#Đọc dữ liệu và gán vào object "hnd"
library(xlsx)
hnd <- read.xlsx("D:/naaaaaa/NNLT_ST2/data trong bài MP05 của Fullright.xlsx", sheetIndex = 1, header = T)
#Kiểm tra xem có phải là khung dữ liệu hay không. Nếu đúng hiển thị True và ngược lại
is.data.frame(hnd)
## [1] TRUE
#Hiển thị số cột
length(hnd)
## [1] 7
#Hiện thị tên của các cột
names(hnd)
## [1] "STT" "Năm" "CÔNG.TY" "Y" "X2" "X3" "NA."
#Hiển thị số hàng và số cột
dim(hnd)
## [1] 80 7
#Hiển thị 10 dòng đầu tiên của bộ dữ liệu
head(hnd,10)
## STT Năm CÔNG.TY Y X2 X3 NA.
## 1 1 1935 GE 33.1 1170.6 97.8 NA
## 2 2 1936 GE 45.0 2015.8 104.4 NA
## 3 3 1937 GE 77.2 2803.3 118.0 NA
## 4 4 1938 GE 44.6 2039.7 156.2 NA
## 5 5 1939 GE 48.1 2256.2 172.6 NA
## 6 6 1940 GE 74.4 2132.2 186.6 NA
## 7 7 1941 GE 113.0 1834.1 220.9 NA
## 8 8 1942 GE 91.9 1588.0 287.8 NA
## 9 9 1943 GE 61.3 1749.4 319.9 NA
## 10 10 1944 GE 56.8 1687.2 321.3 NA
#Hiển thị 10 dòng cuối cùng của bộ dữ liệu
tail(hnd,10)
## STT Năm CÔNG.TY Y X2 X3 NA.
## 71 71 1945 WEST 39.27 737.2 92.4 NA
## 72 72 1946 WEST 53.46 760.5 86.0 NA
## 73 73 1947 WEST 55.56 581.4 111.1 NA
## 74 74 1948 WEST 49.56 662.3 130.6 NA
## 75 75 1949 WEST 32.04 583.8 141.8 NA
## 76 76 1950 WEST 32.24 635.2 136.7 NA
## 77 77 1951 WEST 54.38 732.8 129.7 NA
## 78 78 1952 WEST 71.78 864.1 145.5 NA
## 79 79 1953 WEST 90.08 1193.5 174.8 NA
## 80 80 1954 WEST 68.60 1188.9 213.5 NA
#Hiển thị cấu trúc của bộ dữ liệu
str(hnd)
## 'data.frame': 80 obs. of 7 variables:
## $ STT : num 1 2 3 4 5 6 7 8 9 10 ...
## $ Năm : num 1935 1936 1937 1938 1939 ...
## $ CÔNG.TY: chr "GE" "GE" "GE" "GE" ...
## $ Y : num 33.1 45 77.2 44.6 48.1 74.4 113 91.9 61.3 56.8 ...
## $ X2 : num 1171 2016 2803 2040 2256 ...
## $ X3 : num 97.8 104.4 118 156.2 172.6 ...
## $ NA. : logi NA NA NA NA NA NA ...
#Kiểm tra ô trống của bộ dữ liệu. Nếu có dữ liệu thì FALSE và ngược lại
is.na(hnd)
## STT Năm CÔNG.TY Y X2 X3 NA.
## [1,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [2,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [3,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [4,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [5,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [6,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [7,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [8,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [9,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [10,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [11,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [12,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [13,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [14,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [15,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [16,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [17,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [18,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [19,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [20,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [21,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [22,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [23,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [24,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [25,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [26,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [27,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [28,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [29,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [30,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [31,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [32,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [33,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [34,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [35,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [36,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [37,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [38,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [39,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [40,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [41,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [42,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [43,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [44,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [45,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [46,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [47,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [48,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [49,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [50,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [51,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [52,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [53,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [54,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [55,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [56,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [57,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [58,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [59,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [60,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [61,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [62,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [63,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [64,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [65,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [66,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [67,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [68,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [69,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [70,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [71,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [72,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [73,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [74,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [75,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [76,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [77,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [78,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [79,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [80,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
#Tính tổng ô trống của bộ dữ liệu
sum(is.na(hnd))
## [1] 80
#Hiển thị vị trí của các ô trống
which(is.na(hnd))
## [1] 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
## [20] 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
## [39] 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
## [58] 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
## [77] 557 558 559 560
#Đổi tên cho các biến của bộ dữ liệu
names(hnd) <- c('A','S','D','F','G','H','J')
names(hnd)
## [1] "A" "S" "D" "F" "G" "H" "J"
# Gán a1 là dữ liệu hàng 1 cột 2
a1 <- hnd[1,2]
a1
## [1] 1935
# Gán a2 là dữ liệu hàng tùy ý của cột 2
a2 <- hnd[,2]
a2
## [1] 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
## [16] 1950 1951 1952 1953 1954 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
## [31] 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1935 1936 1937 1938 1939
## [46] 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
## [61] 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
## [76] 1950 1951 1952 1953 1954
# Gán a3 là dữ liệu hàng 1,2,3 cột 2
a3 <- hnd[c(1,2,3),2]
a3
## [1] 1935 1936 1937
# Gán a4 là dữ liệu hàng tùy ý lớn hơn 1939 cột tùy ý
a4 <- hnd[hnd$S >=1939,]
a4
## A S D F G H J
## 5 5 1939 GE 48.10 2256.2 172.6 NA
## 6 6 1940 GE 74.40 2132.2 186.6 NA
## 7 7 1941 GE 113.00 1834.1 220.9 NA
## 8 8 1942 GE 91.90 1588.0 287.8 NA
## 9 9 1943 GE 61.30 1749.4 319.9 NA
## 10 10 1944 GE 56.80 1687.2 321.3 NA
## 11 11 1945 GE 93.60 2007.7 319.6 NA
## 12 12 1946 GE 159.90 2208.3 346.0 NA
## 13 13 1947 GE 147.20 1656.7 456.4 NA
## 14 14 1948 GE 146.30 1604.4 543.4 NA
## 15 15 1949 GE 98.30 1431.8 618.3 NA
## 16 16 1950 GE 93.50 1610.5 647.4 NA
## 17 17 1951 GE 135.20 1819.4 671.3 NA
## 18 18 1952 GE 157.30 2079.7 726.1 NA
## 19 19 1953 GE 179.50 2371.6 800.3 NA
## 20 20 1954 GE 189.60 2759.9 888.9 NA
## 25 25 1939 US 230.40 1957.3 312.7 NA
## 26 26 1940 US 361.60 2202.9 254.2 NA
## 27 27 1941 US 472.80 2380.5 261.4 NA
## 28 28 1942 US 445.60 2168.6 298.7 NA
## 29 29 1943 US 361.60 1985.1 301.8 NA
## 30 30 1944 US 288.20 1813.9 279.1 NA
## 31 31 1945 US 258.70 1850.2 213.8 NA
## 32 32 1946 US 420.30 2067.7 232.6 NA
## 33 33 1947 US 420.50 1796.3 264.8 NA
## 34 34 1948 US 494.50 1625.8 306.9 NA
## 35 35 1949 US 405.10 1667.0 351.1 NA
## 36 36 1950 US 418.80 1677.4 357.8 NA
## 37 37 1951 US 588.20 2289.5 341.1 NA
## 38 38 1952 US 645.20 2159.4 444.2 NA
## 39 39 1953 US 641.00 2031.3 623.6 NA
## 40 40 1954 US 459.30 2115.5 669.7 NA
## 45 45 1939 GM 330.80 4313.2 203.4 NA
## 46 46 1940 GM 461.20 4643.9 207.2 NA
## 47 47 1941 GM 512.00 4551.2 255.2 NA
## 48 48 1942 GM 448.00 3244.1 303.7 NA
## 49 49 1943 GM 499.60 4053.7 264.1 NA
## 50 50 1944 GM 547.50 4379.3 201.6 NA
## 51 51 1945 GM 561.20 4840.9 265.0 NA
## 52 52 1946 GM 688.10 4900.0 402.0 NA
## 53 53 1947 GM 568.90 3526.5 761.5 NA
## 54 54 1948 GM 529.20 3245.7 922.4 NA
## 55 55 1949 GM 555.10 3700.2 1020.1 NA
## 56 56 1950 GM 642.90 3755.6 1099.0 NA
## 57 57 1951 GM 755.90 4833.0 1207.7 NA
## 58 58 1952 GM 891.20 4926.9 1430.5 NA
## 59 59 1953 GM 1304.40 6241.7 1777.3 NA
## 60 60 1954 GM 1486.70 5593.6 226.3 NA
## 65 65 1939 WEST 18.84 519.9 23.5 NA
## 66 66 1940 WEST 28.57 628.5 26.5 NA
## 67 67 1941 WEST 48.51 537.1 36.2 NA
## 68 68 1942 WEST 43.34 561.2 60.8 NA
## 69 69 1943 WEST 37.02 617.2 84.4 NA
## 70 70 1944 WEST 37.81 626.7 91.2 NA
## 71 71 1945 WEST 39.27 737.2 92.4 NA
## 72 72 1946 WEST 53.46 760.5 86.0 NA
## 73 73 1947 WEST 55.56 581.4 111.1 NA
## 74 74 1948 WEST 49.56 662.3 130.6 NA
## 75 75 1949 WEST 32.04 583.8 141.8 NA
## 76 76 1950 WEST 32.24 635.2 136.7 NA
## 77 77 1951 WEST 54.38 732.8 129.7 NA
## 78 78 1952 WEST 71.78 864.1 145.5 NA
## 79 79 1953 WEST 90.08 1193.5 174.8 NA
## 80 80 1954 WEST 68.60 1188.9 213.5 NA
# Gán a5 là dữ liệu hàng tùy ý lớn hơn 1939 và bé hơn 1946
a5 <- hnd[hnd$S >=1939 & hnd$S <=1946,]
a5
## A S D F G H J
## 5 5 1939 GE 48.10 2256.2 172.6 NA
## 6 6 1940 GE 74.40 2132.2 186.6 NA
## 7 7 1941 GE 113.00 1834.1 220.9 NA
## 8 8 1942 GE 91.90 1588.0 287.8 NA
## 9 9 1943 GE 61.30 1749.4 319.9 NA
## 10 10 1944 GE 56.80 1687.2 321.3 NA
## 11 11 1945 GE 93.60 2007.7 319.6 NA
## 12 12 1946 GE 159.90 2208.3 346.0 NA
## 25 25 1939 US 230.40 1957.3 312.7 NA
## 26 26 1940 US 361.60 2202.9 254.2 NA
## 27 27 1941 US 472.80 2380.5 261.4 NA
## 28 28 1942 US 445.60 2168.6 298.7 NA
## 29 29 1943 US 361.60 1985.1 301.8 NA
## 30 30 1944 US 288.20 1813.9 279.1 NA
## 31 31 1945 US 258.70 1850.2 213.8 NA
## 32 32 1946 US 420.30 2067.7 232.6 NA
## 45 45 1939 GM 330.80 4313.2 203.4 NA
## 46 46 1940 GM 461.20 4643.9 207.2 NA
## 47 47 1941 GM 512.00 4551.2 255.2 NA
## 48 48 1942 GM 448.00 3244.1 303.7 NA
## 49 49 1943 GM 499.60 4053.7 264.1 NA
## 50 50 1944 GM 547.50 4379.3 201.6 NA
## 51 51 1945 GM 561.20 4840.9 265.0 NA
## 52 52 1946 GM 688.10 4900.0 402.0 NA
## 65 65 1939 WEST 18.84 519.9 23.5 NA
## 66 66 1940 WEST 28.57 628.5 26.5 NA
## 67 67 1941 WEST 48.51 537.1 36.2 NA
## 68 68 1942 WEST 43.34 561.2 60.8 NA
## 69 69 1943 WEST 37.02 617.2 84.4 NA
## 70 70 1944 WEST 37.81 626.7 91.2 NA
## 71 71 1945 WEST 39.27 737.2 92.4 NA
## 72 72 1946 WEST 53.46 760.5 86.0 NA
# Gán a6 là dữ liệu hàng tùy ý bằng 1939 hoặc bằng 1946
a6 <- hnd[hnd$S ==1939 | hnd$S ==1946, ]
a6
## A S D F G H J
## 5 5 1939 GE 48.10 2256.2 172.6 NA
## 12 12 1946 GE 159.90 2208.3 346.0 NA
## 25 25 1939 US 230.40 1957.3 312.7 NA
## 32 32 1946 US 420.30 2067.7 232.6 NA
## 45 45 1939 GM 330.80 4313.2 203.4 NA
## 52 52 1946 GM 688.10 4900.0 402.0 NA
## 65 65 1939 WEST 18.84 519.9 23.5 NA
## 72 72 1946 WEST 53.46 760.5 86.0 NA
d <- iris
d
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## 11 5.4 3.7 1.5 0.2 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 15 5.8 4.0 1.2 0.2 setosa
## 16 5.7 4.4 1.5 0.4 setosa
## 17 5.4 3.9 1.3 0.4 setosa
## 18 5.1 3.5 1.4 0.3 setosa
## 19 5.7 3.8 1.7 0.3 setosa
## 20 5.1 3.8 1.5 0.3 setosa
## 21 5.4 3.4 1.7 0.2 setosa
## 22 5.1 3.7 1.5 0.4 setosa
## 23 4.6 3.6 1.0 0.2 setosa
## 24 5.1 3.3 1.7 0.5 setosa
## 25 4.8 3.4 1.9 0.2 setosa
## 26 5.0 3.0 1.6 0.2 setosa
## 27 5.0 3.4 1.6 0.4 setosa
## 28 5.2 3.5 1.5 0.2 setosa
## 29 5.2 3.4 1.4 0.2 setosa
## 30 4.7 3.2 1.6 0.2 setosa
## 31 4.8 3.1 1.6 0.2 setosa
## 32 5.4 3.4 1.5 0.4 setosa
## 33 5.2 4.1 1.5 0.1 setosa
## 34 5.5 4.2 1.4 0.2 setosa
## 35 4.9 3.1 1.5 0.2 setosa
## 36 5.0 3.2 1.2 0.2 setosa
## 37 5.5 3.5 1.3 0.2 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 40 5.1 3.4 1.5 0.2 setosa
## 41 5.0 3.5 1.3 0.3 setosa
## 42 4.5 2.3 1.3 0.3 setosa
## 43 4.4 3.2 1.3 0.2 setosa
## 44 5.0 3.5 1.6 0.6 setosa
## 45 5.1 3.8 1.9 0.4 setosa
## 46 4.8 3.0 1.4 0.3 setosa
## 47 5.1 3.8 1.6 0.2 setosa
## 48 4.6 3.2 1.4 0.2 setosa
## 49 5.3 3.7 1.5 0.2 setosa
## 50 5.0 3.3 1.4 0.2 setosa
## 51 7.0 3.2 4.7 1.4 versicolor
## 52 6.4 3.2 4.5 1.5 versicolor
## 53 6.9 3.1 4.9 1.5 versicolor
## 54 5.5 2.3 4.0 1.3 versicolor
## 55 6.5 2.8 4.6 1.5 versicolor
## 56 5.7 2.8 4.5 1.3 versicolor
## 57 6.3 3.3 4.7 1.6 versicolor
## 58 4.9 2.4 3.3 1.0 versicolor
## 59 6.6 2.9 4.6 1.3 versicolor
## 60 5.2 2.7 3.9 1.4 versicolor
## 61 5.0 2.0 3.5 1.0 versicolor
## 62 5.9 3.0 4.2 1.5 versicolor
## 63 6.0 2.2 4.0 1.0 versicolor
## 64 6.1 2.9 4.7 1.4 versicolor
## 65 5.6 2.9 3.6 1.3 versicolor
## 66 6.7 3.1 4.4 1.4 versicolor
## 67 5.6 3.0 4.5 1.5 versicolor
## 68 5.8 2.7 4.1 1.0 versicolor
## 69 6.2 2.2 4.5 1.5 versicolor
## 70 5.6 2.5 3.9 1.1 versicolor
## 71 5.9 3.2 4.8 1.8 versicolor
## 72 6.1 2.8 4.0 1.3 versicolor
## 73 6.3 2.5 4.9 1.5 versicolor
## 74 6.1 2.8 4.7 1.2 versicolor
## 75 6.4 2.9 4.3 1.3 versicolor
## 76 6.6 3.0 4.4 1.4 versicolor
## 77 6.8 2.8 4.8 1.4 versicolor
## 78 6.7 3.0 5.0 1.7 versicolor
## 79 6.0 2.9 4.5 1.5 versicolor
## 80 5.7 2.6 3.5 1.0 versicolor
## 81 5.5 2.4 3.8 1.1 versicolor
## 82 5.5 2.4 3.7 1.0 versicolor
## 83 5.8 2.7 3.9 1.2 versicolor
## 84 6.0 2.7 5.1 1.6 versicolor
## 85 5.4 3.0 4.5 1.5 versicolor
## 86 6.0 3.4 4.5 1.6 versicolor
## 87 6.7 3.1 4.7 1.5 versicolor
## 88 6.3 2.3 4.4 1.3 versicolor
## 89 5.6 3.0 4.1 1.3 versicolor
## 90 5.5 2.5 4.0 1.3 versicolor
## 91 5.5 2.6 4.4 1.2 versicolor
## 92 6.1 3.0 4.6 1.4 versicolor
## 93 5.8 2.6 4.0 1.2 versicolor
## 94 5.0 2.3 3.3 1.0 versicolor
## 95 5.6 2.7 4.2 1.3 versicolor
## 96 5.7 3.0 4.2 1.2 versicolor
## 97 5.7 2.9 4.2 1.3 versicolor
## 98 6.2 2.9 4.3 1.3 versicolor
## 99 5.1 2.5 3.0 1.1 versicolor
## 100 5.7 2.8 4.1 1.3 versicolor
## 101 6.3 3.3 6.0 2.5 virginica
## 102 5.8 2.7 5.1 1.9 virginica
## 103 7.1 3.0 5.9 2.1 virginica
## 104 6.3 2.9 5.6 1.8 virginica
## 105 6.5 3.0 5.8 2.2 virginica
## 106 7.6 3.0 6.6 2.1 virginica
## 107 4.9 2.5 4.5 1.7 virginica
## 108 7.3 2.9 6.3 1.8 virginica
## 109 6.7 2.5 5.8 1.8 virginica
## 110 7.2 3.6 6.1 2.5 virginica
## 111 6.5 3.2 5.1 2.0 virginica
## 112 6.4 2.7 5.3 1.9 virginica
## 113 6.8 3.0 5.5 2.1 virginica
## 114 5.7 2.5 5.0 2.0 virginica
## 115 5.8 2.8 5.1 2.4 virginica
## 116 6.4 3.2 5.3 2.3 virginica
## 117 6.5 3.0 5.5 1.8 virginica
## 118 7.7 3.8 6.7 2.2 virginica
## 119 7.7 2.6 6.9 2.3 virginica
## 120 6.0 2.2 5.0 1.5 virginica
## 121 6.9 3.2 5.7 2.3 virginica
## 122 5.6 2.8 4.9 2.0 virginica
## 123 7.7 2.8 6.7 2.0 virginica
## 124 6.3 2.7 4.9 1.8 virginica
## 125 6.7 3.3 5.7 2.1 virginica
## 126 7.2 3.2 6.0 1.8 virginica
## 127 6.2 2.8 4.8 1.8 virginica
## 128 6.1 3.0 4.9 1.8 virginica
## 129 6.4 2.8 5.6 2.1 virginica
## 130 7.2 3.0 5.8 1.6 virginica
## 131 7.4 2.8 6.1 1.9 virginica
## 132 7.9 3.8 6.4 2.0 virginica
## 133 6.4 2.8 5.6 2.2 virginica
## 134 6.3 2.8 5.1 1.5 virginica
## 135 6.1 2.6 5.6 1.4 virginica
## 136 7.7 3.0 6.1 2.3 virginica
## 137 6.3 3.4 5.6 2.4 virginica
## 138 6.4 3.1 5.5 1.8 virginica
## 139 6.0 3.0 4.8 1.8 virginica
## 140 6.9 3.1 5.4 2.1 virginica
## 141 6.7 3.1 5.6 2.4 virginica
## 142 6.9 3.1 5.1 2.3 virginica
## 143 5.8 2.7 5.1 1.9 virginica
## 144 6.8 3.2 5.9 2.3 virginica
## 145 6.7 3.3 5.7 2.5 virginica
## 146 6.7 3.0 5.2 2.3 virginica
## 147 6.3 2.5 5.0 1.9 virginica
## 148 6.5 3.0 5.2 2.0 virginica
## 149 6.2 3.4 5.4 2.3 virginica
## 150 5.9 3.0 5.1 1.8 virginica
str(d)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(d,5)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
tail(d,4)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 147 6.3 2.5 5.0 1.9 virginica
## 148 6.5 3.0 5.2 2.0 virginica
## 149 6.2 3.4 5.4 2.3 virginica
## 150 5.9 3.0 5.1 1.8 virginica
d1 <- d[d$Species=='setosa',]
d1
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## 11 5.4 3.7 1.5 0.2 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 15 5.8 4.0 1.2 0.2 setosa
## 16 5.7 4.4 1.5 0.4 setosa
## 17 5.4 3.9 1.3 0.4 setosa
## 18 5.1 3.5 1.4 0.3 setosa
## 19 5.7 3.8 1.7 0.3 setosa
## 20 5.1 3.8 1.5 0.3 setosa
## 21 5.4 3.4 1.7 0.2 setosa
## 22 5.1 3.7 1.5 0.4 setosa
## 23 4.6 3.6 1.0 0.2 setosa
## 24 5.1 3.3 1.7 0.5 setosa
## 25 4.8 3.4 1.9 0.2 setosa
## 26 5.0 3.0 1.6 0.2 setosa
## 27 5.0 3.4 1.6 0.4 setosa
## 28 5.2 3.5 1.5 0.2 setosa
## 29 5.2 3.4 1.4 0.2 setosa
## 30 4.7 3.2 1.6 0.2 setosa
## 31 4.8 3.1 1.6 0.2 setosa
## 32 5.4 3.4 1.5 0.4 setosa
## 33 5.2 4.1 1.5 0.1 setosa
## 34 5.5 4.2 1.4 0.2 setosa
## 35 4.9 3.1 1.5 0.2 setosa
## 36 5.0 3.2 1.2 0.2 setosa
## 37 5.5 3.5 1.3 0.2 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 40 5.1 3.4 1.5 0.2 setosa
## 41 5.0 3.5 1.3 0.3 setosa
## 42 4.5 2.3 1.3 0.3 setosa
## 43 4.4 3.2 1.3 0.2 setosa
## 44 5.0 3.5 1.6 0.6 setosa
## 45 5.1 3.8 1.9 0.4 setosa
## 46 4.8 3.0 1.4 0.3 setosa
## 47 5.1 3.8 1.6 0.2 setosa
## 48 4.6 3.2 1.4 0.2 setosa
## 49 5.3 3.7 1.5 0.2 setosa
## 50 5.0 3.3 1.4 0.2 setosa
str(d1)
## 'data.frame': 50 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
d2 <- d[d$Species=='setosa'|d$Species=='versicolor',]
d2
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## 11 5.4 3.7 1.5 0.2 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 15 5.8 4.0 1.2 0.2 setosa
## 16 5.7 4.4 1.5 0.4 setosa
## 17 5.4 3.9 1.3 0.4 setosa
## 18 5.1 3.5 1.4 0.3 setosa
## 19 5.7 3.8 1.7 0.3 setosa
## 20 5.1 3.8 1.5 0.3 setosa
## 21 5.4 3.4 1.7 0.2 setosa
## 22 5.1 3.7 1.5 0.4 setosa
## 23 4.6 3.6 1.0 0.2 setosa
## 24 5.1 3.3 1.7 0.5 setosa
## 25 4.8 3.4 1.9 0.2 setosa
## 26 5.0 3.0 1.6 0.2 setosa
## 27 5.0 3.4 1.6 0.4 setosa
## 28 5.2 3.5 1.5 0.2 setosa
## 29 5.2 3.4 1.4 0.2 setosa
## 30 4.7 3.2 1.6 0.2 setosa
## 31 4.8 3.1 1.6 0.2 setosa
## 32 5.4 3.4 1.5 0.4 setosa
## 33 5.2 4.1 1.5 0.1 setosa
## 34 5.5 4.2 1.4 0.2 setosa
## 35 4.9 3.1 1.5 0.2 setosa
## 36 5.0 3.2 1.2 0.2 setosa
## 37 5.5 3.5 1.3 0.2 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 40 5.1 3.4 1.5 0.2 setosa
## 41 5.0 3.5 1.3 0.3 setosa
## 42 4.5 2.3 1.3 0.3 setosa
## 43 4.4 3.2 1.3 0.2 setosa
## 44 5.0 3.5 1.6 0.6 setosa
## 45 5.1 3.8 1.9 0.4 setosa
## 46 4.8 3.0 1.4 0.3 setosa
## 47 5.1 3.8 1.6 0.2 setosa
## 48 4.6 3.2 1.4 0.2 setosa
## 49 5.3 3.7 1.5 0.2 setosa
## 50 5.0 3.3 1.4 0.2 setosa
## 51 7.0 3.2 4.7 1.4 versicolor
## 52 6.4 3.2 4.5 1.5 versicolor
## 53 6.9 3.1 4.9 1.5 versicolor
## 54 5.5 2.3 4.0 1.3 versicolor
## 55 6.5 2.8 4.6 1.5 versicolor
## 56 5.7 2.8 4.5 1.3 versicolor
## 57 6.3 3.3 4.7 1.6 versicolor
## 58 4.9 2.4 3.3 1.0 versicolor
## 59 6.6 2.9 4.6 1.3 versicolor
## 60 5.2 2.7 3.9 1.4 versicolor
## 61 5.0 2.0 3.5 1.0 versicolor
## 62 5.9 3.0 4.2 1.5 versicolor
## 63 6.0 2.2 4.0 1.0 versicolor
## 64 6.1 2.9 4.7 1.4 versicolor
## 65 5.6 2.9 3.6 1.3 versicolor
## 66 6.7 3.1 4.4 1.4 versicolor
## 67 5.6 3.0 4.5 1.5 versicolor
## 68 5.8 2.7 4.1 1.0 versicolor
## 69 6.2 2.2 4.5 1.5 versicolor
## 70 5.6 2.5 3.9 1.1 versicolor
## 71 5.9 3.2 4.8 1.8 versicolor
## 72 6.1 2.8 4.0 1.3 versicolor
## 73 6.3 2.5 4.9 1.5 versicolor
## 74 6.1 2.8 4.7 1.2 versicolor
## 75 6.4 2.9 4.3 1.3 versicolor
## 76 6.6 3.0 4.4 1.4 versicolor
## 77 6.8 2.8 4.8 1.4 versicolor
## 78 6.7 3.0 5.0 1.7 versicolor
## 79 6.0 2.9 4.5 1.5 versicolor
## 80 5.7 2.6 3.5 1.0 versicolor
## 81 5.5 2.4 3.8 1.1 versicolor
## 82 5.5 2.4 3.7 1.0 versicolor
## 83 5.8 2.7 3.9 1.2 versicolor
## 84 6.0 2.7 5.1 1.6 versicolor
## 85 5.4 3.0 4.5 1.5 versicolor
## 86 6.0 3.4 4.5 1.6 versicolor
## 87 6.7 3.1 4.7 1.5 versicolor
## 88 6.3 2.3 4.4 1.3 versicolor
## 89 5.6 3.0 4.1 1.3 versicolor
## 90 5.5 2.5 4.0 1.3 versicolor
## 91 5.5 2.6 4.4 1.2 versicolor
## 92 6.1 3.0 4.6 1.4 versicolor
## 93 5.8 2.6 4.0 1.2 versicolor
## 94 5.0 2.3 3.3 1.0 versicolor
## 95 5.6 2.7 4.2 1.3 versicolor
## 96 5.7 3.0 4.2 1.2 versicolor
## 97 5.7 2.9 4.2 1.3 versicolor
## 98 6.2 2.9 4.3 1.3 versicolor
## 99 5.1 2.5 3.0 1.1 versicolor
## 100 5.7 2.8 4.1 1.3 versicolor
d3 <- d1[d1$Sepal.Length < 5,]
d3
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 23 4.6 3.6 1.0 0.2 setosa
## 25 4.8 3.4 1.9 0.2 setosa
## 30 4.7 3.2 1.6 0.2 setosa
## 31 4.8 3.1 1.6 0.2 setosa
## 35 4.9 3.1 1.5 0.2 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 42 4.5 2.3 1.3 0.3 setosa
## 43 4.4 3.2 1.3 0.2 setosa
## 46 4.8 3.0 1.4 0.3 setosa
## 48 4.6 3.2 1.4 0.2 setosa
d4 <- d[d$Species != 'setosa',]
d4
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 51 7.0 3.2 4.7 1.4 versicolor
## 52 6.4 3.2 4.5 1.5 versicolor
## 53 6.9 3.1 4.9 1.5 versicolor
## 54 5.5 2.3 4.0 1.3 versicolor
## 55 6.5 2.8 4.6 1.5 versicolor
## 56 5.7 2.8 4.5 1.3 versicolor
## 57 6.3 3.3 4.7 1.6 versicolor
## 58 4.9 2.4 3.3 1.0 versicolor
## 59 6.6 2.9 4.6 1.3 versicolor
## 60 5.2 2.7 3.9 1.4 versicolor
## 61 5.0 2.0 3.5 1.0 versicolor
## 62 5.9 3.0 4.2 1.5 versicolor
## 63 6.0 2.2 4.0 1.0 versicolor
## 64 6.1 2.9 4.7 1.4 versicolor
## 65 5.6 2.9 3.6 1.3 versicolor
## 66 6.7 3.1 4.4 1.4 versicolor
## 67 5.6 3.0 4.5 1.5 versicolor
## 68 5.8 2.7 4.1 1.0 versicolor
## 69 6.2 2.2 4.5 1.5 versicolor
## 70 5.6 2.5 3.9 1.1 versicolor
## 71 5.9 3.2 4.8 1.8 versicolor
## 72 6.1 2.8 4.0 1.3 versicolor
## 73 6.3 2.5 4.9 1.5 versicolor
## 74 6.1 2.8 4.7 1.2 versicolor
## 75 6.4 2.9 4.3 1.3 versicolor
## 76 6.6 3.0 4.4 1.4 versicolor
## 77 6.8 2.8 4.8 1.4 versicolor
## 78 6.7 3.0 5.0 1.7 versicolor
## 79 6.0 2.9 4.5 1.5 versicolor
## 80 5.7 2.6 3.5 1.0 versicolor
## 81 5.5 2.4 3.8 1.1 versicolor
## 82 5.5 2.4 3.7 1.0 versicolor
## 83 5.8 2.7 3.9 1.2 versicolor
## 84 6.0 2.7 5.1 1.6 versicolor
## 85 5.4 3.0 4.5 1.5 versicolor
## 86 6.0 3.4 4.5 1.6 versicolor
## 87 6.7 3.1 4.7 1.5 versicolor
## 88 6.3 2.3 4.4 1.3 versicolor
## 89 5.6 3.0 4.1 1.3 versicolor
## 90 5.5 2.5 4.0 1.3 versicolor
## 91 5.5 2.6 4.4 1.2 versicolor
## 92 6.1 3.0 4.6 1.4 versicolor
## 93 5.8 2.6 4.0 1.2 versicolor
## 94 5.0 2.3 3.3 1.0 versicolor
## 95 5.6 2.7 4.2 1.3 versicolor
## 96 5.7 3.0 4.2 1.2 versicolor
## 97 5.7 2.9 4.2 1.3 versicolor
## 98 6.2 2.9 4.3 1.3 versicolor
## 99 5.1 2.5 3.0 1.1 versicolor
## 100 5.7 2.8 4.1 1.3 versicolor
## 101 6.3 3.3 6.0 2.5 virginica
## 102 5.8 2.7 5.1 1.9 virginica
## 103 7.1 3.0 5.9 2.1 virginica
## 104 6.3 2.9 5.6 1.8 virginica
## 105 6.5 3.0 5.8 2.2 virginica
## 106 7.6 3.0 6.6 2.1 virginica
## 107 4.9 2.5 4.5 1.7 virginica
## 108 7.3 2.9 6.3 1.8 virginica
## 109 6.7 2.5 5.8 1.8 virginica
## 110 7.2 3.6 6.1 2.5 virginica
## 111 6.5 3.2 5.1 2.0 virginica
## 112 6.4 2.7 5.3 1.9 virginica
## 113 6.8 3.0 5.5 2.1 virginica
## 114 5.7 2.5 5.0 2.0 virginica
## 115 5.8 2.8 5.1 2.4 virginica
## 116 6.4 3.2 5.3 2.3 virginica
## 117 6.5 3.0 5.5 1.8 virginica
## 118 7.7 3.8 6.7 2.2 virginica
## 119 7.7 2.6 6.9 2.3 virginica
## 120 6.0 2.2 5.0 1.5 virginica
## 121 6.9 3.2 5.7 2.3 virginica
## 122 5.6 2.8 4.9 2.0 virginica
## 123 7.7 2.8 6.7 2.0 virginica
## 124 6.3 2.7 4.9 1.8 virginica
## 125 6.7 3.3 5.7 2.1 virginica
## 126 7.2 3.2 6.0 1.8 virginica
## 127 6.2 2.8 4.8 1.8 virginica
## 128 6.1 3.0 4.9 1.8 virginica
## 129 6.4 2.8 5.6 2.1 virginica
## 130 7.2 3.0 5.8 1.6 virginica
## 131 7.4 2.8 6.1 1.9 virginica
## 132 7.9 3.8 6.4 2.0 virginica
## 133 6.4 2.8 5.6 2.2 virginica
## 134 6.3 2.8 5.1 1.5 virginica
## 135 6.1 2.6 5.6 1.4 virginica
## 136 7.7 3.0 6.1 2.3 virginica
## 137 6.3 3.4 5.6 2.4 virginica
## 138 6.4 3.1 5.5 1.8 virginica
## 139 6.0 3.0 4.8 1.8 virginica
## 140 6.9 3.1 5.4 2.1 virginica
## 141 6.7 3.1 5.6 2.4 virginica
## 142 6.9 3.1 5.1 2.3 virginica
## 143 5.8 2.7 5.1 1.9 virginica
## 144 6.8 3.2 5.9 2.3 virginica
## 145 6.7 3.3 5.7 2.5 virginica
## 146 6.7 3.0 5.2 2.3 virginica
## 147 6.3 2.5 5.0 1.9 virginica
## 148 6.5 3.0 5.2 2.0 virginica
## 149 6.2 3.4 5.4 2.3 virginica
## 150 5.9 3.0 5.1 1.8 virginica
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
d <- diamonds
D1 <- filter(d,color=='D'|carat > 1)
D1
## # A tibble: 22,956 × 10
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.23 Very Good D VS2 60.5 61 357 3.96 3.97 2.4
## 2 0.23 Very Good D VS1 61.9 58 402 3.92 3.96 2.44
## 3 0.26 Very Good D VS2 60.8 59 403 4.13 4.16 2.52
## 4 0.26 Good D VS2 65.2 56 403 3.99 4.02 2.61
## 5 0.26 Good D VS1 58.4 63 403 4.19 4.24 2.46
## 6 0.22 Premium D VS2 59.3 62 404 3.91 3.88 2.31
## 7 0.3 Premium D SI1 62.6 59 552 4.23 4.27 2.66
## 8 0.3 Ideal D SI1 62.5 57 552 4.29 4.32 2.69
## 9 0.3 Ideal D SI1 62.1 56 552 4.3 4.33 2.68
## 10 0.24 Very Good D VVS1 61.5 60 553 3.97 4 2.45
## # ℹ 22,946 more rows
D1 <- d %>% filter(color=='D'|carat > 1)
D1
## # A tibble: 22,956 × 10
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.23 Very Good D VS2 60.5 61 357 3.96 3.97 2.4
## 2 0.23 Very Good D VS1 61.9 58 402 3.92 3.96 2.44
## 3 0.26 Very Good D VS2 60.8 59 403 4.13 4.16 2.52
## 4 0.26 Good D VS2 65.2 56 403 3.99 4.02 2.61
## 5 0.26 Good D VS1 58.4 63 403 4.19 4.24 2.46
## 6 0.22 Premium D VS2 59.3 62 404 3.91 3.88 2.31
## 7 0.3 Premium D SI1 62.6 59 552 4.23 4.27 2.66
## 8 0.3 Ideal D SI1 62.5 57 552 4.29 4.32 2.69
## 9 0.3 Ideal D SI1 62.1 56 552 4.3 4.33 2.68
## 10 0.24 Very Good D VVS1 61.5 60 553 3.97 4 2.45
## # ℹ 22,946 more rows
D2 <- D1 %>% select(color,carat,x,y,z)
D2
## # A tibble: 22,956 × 5
## color carat x y z
## <ord> <dbl> <dbl> <dbl> <dbl>
## 1 D 0.23 3.96 3.97 2.4
## 2 D 0.23 3.92 3.96 2.44
## 3 D 0.26 4.13 4.16 2.52
## 4 D 0.26 3.99 4.02 2.61
## 5 D 0.26 4.19 4.24 2.46
## 6 D 0.22 3.91 3.88 2.31
## 7 D 0.3 4.23 4.27 2.66
## 8 D 0.3 4.29 4.32 2.69
## 9 D 0.3 4.3 4.33 2.68
## 10 D 0.24 3.97 4 2.45
## # ℹ 22,946 more rows
D22 <- d %>% filter(color=='D'|carat > 1) %>% select(color,carat,x,y,z)
D22
## # A tibble: 22,956 × 5
## color carat x y z
## <ord> <dbl> <dbl> <dbl> <dbl>
## 1 D 0.23 3.96 3.97 2.4
## 2 D 0.23 3.92 3.96 2.44
## 3 D 0.26 4.13 4.16 2.52
## 4 D 0.26 3.99 4.02 2.61
## 5 D 0.26 4.19 4.24 2.46
## 6 D 0.22 3.91 3.88 2.31
## 7 D 0.3 4.23 4.27 2.66
## 8 D 0.3 4.29 4.32 2.69
## 9 D 0.3 4.3 4.33 2.68
## 10 D 0.24 3.97 4 2.45
## # ℹ 22,946 more rows
P <- trees
##Các hàm toán học
P$tich <- P$Girth*P$Height*P$Volume
P1 <- P %>% mutate(l = log(tich))
P1
## Girth Height Volume tich l
## 1 8.3 70 10.3 5984.30 8.696895
## 2 8.6 65 10.3 5757.70 8.658293
## 3 8.8 63 10.2 5654.88 8.640274
## 4 10.5 72 16.4 12398.40 9.425323
## 5 10.7 81 18.8 16293.96 9.698550
## 6 10.8 83 19.7 17659.08 9.779005
## 7 11.0 66 15.6 11325.60 9.334821
## 8 11.0 75 18.2 15015.00 9.616805
## 9 11.1 80 22.6 20068.80 9.906922
## 10 11.2 75 19.9 16716.00 9.724122
## 11 11.3 79 24.2 21603.34 9.980603
## 12 11.4 76 21.0 18194.40 9.808869
## 13 11.4 76 21.4 18540.96 9.827738
## 14 11.7 69 21.3 17195.49 9.752402
## 15 12.0 75 19.1 17190.00 9.752083
## 16 12.9 74 22.2 21192.12 9.961385
## 17 12.9 85 33.8 37061.70 10.520339
## 18 13.3 86 27.4 31340.12 10.352654
## 19 13.7 71 25.7 24998.39 10.126567
## 20 13.8 64 24.9 21991.68 9.998419
## 21 14.0 78 34.5 37674.00 10.536725
## 22 14.2 80 31.7 36011.20 10.491585
## 23 14.5 74 36.3 38949.90 10.570031
## 24 16.0 72 38.3 44121.60 10.694705
## 25 16.3 77 42.6 53467.26 10.886825
## 26 17.3 81 55.4 77632.02 11.259735
## 27 17.5 82 55.7 79929.50 11.288900
## 28 17.9 80 58.3 83485.60 11.332429
## 29 18.0 80 51.5 74160.00 11.213980
## 30 18.0 80 51.0 73440.00 11.204224
## 31 20.6 87 77.0 137999.40 11.835005
P2 <- P %>% mutate(sq = sqrt(tich))
P2
## Girth Height Volume tich sq
## 1 8.3 70 10.3 5984.30 77.35826
## 2 8.6 65 10.3 5757.70 75.87951
## 3 8.8 63 10.2 5654.88 75.19894
## 4 10.5 72 16.4 12398.40 111.34810
## 5 10.7 81 18.8 16293.96 127.64780
## 6 10.8 83 19.7 17659.08 132.88747
## 7 11.0 66 15.6 11325.60 106.42180
## 8 11.0 75 18.2 15015.00 122.53571
## 9 11.1 80 22.6 20068.80 141.66439
## 10 11.2 75 19.9 16716.00 129.29037
## 11 11.3 79 24.2 21603.34 146.98075
## 12 11.4 76 21.0 18194.40 134.88662
## 13 11.4 76 21.4 18540.96 136.16519
## 14 11.7 69 21.3 17195.49 131.13158
## 15 12.0 75 19.1 17190.00 131.11064
## 16 12.9 74 22.2 21192.12 145.57514
## 17 12.9 85 33.8 37061.70 192.51416
## 18 13.3 86 27.4 31340.12 177.03141
## 19 13.7 71 25.7 24998.39 158.10879
## 20 13.8 64 24.9 21991.68 148.29592
## 21 14.0 78 34.5 37674.00 194.09791
## 22 14.2 80 31.7 36011.20 189.76617
## 23 14.5 74 36.3 38949.90 197.35729
## 24 16.0 72 38.3 44121.60 210.05142
## 25 16.3 77 42.6 53467.26 231.22989
## 26 17.3 81 55.4 77632.02 278.62523
## 27 17.5 82 55.7 79929.50 282.71806
## 28 17.9 80 58.3 83485.60 288.93875
## 29 18.0 80 51.5 74160.00 272.32334
## 30 18.0 80 51.0 73440.00 270.99815
## 31 20.6 87 77.0 137999.40 371.48270
hnd <- iris
names(hnd) <- c('SL','SW','PL','PW','S')
str(hnd)
## 'data.frame': 150 obs. of 5 variables:
## $ SL: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ SW: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ PL: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ PW: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ S : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
hnd$S.Coded <- ifelse(hnd$S == 'setosa','setosa','Not setosa')
hnd$S.Coded1 <- recode(hnd$S,setosa = 'Loại 1', versicolor = 'Loại 2')
hnd$SL.Coded <- ifelse(hnd$SL >= 5,'Đạt', 'Không đạt')
hnd$SL.Coded1 <- ifelse(hnd$SL >= 5 & hnd$SL <= 6, 'Nhận', 'Loại')
hnd$SL.Coded2 <- case_when(hnd$SL < 5 ~ 'Quá nhỏ', hnd$SL >= 5 & hnd$SL <= 6.5 ~ 'OK', hnd$SL >6.5 ~ 'Quá lớn')
hnd$SL.Coded2 <- cut(hnd$SL,3,labels = c('Loại 1','Loại 2','Loại 3'))
L <- iris
table(L$Species)
##
## setosa versicolor virginica
## 50 50 50
cut(L$Sepal.Length,3)
## [1] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5]
## [8] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5]
## [15] (5.5,6.7] (5.5,6.7] (4.3,5.5] (4.3,5.5] (5.5,6.7] (4.3,5.5] (4.3,5.5]
## [22] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5]
## [29] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5]
## [36] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5]
## [43] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5] (4.3,5.5]
## [50] (4.3,5.5] (6.7,7.9] (5.5,6.7] (6.7,7.9] (4.3,5.5] (5.5,6.7] (5.5,6.7]
## [57] (5.5,6.7] (4.3,5.5] (5.5,6.7] (4.3,5.5] (4.3,5.5] (5.5,6.7] (5.5,6.7]
## [64] (5.5,6.7] (5.5,6.7] (5.5,6.7] (5.5,6.7] (5.5,6.7] (5.5,6.7] (5.5,6.7]
## [71] (5.5,6.7] (5.5,6.7] (5.5,6.7] (5.5,6.7] (5.5,6.7] (5.5,6.7] (6.7,7.9]
## [78] (5.5,6.7] (5.5,6.7] (5.5,6.7] (4.3,5.5] (4.3,5.5] (5.5,6.7] (5.5,6.7]
## [85] (4.3,5.5] (5.5,6.7] (5.5,6.7] (5.5,6.7] (5.5,6.7] (4.3,5.5] (4.3,5.5]
## [92] (5.5,6.7] (5.5,6.7] (4.3,5.5] (5.5,6.7] (5.5,6.7] (5.5,6.7] (5.5,6.7]
## [99] (4.3,5.5] (5.5,6.7] (5.5,6.7] (5.5,6.7] (6.7,7.9] (5.5,6.7] (5.5,6.7]
## [106] (6.7,7.9] (4.3,5.5] (6.7,7.9] (5.5,6.7] (6.7,7.9] (5.5,6.7] (5.5,6.7]
## [113] (6.7,7.9] (5.5,6.7] (5.5,6.7] (5.5,6.7] (5.5,6.7] (6.7,7.9] (6.7,7.9]
## [120] (5.5,6.7] (6.7,7.9] (5.5,6.7] (6.7,7.9] (5.5,6.7] (5.5,6.7] (6.7,7.9]
## [127] (5.5,6.7] (5.5,6.7] (5.5,6.7] (6.7,7.9] (6.7,7.9] (6.7,7.9] (5.5,6.7]
## [134] (5.5,6.7] (5.5,6.7] (6.7,7.9] (5.5,6.7] (5.5,6.7] (5.5,6.7] (6.7,7.9]
## [141] (5.5,6.7] (6.7,7.9] (5.5,6.7] (6.7,7.9] (5.5,6.7] (5.5,6.7] (5.5,6.7]
## [148] (5.5,6.7] (5.5,6.7] (5.5,6.7]
## Levels: (4.3,5.5] (5.5,6.7] (6.7,7.9]
table(cut(L$Sepal.Length,3))
##
## (4.3,5.5] (5.5,6.7] (6.7,7.9]
## 59 71 20
M <- iris
M$sl.c <- cut(M$Sepal.Length,3, labels = c('ngắn','tb','dài'))
tnt1 <- table(M$Species,M$sl.c)
tnt1
##
## ngắn tb dài
## setosa 47 3 0
## versicolor 11 36 3
## virginica 1 32 17
tnt2 <- M %>% group_by(Species,sl.c) %>% summarise(n= n())
## `summarise()` has grouped output by 'Species'. You can override using the
## `.groups` argument.
tnt2
## # A tibble: 8 × 3
## # Groups: Species [3]
## Species sl.c n
## <fct> <fct> <int>
## 1 setosa ngắn 47
## 2 setosa tb 3
## 3 versicolor ngắn 11
## 4 versicolor tb 36
## 5 versicolor dài 3
## 6 virginica ngắn 1
## 7 virginica tb 32
## 8 virginica dài 17
stem(M$Petal.Length)
##
## The decimal point is at the |
##
## 1 | 012233333334444444444444
## 1 | 55555555555556666666777799
## 2 |
## 2 |
## 3 | 033
## 3 | 55678999
## 4 | 000001112222334444
## 4 | 5555555566677777888899999
## 5 | 000011111111223344
## 5 | 55566666677788899
## 6 | 0011134
## 6 | 6779
stem(M$Sepal.Length,scale = .5)
##
## The decimal point is at the |
##
## 4 | 3444
## 4 | 566667788888999999
## 5 | 000000000011111111122223444444
## 5 | 5555555666666777777778888888999
## 6 | 00000011111122223333333334444444
## 6 | 5555566777777778889999
## 7 | 0122234
## 7 | 677779
tnt2 <- diamonds
summary(tnt2$carat)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2000 0.4000 0.7000 0.7979 1.0400 5.0100
sum(tnt2$carat)
## [1] 43040.87
mean(tnt2$carat,na.rm = T)
## [1] 0.7979397
length(tnt2$carat)
## [1] 53940
var(tnt2$carat)
## [1] 0.2246867
sd(tnt2$carat)
## [1] 0.4740112
median(tnt2$carat)
## [1] 0.7
quantile(tnt2$carat, probs = c(.25,.5,.75))
## 25% 50% 75%
## 0.40 0.70 1.04
tnt3 <- diamonds
nt <- tnt3 %>% group_by(color) %>% summarise(mean_of_carat = mean(carat))
nt
## # A tibble: 7 × 2
## color mean_of_carat
## <ord> <dbl>
## 1 D 0.658
## 2 E 0.658
## 3 F 0.737
## 4 G 0.771
## 5 H 0.912
## 6 I 1.03
## 7 J 1.16
nt <- tnt3 %>% group_by(color) %>% summarise(n = n(),mean_of_carat = mean(carat))
nt
## # A tibble: 7 × 3
## color n mean_of_carat
## <ord> <int> <dbl>
## 1 D 6775 0.658
## 2 E 9797 0.658
## 3 F 9542 0.737
## 4 G 11292 0.771
## 5 H 8304 0.912
## 6 I 5422 1.03
## 7 J 2808 1.16
nt1 <- tnt3 %>% group_by(color) %>% summarise(med_of_carat = median(carat))
nt1
## # A tibble: 7 × 2
## color med_of_carat
## <ord> <dbl>
## 1 D 0.53
## 2 E 0.53
## 3 F 0.7
## 4 G 0.7
## 5 H 0.9
## 6 I 1
## 7 J 1.11
nt2 <- tnt3 %>% group_by(cut) %>% summarise(mean_of_carat = mean(carat))
nt2
## # A tibble: 5 × 2
## cut mean_of_carat
## <ord> <dbl>
## 1 Fair 1.05
## 2 Good 0.849
## 3 Very Good 0.806
## 4 Premium 0.892
## 5 Ideal 0.703
nt2 <- tnt3 %>% group_by(color,cut) %>% summarise(n = n(),mean_of_carat = mean(carat),.groups = 'drop')
nt2
## # A tibble: 35 × 4
## color cut n mean_of_carat
## <ord> <ord> <int> <dbl>
## 1 D Fair 163 0.920
## 2 D Good 662 0.745
## 3 D Very Good 1513 0.696
## 4 D Premium 1603 0.722
## 5 D Ideal 2834 0.566
## 6 E Fair 224 0.857
## 7 E Good 933 0.745
## 8 E Very Good 2400 0.676
## 9 E Premium 2337 0.718
## 10 E Ideal 3903 0.578
## # ℹ 25 more rows
##Đọc dữ liệu và gán vào object “mt”
library(xlsx)
mt <- read.xlsx("D:/naaaaaa/NNLT_ST2/file_example_XLSX_1000.xlsx", sheetIndex = 1, header = T)
table <- knitr::kable(mt, format= "markdown")
table
| NA. | First.Name | Last.Name | Gender | Country | Age | Date | Id |
|---|---|---|---|---|---|---|---|
| 1 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 2 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 3 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 4 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 5 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 6 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 7 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 8 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 9 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 10 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 11 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 12 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 13 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 14 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 15 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 16 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 17 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 18 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 19 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 20 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 21 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 22 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 23 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 24 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 25 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 26 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 27 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 28 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 29 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 30 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 31 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 32 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 33 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 34 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 35 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 36 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 37 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 38 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 39 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 40 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 41 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 42 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 43 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 44 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 45 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 46 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 47 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 48 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 49 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 50 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 51 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 52 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 53 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 54 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 55 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 56 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 57 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 58 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 59 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 60 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 61 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 62 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 63 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 64 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 65 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 66 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 67 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 68 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 69 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 70 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 71 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 72 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 73 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 74 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 75 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 76 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 77 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 78 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 79 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 80 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 81 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 82 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 83 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 84 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 85 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 86 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 87 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 88 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 89 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 90 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 91 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 92 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 93 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 94 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 95 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 96 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 97 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 98 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 99 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 100 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 101 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 102 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 103 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 104 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 105 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 106 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 107 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 108 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 109 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 110 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 111 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 112 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 113 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 114 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 115 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 116 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 117 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 118 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 119 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 120 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 121 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 122 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 123 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 124 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 125 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 126 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 127 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 128 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 129 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 130 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 131 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 132 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 133 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 134 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 135 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 136 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 137 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 138 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 139 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 140 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 141 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 142 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 143 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 144 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 145 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 146 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 147 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 148 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 149 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 150 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 151 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 152 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 153 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 154 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 155 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 156 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 157 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 158 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 159 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 160 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 161 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 162 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 163 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 164 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 165 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 166 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 167 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 168 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 169 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 170 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 171 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 172 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 173 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 174 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 175 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 176 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 177 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 178 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 179 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 180 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 181 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 182 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 183 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 184 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 185 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 186 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 187 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 188 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 189 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 190 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 191 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 192 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 193 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 194 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 195 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 196 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 197 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 198 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 199 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 200 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 201 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 202 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 203 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 204 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 205 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 206 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 207 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 208 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 209 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 210 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 211 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 212 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 213 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 214 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 215 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 216 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 217 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 218 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 219 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 220 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 221 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 222 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 223 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 224 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 225 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 226 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 227 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 228 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 229 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 230 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 231 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 232 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 233 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 234 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 235 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 236 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 237 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 238 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 239 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 240 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 241 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 242 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 243 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 244 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 245 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 246 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 247 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 248 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 249 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 250 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 251 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 252 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 253 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 254 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 255 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 256 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 257 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 258 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 259 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 260 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 261 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 262 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 263 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 264 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 265 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 266 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 267 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 268 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 269 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 270 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 271 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 272 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 273 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 274 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 275 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 276 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 277 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 278 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 279 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 280 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 281 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 282 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 283 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 284 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 285 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 286 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 287 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 288 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 289 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 290 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 291 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 292 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 293 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 294 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 295 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 296 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 297 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 298 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 299 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 300 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 301 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 302 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 303 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 304 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 305 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 306 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 307 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 308 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 309 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 310 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 311 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 312 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 313 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 314 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 315 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 316 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 317 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 318 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 319 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 320 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 321 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 322 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 323 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 324 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 325 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 326 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 327 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 328 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 329 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 330 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 331 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 332 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 333 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 334 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 335 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 336 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 337 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 338 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 339 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 340 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 341 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 342 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 343 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 344 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 345 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 346 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 347 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 348 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 349 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 350 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 351 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 352 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 353 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 354 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 355 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 356 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 357 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 358 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 359 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 360 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 361 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 362 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 363 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 364 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 365 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 366 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 367 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 368 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 369 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 370 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 371 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 372 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 373 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 374 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 375 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 376 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 377 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 378 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 379 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 380 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 381 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 382 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 383 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 384 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 385 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 386 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 387 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 388 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 389 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 390 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 391 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 392 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 393 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 394 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 395 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 396 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 397 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 398 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 399 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 400 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 401 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 402 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 403 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 404 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 405 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 406 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 407 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 408 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 409 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 410 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 411 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 412 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 413 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 414 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 415 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 416 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 417 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 418 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 419 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 420 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 421 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 422 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 423 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 424 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 425 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 426 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 427 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 428 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 429 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 430 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 431 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 432 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 433 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 434 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 435 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 436 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 437 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 438 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 439 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 440 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 441 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 442 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 443 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 444 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 445 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 446 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 447 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 448 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 449 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 450 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 451 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 452 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 453 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 454 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 455 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 456 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 457 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 458 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 459 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 460 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 461 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 462 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 463 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 464 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 465 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 466 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 467 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 468 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 469 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 470 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 471 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 472 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 473 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 474 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 475 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 476 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 477 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 478 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 479 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 480 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 481 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 482 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 483 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 484 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 485 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 486 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 487 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 488 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 489 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 490 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 491 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 492 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 493 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 494 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 495 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 496 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 497 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 498 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 499 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 500 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 501 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 502 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 503 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 504 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 505 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 506 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 507 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 508 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 509 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 510 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 511 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 512 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 513 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 514 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 515 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 516 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 517 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 518 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 519 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 520 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 521 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 522 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 523 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 524 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 525 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 526 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 527 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 528 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 529 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 530 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 531 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 532 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 533 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 534 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 535 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 536 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 537 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 538 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 539 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 540 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 541 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 542 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 543 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 544 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 545 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 546 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 547 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 548 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 549 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 550 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 551 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 552 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 553 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 554 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 555 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 556 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 557 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 558 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 559 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 560 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 561 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 562 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 563 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 564 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 565 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 566 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 567 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 568 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 569 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 570 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 571 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 572 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 573 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 574 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 575 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 576 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 577 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 578 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 579 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 580 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 581 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 582 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 583 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 584 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 585 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 586 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 587 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 588 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 589 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 590 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 591 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 592 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 593 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 594 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 595 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 596 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 597 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 598 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 599 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 600 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 601 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 602 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 603 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 604 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 605 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 606 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 607 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 608 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 609 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 610 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 611 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 612 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 613 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 614 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 615 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 616 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 617 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 618 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 619 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 620 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 621 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 622 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 623 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 624 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 625 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 626 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 627 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 628 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 629 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 630 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 631 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 632 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 633 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 634 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 635 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 636 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 637 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 638 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 639 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 640 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 641 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 642 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 643 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 644 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 645 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 646 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 647 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 648 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 649 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 650 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 651 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 652 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 653 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 654 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 655 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 656 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 657 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 658 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 659 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 660 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 661 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 662 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 663 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 664 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 665 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 666 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 667 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 668 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 669 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 670 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 671 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 672 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 673 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 674 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 675 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 676 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 677 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 678 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 679 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 680 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 681 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 682 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 683 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 684 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 685 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 686 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 687 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 688 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 689 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 690 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 691 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 692 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 693 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 694 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 695 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 696 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 697 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 698 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 699 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 700 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 701 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 702 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 703 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 704 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 705 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 706 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 707 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 708 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 709 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 710 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 711 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 712 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 713 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 714 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 715 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 716 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 717 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 718 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 719 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 720 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 721 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 722 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 723 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 724 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 725 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 726 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 727 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 728 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 729 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 730 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 731 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 732 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 733 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 734 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 735 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 736 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 737 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 738 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 739 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 740 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 741 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 742 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 743 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 744 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 745 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 746 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 747 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 748 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 749 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 750 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 751 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 752 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 753 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 754 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 755 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 756 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 757 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 758 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 759 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 760 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 761 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 762 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 763 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 764 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 765 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 766 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 767 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 768 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 769 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 770 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 771 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 772 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 773 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 774 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 775 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 776 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 777 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 778 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 779 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 780 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 781 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 782 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 783 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 784 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 785 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 786 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 787 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 788 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 789 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 790 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 791 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 792 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 793 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 794 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 795 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 796 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 797 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 798 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 799 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 800 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 801 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 802 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 803 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 804 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 805 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 806 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 807 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 808 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 809 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 810 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 811 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 812 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 813 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 814 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 815 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 816 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 817 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 818 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 819 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 820 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 821 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 822 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 823 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 824 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 825 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 826 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 827 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 828 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 829 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 830 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 831 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 832 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 833 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 834 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 835 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 836 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 837 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 838 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 839 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 840 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 841 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 842 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 843 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 844 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 845 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 846 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 847 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 848 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 849 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 850 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 851 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 852 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 853 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 854 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 855 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 856 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 857 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 858 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 859 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 860 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 861 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 862 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 863 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 864 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 865 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 866 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 867 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 868 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 869 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 870 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 871 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 872 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 873 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 874 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 875 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 876 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 877 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 878 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 879 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 880 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 881 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 882 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 883 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 884 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 885 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 886 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 887 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 888 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 889 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 890 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 891 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 892 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 893 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 894 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 895 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 896 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 897 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 898 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 899 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 900 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 901 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 902 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 903 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 904 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 905 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 906 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 907 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 908 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 909 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 910 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 911 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 912 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 913 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 914 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 915 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 916 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 917 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 918 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 919 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 920 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 921 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 922 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 923 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 924 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 925 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 926 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 927 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 928 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 929 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 930 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 931 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 932 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 933 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 934 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 935 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 936 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 937 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 938 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 939 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 940 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 941 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 942 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 943 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 944 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 945 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 946 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 947 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 948 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 949 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 950 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
| 951 | Dulce | Abril | Female | United States | 32 | 15/10/2017 | 1562 |
| 952 | Mara | Hashimoto | Female | Great Britain | 25 | 16/08/2016 | 1582 |
| 953 | Philip | Gent | Male | France | 36 | 21/05/2015 | 2587 |
| 954 | Kathleen | Hanner | Female | United States | 25 | 15/10/2017 | 3549 |
| 955 | Nereida | Magwood | Female | United States | 58 | 16/08/2016 | 2468 |
| 956 | Gaston | Brumm | Male | United States | 24 | 21/05/2015 | 2554 |
| 957 | Etta | Hurn | Female | Great Britain | 56 | 15/10/2017 | 3598 |
| 958 | Earlean | Melgar | Female | United States | 27 | 16/08/2016 | 2456 |
| 959 | Vincenza | Weiland | Female | United States | 40 | 21/05/2015 | 6548 |
| 960 | Fallon | Winward | Female | Great Britain | 28 | 16/08/2016 | 5486 |
| 961 | Arcelia | Bouska | Female | Great Britain | 39 | 21/05/2015 | 1258 |
| 962 | Franklyn | Unknow | Male | France | 38 | 15/10/2017 | 2579 |
| 963 | Sherron | Ascencio | Female | Great Britain | 32 | 16/08/2016 | 3256 |
| 964 | Marcel | Zabriskie | Male | Great Britain | 26 | 21/05/2015 | 2587 |
| 965 | Kina | Hazelton | Female | Great Britain | 31 | 16/08/2016 | 3259 |
| 966 | Shavonne | Pia | Female | France | 24 | 21/05/2015 | 1546 |
| 967 | Shavon | Benito | Female | France | 39 | 15/10/2017 | 3579 |
| 968 | Lauralee | Perrine | Female | Great Britain | 28 | 16/08/2016 | 6597 |
| 969 | Loreta | Curren | Female | France | 26 | 21/05/2015 | 9654 |
| 970 | Teresa | Strawn | Female | France | 46 | 21/05/2015 | 3569 |
| 971 | Belinda | Partain | Female | United States | 37 | 15/10/2017 | 2564 |
| 972 | Holly | Eudy | Female | United States | 52 | 16/08/2016 | 8561 |
| 973 | Many | Cuccia | Female | Great Britain | 46 | 21/05/2015 | 5489 |
| 974 | Libbie | Dalby | Female | France | 42 | 21/05/2015 | 5489 |
| 975 | Lester | Prothro | Male | France | 21 | 15/10/2017 | 6574 |
| 976 | Marvel | Hail | Female | Great Britain | 28 | 16/08/2016 | 5555 |
| 977 | Angelyn | Vong | Female | United States | 29 | 21/05/2015 | 6125 |
| 978 | Francesca | Beaudreau | Female | France | 23 | 15/10/2017 | 5412 |
| 979 | Garth | Gangi | Male | United States | 41 | 16/08/2016 | 3256 |
| 980 | Carla | Trumbull | Female | Great Britain | 28 | 21/05/2015 | 3264 |
| 981 | Veta | Muntz | Female | Great Britain | 37 | 15/10/2017 | 4569 |
| 982 | Stasia | Becker | Female | Great Britain | 34 | 16/08/2016 | 7521 |
| 983 | Jona | Grindle | Female | Great Britain | 26 | 21/05/2015 | 6458 |
| 984 | Judie | Claywell | Female | France | 35 | 16/08/2016 | 7569 |
| 985 | Dewitt | Borger | Male | United States | 36 | 21/05/2015 | 8514 |
| 986 | Nena | Hacker | Female | United States | 29 | 15/10/2017 | 8563 |
| 987 | Kelsie | Wachtel | Female | France | 27 | 16/08/2016 | 8642 |
| 988 | Sau | Pfau | Female | United States | 25 | 21/05/2015 | 9536 |
| 989 | Shanice | Mccrystal | Female | United States | 36 | 21/05/2015 | 2567 |
| 990 | Chase | Karner | Male | United States | 37 | 15/10/2017 | 2154 |
| 991 | Tommie | Underdahl | Male | United States | 26 | 16/08/2016 | 3265 |
| 992 | Dorcas | Darity | Female | United States | 37 | 21/05/2015 | 8765 |
| 993 | Angel | Sanor | Male | France | 24 | 15/10/2017 | 3259 |
| 994 | Willodean | Harn | Female | United States | 39 | 16/08/2016 | 3567 |
| 995 | Weston | Martina | Male | United States | 26 | 21/05/2015 | 6540 |
| 996 | Roma | Lafollette | Female | United States | 34 | 15/10/2017 | 2654 |
| 997 | Felisa | Cail | Female | United States | 28 | 16/08/2016 | 6525 |
| 998 | Demetria | Abbey | Female | United States | 32 | 21/05/2015 | 3265 |
| 999 | Jeromy | Danz | Male | United States | 39 | 15/10/2017 | 3265 |
| 1000 | Rasheeda | Alkire | Female | United States | 29 | 16/08/2016 | 6125 |
names(mt) #Hiển thị tên của bảng dữ liệu
## [1] "NA." "First.Name" "Last.Name" "Gender" "Country"
## [6] "Age" "Date" "Id"
dim(mt) #Hiển thị số dòng và cột của dữ liệu
## [1] 1000 8
library(skimr)
skim(mt)
| Name | mt |
| Number of rows | 1000 |
| Number of columns | 8 |
| _______________________ | |
| Column type frequency: | |
| character | 5 |
| numeric | 3 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| First.Name | 0 | 1 | 3 | 9 | 0 | 50 | 0 |
| Last.Name | 0 | 1 | 3 | 10 | 0 | 50 | 0 |
| Gender | 0 | 1 | 4 | 6 | 0 | 2 | 0 |
| Country | 0 | 1 | 6 | 13 | 0 | 3 | 0 |
| Date | 0 | 1 | 10 | 10 | 0 | 3 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| NA. | 0 | 1 | 500.50 | 288.82 | 1 | 250.75 | 500.5 | 750.25 | 1000 | ▇▇▇▇▇ |
| Age | 0 | 1 | 33.26 | 8.35 | 21 | 26.00 | 32.0 | 38.00 | 58 | ▇▃▆▁▁ |
| Id | 0 | 1 | 4717.72 | 2368.34 | 1258 | 2587.00 | 3574.0 | 6540.00 | 9654 | ▇▇▃▅▃ |
head(mt,10) #Hiển thị 10 dòng đầu của bảng dữ liệu
## NA. First.Name Last.Name Gender Country Age Date Id
## 1 1 Dulce Abril Female United States 32 15/10/2017 1562
## 2 2 Mara Hashimoto Female Great Britain 25 16/08/2016 1582
## 3 3 Philip Gent Male France 36 21/05/2015 2587
## 4 4 Kathleen Hanner Female United States 25 15/10/2017 3549
## 5 5 Nereida Magwood Female United States 58 16/08/2016 2468
## 6 6 Gaston Brumm Male United States 24 21/05/2015 2554
## 7 7 Etta Hurn Female Great Britain 56 15/10/2017 3598
## 8 8 Earlean Melgar Female United States 27 16/08/2016 2456
## 9 9 Vincenza Weiland Female United States 40 21/05/2015 6548
## 10 10 Fallon Winward Female Great Britain 28 16/08/2016 5486
is.na(mt) #Kiểm tra ô trống của dữ liệu, FALSE là ô có dữ liệu và ngược lại
## NA. First.Name Last.Name Gender Country Age Date Id
## [1,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [7,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [8,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [9,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [10,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [11,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [12,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [14,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [15,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [16,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [17,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [18,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [19,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [20,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [21,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [22,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [23,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [24,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [26,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [27,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [28,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [29,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [30,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [31,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [32,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [33,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [34,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [35,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [36,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [38,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [39,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [40,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [41,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [42,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [43,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [44,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [45,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [46,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [47,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [48,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [50,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [51,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [52,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [53,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [54,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [55,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [56,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [57,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [58,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [59,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [60,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [62,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [63,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [64,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [65,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [66,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [67,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [68,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [69,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [70,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [71,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [72,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [74,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [75,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [76,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [77,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [78,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [79,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [80,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [81,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [82,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [83,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [84,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [86,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [87,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [88,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [89,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [90,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [91,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [92,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [93,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [94,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [95,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [96,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [98,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [99,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [100,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [101,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [102,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [103,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [104,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [105,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [106,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [107,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [108,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [110,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [111,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [112,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [113,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [114,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [115,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [116,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [117,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [118,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [119,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [120,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [122,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [123,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [124,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [125,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [126,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [127,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [128,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [129,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [130,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [131,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [132,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [134,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [135,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [136,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [137,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [138,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [139,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [140,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [141,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [142,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [143,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [144,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [146,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [147,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [148,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [149,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [150,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [151,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [152,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [153,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [154,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [155,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [156,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [157,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [158,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [159,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [160,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [161,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [162,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [163,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [164,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [165,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [166,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [167,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [168,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [169,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [170,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [171,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [172,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [173,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [174,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [175,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [176,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [177,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [178,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [179,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [180,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [181,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [182,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [183,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [184,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [185,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [186,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [187,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [188,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [189,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [190,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [191,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [192,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [193,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [194,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [195,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [196,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [197,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [198,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [199,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [200,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [201,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [202,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [203,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [204,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [205,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [206,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [207,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [208,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [209,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [210,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [211,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [212,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [213,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [214,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [215,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [216,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [217,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [218,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [219,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [220,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [221,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [222,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [223,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [224,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [225,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [226,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [227,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [228,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [229,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [230,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [231,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [232,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [233,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [234,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [235,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [236,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [237,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [238,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [239,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [240,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [241,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [242,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [243,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [244,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [245,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [246,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [247,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [248,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [249,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [250,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [251,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [252,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [253,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [254,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [255,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [256,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [257,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [258,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [259,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [260,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [261,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [262,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [263,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [264,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [265,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [266,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [267,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [268,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [269,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [270,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [271,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [272,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [273,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [274,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [275,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [276,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [277,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [278,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [279,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [280,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [281,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [282,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [283,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [284,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [285,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [286,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [287,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [288,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [289,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [290,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [291,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [292,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [293,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [294,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [295,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [296,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [297,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [298,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [299,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [300,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [301,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [302,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [303,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [304,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [305,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [306,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [307,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [308,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [309,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [310,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [311,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [312,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [313,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [314,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [315,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [316,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [317,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [318,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [319,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [320,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [321,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [322,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [323,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [324,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [325,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [326,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [327,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [328,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [329,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [330,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [331,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [332,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [333,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [334,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [335,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [336,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [337,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [338,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [339,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [340,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [341,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [342,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [343,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [344,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [345,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [346,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [347,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [348,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [349,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [350,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [351,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [352,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [353,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [354,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [355,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [356,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [357,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [358,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [359,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [360,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [361,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [362,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [363,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [364,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [365,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [366,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [367,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [368,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [369,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [370,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [371,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [372,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [373,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [374,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [375,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [376,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [377,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [378,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [379,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [380,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [381,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [382,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [383,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [384,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [385,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [386,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [387,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [388,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [389,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [390,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [391,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [392,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [393,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [394,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [395,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [396,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [397,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [398,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [399,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [400,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [401,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [402,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [403,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [404,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [405,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [406,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [407,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [408,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [409,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [410,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [411,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [412,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [413,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [414,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [415,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [416,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [417,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [418,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [419,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [420,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [421,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [422,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [423,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [424,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [425,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [426,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [427,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [428,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [429,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [430,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [431,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [432,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [433,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [434,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [435,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [436,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [437,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [438,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [439,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [440,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [441,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [442,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [443,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [444,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [445,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [446,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [447,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [448,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [449,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [450,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [451,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [452,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [453,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [454,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [455,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [456,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [457,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [458,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [459,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [460,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [461,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [462,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [463,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [464,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [465,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [466,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [467,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [468,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [469,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [470,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [471,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [472,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [473,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [474,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [475,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [476,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [477,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [478,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [479,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [480,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [481,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [482,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [483,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [484,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [485,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [486,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [487,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [488,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [489,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [490,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [491,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [492,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [493,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [494,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [495,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [496,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [497,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [498,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [499,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [500,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [501,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [502,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [503,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [504,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [505,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [506,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [507,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [508,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [509,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [510,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [511,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [512,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [513,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [514,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [515,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [516,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [517,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [518,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [519,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [520,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [521,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [522,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [523,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [524,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [525,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [526,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [527,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [528,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [529,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [530,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [531,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [532,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [533,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [534,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [535,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [536,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [537,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [538,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [539,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [540,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [541,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [542,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [543,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [544,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [545,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [546,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [547,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [548,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [549,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [550,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [551,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [552,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [553,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [554,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [555,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [556,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [557,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [558,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [559,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [560,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [561,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [562,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [563,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [564,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [565,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [566,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [567,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [568,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [569,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [570,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [571,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [572,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [573,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [574,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [575,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [576,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [577,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [578,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [579,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [580,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [581,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [582,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [583,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [584,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [585,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [586,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [587,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [588,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [589,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [590,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [591,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [592,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [593,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [594,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [595,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [596,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [597,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [598,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [599,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [600,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [601,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [602,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [603,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [604,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [605,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [606,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [607,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [608,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [609,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [610,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [611,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [612,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [613,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [614,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [615,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [616,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [617,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [618,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [619,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [620,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [621,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [622,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [623,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [624,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [625,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [626,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [627,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [628,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [629,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [630,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [631,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [632,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [633,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [634,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [635,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [636,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [637,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [638,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [639,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [640,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [641,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [642,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [643,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [644,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [645,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [646,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [647,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [648,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [649,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [650,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [651,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [652,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [653,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [654,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [655,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [656,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [657,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [658,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [659,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [660,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [661,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [662,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [663,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [664,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [665,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [666,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [667,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [668,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [669,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [670,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [671,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [672,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [673,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [674,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [675,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [676,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [677,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [678,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [679,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [680,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [681,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [682,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [683,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [684,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [685,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [686,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [687,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [688,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [689,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [690,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [691,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [692,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [693,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [694,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [695,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [696,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [697,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [698,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [699,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [700,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [701,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [702,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [703,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [704,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [705,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [706,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [707,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [708,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [709,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [710,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [711,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [712,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [713,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [714,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [715,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [716,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [717,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [718,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [719,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [720,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [721,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [722,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [723,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [724,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [725,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [726,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [727,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [728,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [729,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [730,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [731,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [732,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [733,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [734,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [735,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [736,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [737,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [738,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [739,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [740,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [741,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [742,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [743,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [744,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [745,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [746,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [747,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [748,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [749,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [750,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [751,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [752,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [753,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [754,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [755,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [756,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [757,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [758,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [759,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [760,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [761,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [762,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [763,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [764,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [765,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [766,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [767,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [768,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [769,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [770,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [771,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [772,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [773,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [774,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [775,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [776,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [777,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [778,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [779,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [780,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [781,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [782,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [783,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [784,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [785,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [786,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [787,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [788,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [789,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [790,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [791,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [792,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [793,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [794,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [795,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [796,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [797,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [798,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [799,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [800,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [801,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [802,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [803,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [804,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [805,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [806,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [807,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [808,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [809,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [810,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [811,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [812,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [813,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [814,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [815,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [816,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [817,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [818,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [819,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [820,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [821,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [822,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [823,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [824,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [825,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [826,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [827,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [828,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [829,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [830,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [831,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [832,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [833,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [834,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [835,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [836,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [837,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [838,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [839,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [840,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [841,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [842,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [843,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [844,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [845,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [846,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [847,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [848,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [849,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [850,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [851,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [852,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [853,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [854,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [855,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [856,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [857,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [858,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [859,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [860,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [861,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [862,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [863,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [864,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [865,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [866,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [867,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [868,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [869,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [870,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [871,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [872,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [873,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [874,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [875,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [876,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [877,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [878,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [879,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [880,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [881,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [882,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [883,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [884,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [885,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [886,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [887,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [888,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [889,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [890,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [891,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [892,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [893,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [894,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [895,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [896,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [897,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [898,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [899,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [900,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [901,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [902,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [903,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [904,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [905,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [906,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [907,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [908,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [909,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [910,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [911,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [912,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [913,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [914,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [915,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [916,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [917,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [918,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [919,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [920,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [921,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [922,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [923,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [924,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [925,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [926,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [927,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [928,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [929,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [930,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [931,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [932,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [933,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [934,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [935,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [936,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [937,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [938,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [939,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [940,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [941,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [942,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [943,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [944,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [945,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [946,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [947,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [948,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [949,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [950,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [951,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [952,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [953,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [954,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [955,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [956,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [957,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [958,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [959,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [960,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [961,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [962,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [963,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [964,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [965,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [966,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [967,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [968,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [969,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [970,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [971,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [972,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [973,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [974,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [975,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [976,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [977,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [978,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [979,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [980,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [981,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [982,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [983,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [984,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [985,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [986,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [987,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [988,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [989,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [990,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [991,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [992,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [993,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [994,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [995,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [996,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [997,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [998,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [999,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1000,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE