---
title: "data dive week 2"
output: html_document
---

Load your dataset

data <- read.csv("C:\\Users\\SHREYA\\OneDrive\\Documents\\Gitstuff\\modified_dataset.csv")

Numeric Summary for Column 1

summary_col1 <- summary(data$cocoa_percent) 
print(summary_col1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.4200  0.7000  0.7000  0.7164  0.7400  1.0000

Numeric Summary for Column 2

summary_col2 <- summary(data$rating)
print(summary_col2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   3.000   3.250   3.196   3.500   4.000

Categorical Summary for Column 3

unique_values_col3 <- unique(data$ingredients)
count_values_col3 <- table(data$ingredients)
print(unique_values_col3)
##  [1] "3- B,S,C"       "4- B,S,C,L"     "2- B,S"         "4- B,S,C,V"    
##  [5] "5- B,S,C,V,L"   "6-B,S,C,V,L,Sa" "5-B,S,C,V,Sa"   ""              
##  [9] "4- B,S,V,L"     "2- B,S*"        "1- B"           "3- B,S*,C"     
## [13] "3- B,S,L"       "3- B,S,V"       "4- B,S*,C,L"    "4- B,S*,C,Sa"  
## [17] "3- B,S*,Sa"     "4- B,S,C,Sa"    "4- B,S*,V,L"    "2- B,C"        
## [21] "4- B,S*,C,V"    "5- B,S,C,L,Sa"
print(count_values_col3)
## 
##                          1- B         2- B,C         2- B,S        2- B,S* 
##             87              6              1            718             31 
##      3- B,S*,C     3- B,S*,Sa       3- B,S,C       3- B,S,L       3- B,S,V 
##             12              1            999              8              3 
##    4- B,S*,C,L   4- B,S*,C,Sa    4- B,S*,C,V    4- B,S*,V,L     4- B,S,C,L 
##              2             20              7              3            286 
##    4- B,S,C,Sa     4- B,S,C,V     4- B,S,V,L  5- B,S,C,L,Sa   5- B,S,C,V,L 
##              5            141              5              1            184 
##   5-B,S,C,V,Sa 6-B,S,C,V,L,Sa 
##              6              4