prevUseAT <- read_csv("Prev_Use_AT.csv")
## Rows: 1430 Columns: 34
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (15): IndicatorCode, Indicator, ValueType, ParentLocationCode, ParentLo...
## dbl (3): Period, FactValueNumeric, FactValueTranslationID
## lgl (15): IsLatestYear, Dim2 type, Dim2, Dim2ValueCode, Dim3 type, Dim3, Di...
## dttm (1): DateModified
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(prevUseAT)
## # A tibble: 6 × 34
## IndicatorCode Indicator ValueType ParentLocationCode ParentLocation
## <chr> <chr> <chr> <chr> <chr>
## 1 ASSISTIVETECH_USEPREVAL… Prevalen… numeric EUR Europe
## 2 ASSISTIVETECH_USEPREVAL… Prevalen… numeric EUR Europe
## 3 ASSISTIVETECH_USEPREVAL… Prevalen… numeric EUR Europe
## 4 ASSISTIVETECH_USEPREVAL… Prevalen… numeric EUR Europe
## 5 ASSISTIVETECH_USEPREVAL… Prevalen… numeric EUR Europe
## 6 ASSISTIVETECH_USEPREVAL… Prevalen… numeric EUR Europe
## # ℹ 29 more variables: `Location type` <chr>, SpatialDimValueCode <chr>,
## # Location <chr>, `Period type` <chr>, Period <dbl>, IsLatestYear <lgl>,
## # `Dim1 type` <chr>, Dim1 <chr>, Dim1ValueCode <chr>, `Dim2 type` <lgl>,
## # Dim2 <lgl>, Dim2ValueCode <lgl>, `Dim3 type` <lgl>, Dim3 <lgl>,
## # Dim3ValueCode <lgl>, DataSourceDimValueCode <lgl>, DataSource <lgl>,
## # FactValueNumericPrefix <lgl>, FactValueNumeric <dbl>, FactValueUoM <lgl>,
## # FactValueNumericLowPrefix <lgl>, FactValueNumericLow <lgl>, …
There are many different assistive technology (AT) types and I only want to look at different subsets. Rather than filtering out a long list of different ATs every time I am modifying my data frame, I will make it a function to apply when needed
#select vision AT
visionAT <- function(data) {
filteredForVisionAT <- data %>%
filter(Dim1 %in% c(
"Braille displays (note takers)",
"Braille writing equipment/braillers",
"Deafblind communicators (for seeing/vision)",
"Magnifiers, digital handheld",
"Smart phones/tablets/PDA (for seeing/vision)",
"White canes",
"Screen readers",
"Magnifiers, optical",
"Spectacles; low-vision, short/long distance/filters etc"
))
return(filteredForVisionAT)
}
#select hearing AT
hearingAT <- function(data) {
filteredForHearingAT <- data %>%
filter(Dim1 %in% c(
"Alarm signalers with light/sound/vibration",
"Audio-players with DAISY capability",
"Closed captioning displays",
"Communication boards/books/cards",
"Communication software",
"Deafblind communicators (for hearing)",
"Deafblind communicators (for seeing/vision)",
"Gesture to voice technology",
"Smart phones/tablets/PDA (for hearing)",
"Hearing aids (digital) and batteries",
"Hearing loops/FM systems"
))
return(filteredForHearingAT)
}
prevUseATEuro <- prevUseAT %>%
filter(ParentLocation == 'Europe')
#filtering a data frame to just look at vision AT
prevUseATEuroVision <- visionAT(prevUseATEuro)
#filtering a data frame to just look at vision AT
prevUseATEuroHearing <- hearingAT(prevUseATEuro)
#next steps could include summarising the data specifically for vision and then specifically for hearing, etc. and join them back together to compare them.