library(readxl)
covid2022G7 <- read_excel("covid2022G7.xlsx")
head(covid2022G7)
## # A tibble: 6 × 11
## year iso_code location total_cases total_deaths total_cases_per_million
## <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2022 CAN Canada 3901597 41311 101461.
## 2 2022 DEU Germany 25033970 135942 300276.
## 3 2022 FRA France 27217194 143694 401357.
## 4 2022 GBR United Kingdom 24024746 212296 355875.
## 5 2022 ITA Italy 16954784 164976 287187.
## 6 2022 JPN Japan 2682767 18767 21644.
## # ℹ 5 more variables: total_deaths_per_million <dbl>, aged_65_older <dbl>,
## # gdp_per_capita <dbl>, hospital_beds_per_thousand <dbl>,
## # life_expectancy <dbl>
barplot(covid2022G7$total_deaths,names.arg = covid2022G7$iso_code)
library(readxl)
covid2022 <- read_excel("covid2022.xlsx")
hist(covid2022$total_deaths_per_million)
hist(covid2022$gdp_per_capita)
hist(covid2022$total_cases)
#回帰分析
ols<-lm(covid2022$total_deaths_per_million~covid2022$aged_65_older)
summary(ols)
##
## Call:
## lm(formula = covid2022$total_deaths_per_million ~ covid2022$aged_65_older)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3118.5 -494.6 -293.0 483.0 5222.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 82.03 126.53 0.648 0.518
## covid2022$aged_65_older 124.98 11.94 10.466 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 997.9 on 184 degrees of freedom
## (42 observations deleted due to missingness)
## Multiple R-squared: 0.3731, Adjusted R-squared: 0.3697
## F-statistic: 109.5 on 1 and 184 DF, p-value: < 2.2e-16
#散布図
plot(covid2022$aged_65_older,covid2022$total_deaths_per_million)
#散布図に回帰直線加える
abline(ols)
library(readr)
deaths_cumulative_daily <- read_csv("deaths_cumulative_daily.csv")
## Rows: 943 Columns: 49
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Date
## dbl (48): ALL, Hokkaido, Aomori, Iwate, Miyagi, Akita, Yamagata, Fukushima, ...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(deaths_cumulative_daily)
## # A tibble: 6 × 49
## Date ALL Hokkaido Aomori Iwate Miyagi Akita Yamagata Fukushima Ibaraki
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2020/5/9 613 48 0 0 1 0 0 0 9
## 2 2020/5/10 621 51 0 0 1 0 0 0 9
## 3 2020/5/11 643 56 0 0 1 0 0 0 9
## 4 2020/5/12 668 62 0 0 1 0 0 0 9
## 5 2020/5/13 687 68 0 0 1 0 0 0 9
## 6 2020/5/14 710 70 0 0 1 0 0 0 9
## # ℹ 39 more variables: Tochigi <dbl>, Gunma <dbl>, Saitama <dbl>, Chiba <dbl>,
## # Tokyo <dbl>, Kanagawa <dbl>, Niigata <dbl>, Toyama <dbl>, Ishikawa <dbl>,
## # Fukui <dbl>, Yamanashi <dbl>, Nagano <dbl>, Gifu <dbl>, Shizuoka <dbl>,
## # Aichi <dbl>, Mie <dbl>, Shiga <dbl>, Kyoto <dbl>, Osaka <dbl>, Hyogo <dbl>,
## # Nara <dbl>, Wakayama <dbl>, Tottori <dbl>, Shimane <dbl>, Okayama <dbl>,
## # Hiroshima <dbl>, Yamaguchi <dbl>, Tokushima <dbl>, Kagawa <dbl>,
## # Ehime <dbl>, Kochi <dbl>, Fukuoka <dbl>, Saga <dbl>, Nagasaki <dbl>, …
#データの観測数
dim(deaths_cumulative_daily)
## [1] 943 49
nrow(deaths_cumulative_daily)
## [1] 943
death<-subset(deaths_cumulative_daily,deaths_cumulative_daily$Date=="2022/12/7"|deaths_cumulative_daily$Date=="2021/12/31"|deaths_cumulative_daily$Date=="2020/12/31")
head(death)
## # A tibble: 3 × 49
## Date ALL Hokkaido Aomori Iwate Miyagi Akita Yamagata Fukushima Ibaraki
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2020/12/31 3459 453 8 24 16 1 6 20 36
## 2 2021/12/31 18385 1475 38 53 118 27 56 176 220
## 3 2022/12/7 50819 3476 423 291 554 337 268 365 817
## # ℹ 39 more variables: Tochigi <dbl>, Gunma <dbl>, Saitama <dbl>, Chiba <dbl>,
## # Tokyo <dbl>, Kanagawa <dbl>, Niigata <dbl>, Toyama <dbl>, Ishikawa <dbl>,
## # Fukui <dbl>, Yamanashi <dbl>, Nagano <dbl>, Gifu <dbl>, Shizuoka <dbl>,
## # Aichi <dbl>, Mie <dbl>, Shiga <dbl>, Kyoto <dbl>, Osaka <dbl>, Hyogo <dbl>,
## # Nara <dbl>, Wakayama <dbl>, Tottori <dbl>, Shimane <dbl>, Okayama <dbl>,
## # Hiroshima <dbl>, Yamaguchi <dbl>, Tokushima <dbl>, Kagawa <dbl>,
## # Ehime <dbl>, Kochi <dbl>, Fukuoka <dbl>, Saga <dbl>, Nagasaki <dbl>, …
library(tidyr)
names(death) <- paste0("pref_",names(death))
death$date<-death$pref_Date
death$pref_Date<-NULL
deathlong<-pivot_longer(death, starts_with("pref_"), names_to = "pref", values_to = "death")
deathlong<-subset(deathlong,pref!="pref_ALL")
library(stringr)
deathlong$pref2<-str_sub(deathlong$pref,6,20)
summary(deathlong)
## date pref death pref2
## Length:141 Length:141 Min. : 0.0 Length:141
## Class :character Class :character 1st Qu.: 30.0 Class :character
## Mode :character Mode :character Median : 136.0 Mode :character
## Mean : 515.3
## 3rd Qu.: 453.0
## Max. :6793.0
head(deathlong)
## # A tibble: 6 × 4
## date pref death pref2
## <chr> <chr> <dbl> <chr>
## 1 2020/12/31 pref_Hokkaido 453 Hokkaido
## 2 2020/12/31 pref_Aomori 8 Aomori
## 3 2020/12/31 pref_Iwate 24 Iwate
## 4 2020/12/31 pref_Miyagi 16 Miyagi
## 5 2020/12/31 pref_Akita 1 Akita
## 6 2020/12/31 pref_Yamagata 6 Yamagata
library(readxl)
covid <- read_excel("covid.xlsx")
plot(covid$total_cases,covid$total_deaths)
library(readxl)
covid <- read_excel("covid.xlsx")
result<-lm(total_deaths~total_cases,data = covid)
summary(result)
##
## Call:
## lm(formula = total_deaths ~ total_cases, data = covid)
##
## Residuals:
## Min 1Q Median 3Q Max
## -179516 -45731 150 41216 328532
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.670e+04 5.107e+04 -0.914 0.379
## total_cases 1.202e-02 1.623e-03 7.406 8.2e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 133600 on 12 degrees of freedom
## Multiple R-squared: 0.8205, Adjusted R-squared: 0.8056
## F-statistic: 54.86 on 1 and 12 DF, p-value: 8.203e-06
plot(covid$total_cases,covid$total_deaths)
abline(result)
上記で、グラフを作成。
ネットの状態により接続が不安定で、うまく行かないことある。
dataはOur World in Data より: https://ourworldindata.org/coronavirus https://github.com/owid/covid-19-data/tree/master/public/data
library(readxl)
covid <- read_excel("covid.xlsx")
df<-covid
## You can use the below code to generate the graph.
## Don't forget to replace the 'df' with the name
## of your dataframe
# You need the following package(s):
library("ggplot2")
# The code below will generate the graph:
graph <- ggplot(df, aes(x = total_cases, y = total_deaths, colour = iso_code)) +
geom_point() +
theme_bw()
graph
# If you want the plot to be interactive,
# you need the following package(s):
library("plotly")
ggplotly(graph)
# If you would like to save your graph, you can use:
ggsave('my_graph.pdf', graph, width = 14, height = 14, units = 'cm')
library(readxl)
covid <- read_excel("covid.xlsx")
covid$cfr<-covid$total_deaths/covid$total_cases
# las = 2によりx軸のラベルを90度回転。
# cex.names = 0.80によりx軸のラベルを小さく。
barplot(covid$cfr,names.arg = covid$iso_code,cex.names = 0.80,las=2)
result<-lm(cfr~gdp_per_capita,data=covid)
summary(result)
##
## Call:
## lm(formula = cfr ~ gdp_per_capita, data = covid)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.007992 -0.004165 -0.001411 0.003943 0.010690
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.823e-02 4.014e-03 4.542 0.000675 ***
## gdp_per_capita -2.848e-07 1.095e-07 -2.602 0.023148 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.006014 on 12 degrees of freedom
## Multiple R-squared: 0.3607, Adjusted R-squared: 0.3074
## F-statistic: 6.769 on 1 and 12 DF, p-value: 0.02315
plot(covid$gdp_per_capita,covid$cfr)
abline(result)