 54 70 59 76 77 73 71 64 ...
## $ repht : num 180 159 158 175 155 165 165 180 175 170 ...
## [1] 200 5
## 'data.frame': 200 obs. of 5 variables:
## $ sex : Factor w/ 2 levels "F","M": 2 1 1 2 1 2 2 2 2 2 ...
## $ weight: num 77 58 53 68 59 76 76 69 71 65 ...
## $ height: num 182 161 161 177 157 170 167 186 178 171 ...
## $ repwt : num 77 51 54 70 59 76 77 73 71 64 ...
## $ repht : num 180 159 158 175 155 165 165 180 175 170 ...
| sex | weight | height | repwt | repht |
|---|---|---|---|---|
| F | 39 | 157 | 41 | 153 |
| F | 43 | 154 | NA | NA |
| F | 44 | 157 | 44 | 155 |
| F | 45 | 157 | 45 | 153 |
| F | 45 | 163 | 45 | 160 |
| F | 47 | 150 | 45 | 152 |
| F | 47 | 153 | NA | 154 |
| F | 47 | 162 | 47 | 160 |
| F | 47 | 163 | 47 | 160 |
| F | 48 | 163 | 44 | 160 |
| F | 49 | 161 | NA | NA |
| F | 50 | 148 | 47 | 148 |
| F | 50 | 158 | 49 | 155 |
| F | 50 | 160 | 55 | 150 |
| F | 50 | 166 | 50 | 165 |
| F | 50 | 166 | 50 | 161 |
| F | 50 | 169 | 50 | 165 |
| F | 50 | 171 | NA | NA |
| F | 51 | 156 | 51 | 158 |
| F | 51 | 161 | 52 | 158 |
| F | 51 | 163 | 50 | 160 |
| F | 52 | 152 | 51 | 150 |
| F | 52 | 158 | 51 | 155 |
| F | 52 | 159 | 52 | 153 |
| F | 52 | 163 | 57 | 160 |
| F | 52 | 163 | 53 | 160 |
| F | 52 | 164 | 52 | 161 |
| F | 52 | 169 | 56 | NA |
| F | 53 | 158 | 50 | 155 |
| F | 53 | 161 | 54 | 158 |
| F | 53 | 162 | 53 | 160 |
| F | 53 | 162 | 52 | 158 |
| F | 53 | 164 | 51 | 160 |
| F | 53 | 165 | 53 | 165 |
| F | 53 | 165 | 55 | 163 |
| F | 53 | 169 | 52 | 175 |
| F | 54 | 160 | 55 | 158 |
| F | 54 | 161 | 54 | 160 |
| F | 54 | 163 | NA | NA |
| F | 54 | 164 | 53 | 160 |
| M | 54 | 169 | 58 | 165 |
| F | 54 | 171 | 59 | 168 |
| F | 54 | 174 | 56 | 173 |
| F | 54 | 176 | 55 | 176 |
| F | 55 | 155 | NA | 154 |
| F | 55 | 160 | 55 | 155 |
| F | 55 | 162 | NA | NA |
| F | 55 | 164 | 55 | 163 |
| F | 55 | 165 | 54 | 163 |
| F | 55 | 165 | 55 | 163 |
| F | 55 | 165 | 55 | 165 |
| M | 55 | 168 | 56 | 170 |
| F | 55 | 174 | 57 | 171 |
| F | 56 | 160 | 53 | 158 |
| F | 56 | 161 | 56 | 161 |
| F | 56 | 162 | 56 | 160 |
| F | 56 | 163 | 57 | 159 |
| M | 56 | 163 | 58 | 161 |
| F | 56 | 165 | 57 | 163 |
| F | 56 | 165 | 57 | 160 |
| F | 56 | 166 | 54 | 165 |
| F | 56 | 170 | 56 | 170 |
| F | 57 | 162 | 56 | 160 |
| F | 57 | 163 | 59 | 160 |
| F | 57 | 167 | 55 | 164 |
| F | 57 | 167 | 56 | 165 |
| F | 57 | 168 | 58 | 165 |
| M | 57 | 173 | 58 | 170 |
| F | 58 | 161 | 51 | 159 |
| F | 58 | 166 | 60 | 160 |
| F | 58 | 169 | NA | NA |
| F | 58 | 169 | 54 | 166 |
| F | 59 | 157 | 59 | 155 |
| F | 59 | 157 | 55 | 158 |
| F | 59 | 159 | 59 | 155 |
| F | 59 | 164 | 59 | 165 |
| F | 59 | 166 | 55 | 163 |
| F | 59 | 170 | NA | NA |
| F | 59 | 172 | 58 | 171 |
| M | 59 | 182 | 61 | 183 |
| F | 60 | 162 | 59 | 160 |
| F | 60 | 167 | 55 | 163 |
| F | 60 | 172 | 55 | 168 |
| F | 60 | 174 | NA | NA |
| F | 61 | 165 | 60 | 163 |
| F | 61 | 170 | 61 | 170 |
| M | 61 | 170 | 61 | 170 |
| F | 61 | 175 | 61 | 171 |
| F | 62 | 164 | 61 | 161 |
| F | 62 | 166 | 61 | 163 |
| F | 62 | 167 | NA | NA |
| F | 62 | 168 | 62 | 165 |
| F | 62 | 168 | 62 | 163 |
| M | 62 | 168 | 64 | 168 |
| F | 62 | 175 | 61 | 171 |
| F | 62 | 175 | 63 | 173 |
| M | 62 | 178 | 66 | 175 |
| F | 63 | 160 | 64 | 158 |
| F | 63 | 163 | 59 | 159 |
| F | 63 | 165 | 59 | 160 |
| F | 63 | 169 | 61 | 168 |
| F | 63 | 170 | 62 | 168 |
| M | 63 | 178 | 63 | 175 |
| F | 64 | 164 | 62 | 161 |
| F | 64 | 165 | 63 | 163 |
| F | 64 | 166 | 64 | 165 |
| F | 64 | 168 | 64 | 165 |
| F | 64 | 171 | 66 | 171 |
| F | 64 | 172 | 62 | 168 |
| M | 64 | 176 | 65 | 175 |
| M | 64 | 177 | NA | NA |
| F | 65 | 166 | 66 | 165 |
| M | 65 | 171 | 64 | 170 |
| M | 65 | 175 | 66 | 173 |
| M | 65 | 176 | 64 | 172 |
| M | 65 | 178 | 66 | 178 |
| M | 65 | 187 | 67 | 188 |
| F | 66 | 166 | 66 | 165 |
| F | 66 | 170 | 65 | NA |
| M | 66 | 170 | 67 | 165 |
| M | 66 | 173 | 70 | 170 |
| M | 66 | 173 | 66 | 175 |
| M | 66 | 175 | 68 | 175 |
| M | 67 | 179 | 67 | 179 |
| M | 67 | 179 | NA | NA |
| M | 68 | 165 | 69 | 165 |
| F | 68 | 169 | 63 | 170 |
| F | 68 | 171 | 68 | 169 |
| M | 68 | 174 | 68 | 173 |
| M | 68 | 177 | 70 | 175 |
| F | 68 | 178 | 68 | 175 |
| M | 69 | 167 | 73 | 165 |
| M | 69 | 172 | 68 | 174 |
| M | 69 | 174 | 69 | 171 |
| M | 69 | 180 | 71 | 180 |
| M | 69 | 182 | 70 | 180 |
| M | 69 | 183 | 70 | 183 |
| M | 69 | 186 | 73 | 180 |
| M | 70 | 173 | 68 | 170 |
| F | 70 | 173 | 67 | 170 |
| M | 70 | 173 | 70 | 173 |
| M | 70 | 175 | 75 | 174 |
| F | 71 | 166 | 71 | 165 |
| M | 71 | 177 | 71 | 170 |
| M | 71 | 178 | 71 | 175 |
| M | 71 | 178 | 68 | 178 |
| M | 71 | 180 | 76 | 175 |
| M | 73 | 180 | NA | NA |
| M | 73 | 183 | 74 | 180 |
| M | 74 | 169 | 73 | 170 |
| M | 74 | 175 | 71 | 175 |
| F | 75 | 162 | 75 | 158 |
| M | 75 | 169 | 76 | 165 |
| M | 75 | 172 | 70 | 169 |
| M | 75 | 178 | 73 | 175 |
| M | 76 | 167 | 77 | 165 |
| F | 76 | 167 | 77 | 165 |
| M | 76 | 169 | 75 | 165 |
| M | 76 | 170 | 76 | 165 |
| M | 76 | 183 | 75 | 180 |
| M | 76 | 197 | 75 | 200 |
| M | 77 | 182 | 77 | 180 |
| F | 78 | 173 | 75 | 169 |
| M | 78 | 178 | 77 | 175 |
| M | 78 | 183 | 80 | 180 |
| M | 79 | 173 | 76 | 173 |
| M | 79 | 177 | 81 | 178 |
| M | 79 | 179 | 79 | 171 |
| M | 80 | 176 | 78 | 175 |
| M | 80 | 178 | 80 | 178 |
| M | 80 | 178 | 76 | 175 |
| M | 81 | 175 | NA | NA |
| M | 81 | 178 | 82 | 175 |
| M | 82 | 176 | NA | NA |
| M | 82 | 181 | NA | NA |
| M | 82 | 182 | 85 | 183 |
| M | 83 | 177 | 84 | 175 |
| M | 83 | 180 | 80 | 180 |
| M | 83 | 184 | 83 | 181 |
| M | 84 | 183 | 90 | 183 |
| M | 84 | 184 | 86 | 183 |
| M | 85 | 179 | 82 | 175 |
| M | 85 | 191 | 83 | 188 |
| M | 87 | 185 | 89 | 185 |
| M | 88 | 178 | 86 | 175 |
| M | 88 | 184 | 86 | 183 |
| M | 88 | 185 | 93 | 188 |
| M | 88 | 189 | 87 | 185 |
| M | 89 | 173 | 86 | 173 |
| M | 90 | 181 | 91 | 178 |
| M | 90 | 188 | 91 | 185 |
| M | 92 | 187 | 101 | 185 |
| M | 96 | 184 | 94 | 183 |
| M | 96 | 191 | 95 | 188 |
| M | 97 | 189 | 98 | 185 |
| M | 101 | 183 | 100 | 180 |
| M | 102 | 185 | 107 | 185 |
| M | 103 | 185 | 101 | 182 |
| M | 119 | 180 | 124 | 178 |
| F | 166 | 57 | 56 | 163 |
## sex
## F:112
## M: 88
## weight height repwt repht
## Min. : 39.0 Min. : 57.0 Min. : 41.00 Min. :148.0
## 1st Qu.: 55.0 1st Qu.:164.0 1st Qu.: 55.00 1st Qu.:160.5
## Median : 63.0 Median :169.5 Median : 63.00 Median :168.0
## Mean : 65.8 Mean :170.0 Mean : 65.62 Mean :168.5
## 3rd Qu.: 74.0 3rd Qu.:177.2 3rd Qu.: 73.50 3rd Qu.:175.0
## Max. :166.0 Max. :197.0 Max. :124.00 Max. :200.0
## NA's :17 NA's :17
## [1] ">1 mode"
## Registered S3 method overwritten by 'rmutil':
## method from
## print.response httr
## [1] 55 56 62
## weight
## 39 43 44 45 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
## 1 1 1 2 4 1 1 7 3 7 8 8 9 9 6 4 8 4 4 9
## 63 64 65 66 67 68 69 70 71 73 74 75 76 77 78 79 80 81 82 83
## 6 8 6 6 2 6 7 4 5 2 2 4 6 1 3 3 3 2 3 3
## 84 85 87 88 89 90 92 96 97 101 102 103 119 166
## 2 2 1 4 1 2 1 2 1 1 1 1 1 1
## [1] 65.8
## [1] 63
## [1] "178"
## [1] 178
## height
## 57 148 150 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
## 1 1 1 1 1 1 1 1 5 3 2 5 6 8 11 7 11 10 7 6
## 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
## 11 8 5 5 9 5 8 5 5 12 4 5 2 4 6 4 4 1 2 1
## 189 191 197
## 2 2 1
## [1] 170.02
## [1] 169.5
##
## Attaching package: 'plotly'
## The following objects are masked from 'package:plyr':
##
## arrange, mutate, rename, summarise
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
## [1] 166 119 103