1 . NHIỆM VỤ 2.1


1.1 . Tóm Tắt

Nhiệm vụ 2.1 thao tác trên datasets “bwt_co_dieu_chinh.xlsx” là datasets thống kê những thuộc tính trong quá trình mang thai của phụ nữ giai đoạn 1925-2004.

1.2 . Mô tả cơ bản

Các thông số từ datasets có 640 quan sát và 9 biến như sau:

  • id: Khu vực (có 8 khu vực).
  • year: Năm lấy số liệu.
  • bwt: Trọng lượng lúc sinh tính bằng ounces, 1 ounces=28.3495 gram).
  • gestation: Thời gian mang thai(tính bằng ngày).
  • parity: Số lần sinh (có hai giá trị, 1=sinh lần đầu, 0=không phải lần đầu).
  • age: Tuổi của mẹ.
  • height: Chiều cao của mẹ (tính bằng inches, 1 inch=2.54cm).
  • weight: Cân nặng của bà mẹ khi mang thai (tính bằng pounds, 1 pound=0.453592kg).
  • smoke: Hút thuốc lúc mang thai (1=có, 0=không).

Không có dữ liệu trống


1.3 . Đọc dữ liệu từ file Excel


library(openxlsx)
vy1 <- read.xlsx("/Users/xuyenchi/Library/Containers/com.microsoft.Excel/Data/Downloads/R Code/bwt_co_dieu_chinh.xlsx") #đọc dữ liệu từ excel và gán vào object vy1
table <- knitr::kable(vy1,format="markdown")
table 
id year bwt gestation parity age height weight smoke
1 1925 120 284 0 27 62 100 0
2 1925 112 267 1 22 62 138 0
3 1925 119 286 0 26 64 123 1
4 1925 124 287 0 27 62 105 1
5 1925 105 276 0 22 67 130 0
6 1925 120 289 1 31 59 102 0
7 1925 82 274 0 31 64 101 1
8 1925 111 278 0 29 65 145 1
1 1926 113 282 0 33 64 135 0
2 1926 134 297 0 27 67 170 1
3 1926 97 279 0 29 68 178 1
4 1926 125 292 0 22 65 122 0
5 1926 93 246 0 37 65 130 0
6 1926 146 280 0 23 61 145 0
7 1926 100 274 0 24 63 113 0
8 1926 103 250 0 40 59 140 0
1 1927 128 279 0 28 64 115 1
2 1927 145 308 0 35 64 110 1
3 1927 99 252 0 21 64 120 0
4 1927 110 262 0 25 66 140 0
5 1927 122 281 0 42 63 103 1
6 1927 112 283 1 21 62 102 1
7 1927 114 271 0 32 61 130 0
8 1927 114 276 0 26 62 127 0
1 1928 108 282 0 23 67 125 1
2 1928 116 295 0 32 65 120 0
3 1928 115 264 1 23 67 134 1
4 1928 125 279 0 23 63 104 1
5 1928 133 293 0 23 64 110 1
6 1928 132 278 0 20 64 150 1
7 1928 97 269 0 20 65 137 1
8 1928 75 247 0 36 64 120 1
1 1929 136 286 0 25 62 93 0
2 1929 126 278 0 26 64 150 1
3 1929 139 284 0 37 61 121 0
4 1929 138 294 0 40 64 125 0
5 1929 130 296 1 22 66 117 1
6 1929 146 263 0 39 53 110 1
7 1929 126 298 0 24 61 112 0
8 1929 169 296 0 33 67 185 0
1 1930 138 244 0 33 62 178 0
2 1930 111 285 0 29 65 130 0
3 1930 144 304 1 27 58 102 1
4 1930 142 284 0 39 66 132 0
5 1930 104 307 0 24 59 122 0
6 1930 122 275 0 30 68 140 0
7 1930 122 275 1 20 65 127 0
8 1930 94 271 0 36 61 130 1
1 1931 132 245 0 23 65 140 0
2 1931 126 282 0 33 62 117 0
3 1931 99 270 0 22 63 115 1
4 1931 115 278 0 23 60 102 1
5 1931 106 278 0 31 65 110 1
6 1931 128 292 0 32 66 130 0
7 1931 152 295 0 39 62 140 0
8 1931 150 287 0 36 62 135 0
1 1932 120 289 0 25 62 125 0
2 1932 109 291 0 39 64 107 0
3 1932 105 280 1 22 63 116 0
4 1932 102 280 0 38 67 140 0
5 1932 120 281 0 33 63 113 0
6 1932 119 277 0 24 63 120 1
7 1932 116 274 0 21 62 110 1
8 1932 144 248 0 30 70 145 0
1 1933 143 299 0 30 66 136 1
2 1933 136 291 0 41 66 191 0
3 1933 89 275 0 34 66 170 0
4 1933 140 294 0 25 61 103 0
5 1933 118 276 1 18 63 128 0
6 1933 135 278 0 27 66 148 0
7 1933 132 302 0 36 63 145 1
8 1933 144 291 0 28 67 130 0
1 1934 140 351 0 27 68 120 0
2 1934 119 286 0 22 63 185 1
3 1934 129 270 0 43 67 160 0
4 1934 133 276 1 22 63 119 0
5 1934 140 290 1 19 67 132 1
6 1934 129 235 0 24 66 135 0
7 1934 84 260 1 37 66 140 0
8 1934 143 313 0 20 68 150 0
1 1935 144 282 0 32 64 124 1
2 1935 103 267 1 21 66 150 1
3 1935 119 270 1 20 64 109 0
4 1935 127 290 0 35 66 165 0
5 1935 114 268 0 22 64 104 0
6 1935 116 293 1 28 62 108 0
7 1935 119 277 1 18 61 89 1
8 1935 145 304 1 25 63 109 1
1 1936 141 279 0 23 63 128 1
2 1936 124 284 1 17 62 112 0
3 1936 114 291 0 35 60 112 0
4 1936 104 274 1 20 62 115 1
5 1936 116 280 0 40 62 159 0
6 1936 100 275 0 27 64 111 1
7 1936 106 312 0 24 62 135 1
8 1936 121 285 0 34 64 110 0
1 1937 110 281 0 36 61 99 1
2 1937 155 286 0 31 66 127 0
3 1937 106 289 0 28 67 120 1
4 1937 119 275 0 42 67 156 1
5 1937 129 284 0 24 64 115 0
6 1937 138 257 0 38 67 138 0
7 1937 139 291 0 24 65 160 0
8 1937 105 256 0 31 66 142 0
1 1938 114 273 0 30 63 154 0
2 1938 122 282 1 21 66 110 0
3 1938 122 292 1 34 65 133 0
4 1938 152 301 0 29 65 150 0
5 1938 120 286 0 22 62 115 1
6 1938 123 282 0 22 65 130 0
7 1938 103 273 0 36 65 158 1
8 1938 134 286 0 25 64 125 0
1 1939 115 285 0 38 63 130 0
2 1939 113 285 0 26 66 140 0
3 1939 136 261 0 24 65 110 0
4 1939 123 284 1 20 65 120 1
5 1939 127 281 0 24 63 112 1
6 1939 113 288 1 21 61 120 0
7 1939 112 299 0 24 67 145 1
8 1939 129 294 1 21 65 132 0
1 1940 92 255 0 25 65 125 1
2 1940 122 273 0 26 66 210 0
3 1940 121 286 1 22 69 130 1
4 1940 143 273 0 19 66 135 0
5 1940 71 234 0 32 64 110 1
6 1940 129 280 1 24 65 140 1
7 1940 96 276 0 33 64 127 1
8 1940 114 276 0 24 63 110 0
1 1941 115 261 0 33 60 125 1
2 1941 126 293 1 27 62 111 0
3 1941 112 282 0 26 65 122 0
4 1941 131 308 0 40 65 160 0
5 1941 88 274 0 30 66 130 0
6 1941 122 280 0 24 67 127 1
7 1941 102 281 1 19 67 135 1
8 1941 97 265 0 30 61 110 0
1 1942 144 261 0 33 68 170 0
2 1942 116 277 0 41 64 124 1
3 1942 112 266 0 26 64 122 0
4 1942 141 319 1 20 67 140 1
5 1942 122 286 0 23 64 145 0
6 1942 132 281 1 21 67 140 0
7 1942 120 300 0 34 63 150 1
8 1942 160 292 0 28 64 120 0
1 1943 119 288 0 43 66 142 1
2 1943 102 294 0 21 65 130 1
3 1943 123 314 0 22 61 121 1
4 1943 129 277 0 30 66 142 1
5 1943 106 302 1 19 66 147 0
6 1943 120 269 1 40 63 130 0
7 1943 102 338 0 19 64 170 0
8 1943 65 237 0 31 67 130 0
1 1944 105 270 0 22 56 93 0
2 1944 110 181 0 27 64 133 0
3 1944 139 286 0 33 65 125 1
4 1944 113 282 1 36 59 140 0
5 1944 135 285 0 30 66 130 0
6 1944 114 283 1 20 65 115 0
7 1944 97 255 1 22 63 107 1
8 1944 145 288 0 28 64 116 0
1 1945 115 274 0 27 67 175 1
2 1945 133 285 1 30 64 160 0
3 1945 125 290 0 36 59 105 0
4 1945 119 292 0 33 62 118 1
5 1945 107 290 0 26 63 112 0
6 1945 130 280 0 29 66 135 0
7 1945 113 285 0 22 70 145 0
8 1945 95 273 0 23 60 90 0
1 1946 137 287 0 25 66 145 0
2 1946 125 283 0 29 65 125 0
3 1946 105 295 1 20 64 112 1
4 1946 109 295 1 23 63 103 1
5 1946 129 294 0 32 62 170 1
6 1946 117 286 0 32 66 127 1
7 1946 130 297 0 32 58 130 0
8 1946 139 293 1 21 69 130 0
1 1947 122 276 0 30 68 182 0
2 1947 164 286 1 32 66 143 0
3 1947 130 276 0 41 68 130 0
4 1947 104 280 1 27 68 146 1
5 1947 126 274 0 39 62 122 0
6 1947 142 285 0 33 63 124 0
7 1947 97 260 1 25 63 115 1
8 1947 123 288 0 27 63 125 0
1 1948 131 294 0 23 65 122 0
2 1948 133 297 0 36 61 125 0
3 1948 146 294 0 22 66 145 1
4 1948 131 282 1 21 66 126 0
5 1948 116 293 1 26 64 125 0
6 1948 144 273 0 27 62 118 1
7 1948 116 273 0 31 61 120 0
8 1948 109 283 0 23 65 112 1
1 1949 103 261 0 27 65 112 1
2 1949 124 293 1 19 65 150 0
3 1949 133 290 0 21 64 145 0
4 1949 110 293 1 28 64 135 1
5 1949 124 294 0 26 62 122 0
6 1949 127 262 1 32 64 125 0
7 1949 114 266 0 29 64 113 0
8 1949 110 268 0 34 64 127 0
1 1950 146 280 0 26 58 106 0
2 1950 122 306 1 22 62 100 0
3 1950 147 296 1 19 67 124 0
4 1950 148 279 0 27 71 189 0
5 1950 123 281 0 23 68 136 0
6 1950 115 270 0 25 67 165 1
7 1950 127 242 0 17 61 135 1
8 1950 122 296 1 24 65 132 0
1 1951 114 266 0 20 65 175 1
2 1951 121 271 1 34 63 129 1
3 1951 109 269 0 23 63 113 0
4 1951 137 283 1 20 65 157 0
5 1951 145 315 0 39 67 143 1
6 1951 85 258 0 41 67 137 0
7 1951 87 247 1 18 66 125 1
8 1951 115 307 0 34 65 128 1
1 1952 125 292 0 32 65 125 0
2 1952 100 272 0 30 64 150 1
3 1952 122 286 0 23 64 120 1
4 1952 117 283 0 27 63 108 0
5 1952 102 278 0 27 67 135 1
6 1952 99 274 0 28 66 118 1
7 1952 141 281 0 29 54 156 1
8 1952 108 279 1 19 64 115 0
1 1953 114 274 0 28 66 132 1
2 1953 90 266 1 26 67 135 0
3 1953 135 260 0 43 65 135 0
4 1953 115 302 1 22 67 135 0
5 1953 129 293 0 30 65 130 1
6 1953 123 323 1 17 64 140 0
7 1953 144 283 1 25 66 140 0
8 1953 120 287 0 23 67 116 1
1 1954 122 270 0 26 61 105 0
2 1954 128 272 1 18 67 109 0
3 1954 117 272 0 32 66 118 0
4 1954 98 280 0 35 64 122 1
5 1954 98 276 1 22 61 121 0
6 1954 112 281 1 23 61 150 0
7 1954 116 273 0 33 66 130 1
8 1954 131 269 0 36 68 145 0
1 1955 93 278 0 34 61 146 0
2 1955 86 276 1 23 65 125 1
3 1955 138 284 0 30 66 133 1
4 1955 136 303 1 20 68 148 1
5 1955 110 272 0 28 60 108 0
6 1955 68 223 0 32 66 149 1
7 1955 75 265 0 21 65 103 1
8 1955 136 283 1 24 63 119 0
1 1956 130 268 0 30 66 123 0
2 1956 123 282 0 30 63 118 0
3 1956 120 283 0 28 64 122 1
4 1956 121 276 1 23 71 152 1
5 1956 135 282 0 24 67 128 1
6 1956 102 283 1 19 65 127 1
7 1956 138 286 1 28 68 120 0
8 1956 125 290 0 32 63 135 0
1 1957 119 275 0 23 60 105 0
2 1957 87 275 0 28 63 110 1
3 1957 119 273 0 35 65 125 1
4 1957 132 285 1 25 63 140 0
5 1957 101 278 1 20 62 105 0
6 1957 109 273 0 37 65 138 1
7 1957 99 271 0 39 69 151 0
8 1957 96 285 1 20 66 117 1
1 1958 113 281 0 24 65 120 0
2 1958 128 291 1 27 63 132 0
3 1958 118 278 1 19 62 126 0
4 1958 91 264 0 36 60 100 1
5 1958 96 266 0 26 65 125 0
6 1958 102 267 1 25 60 93 1
7 1958 118 293 0 21 63 103 0
8 1958 102 282 1 29 65 125 1
1 1959 134 283 0 22 67 130 0
2 1959 120 288 0 28 63 125 0
3 1959 105 330 0 23 64 112 1
4 1959 119 294 0 34 59 105 0
5 1959 104 276 1 18 60 109 1
6 1959 99 275 0 23 61 125 1
7 1959 97 266 0 24 62 109 0
8 1959 102 288 1 18 65 117 0
1 1960 107 279 0 24 63 115 0
2 1960 125 301 1 35 68 181 0
3 1960 113 306 1 21 65 137 0
4 1960 85 273 0 26 60 105 1
5 1960 100 249 0 24 67 100 0
6 1960 78 256 1 29 65 123 0
7 1960 146 319 0 28 66 145 0
8 1960 112 277 1 22 67 120 0
1 1961 134 288 0 23 63 92 1
2 1961 118 265 0 27 61 123 0
3 1961 148 291 1 21 63 115 0
4 1961 106 271 1 26 61 110 1
5 1961 154 292 0 40 66 145 0
6 1961 128 284 1 19 66 111 1
7 1961 81 285 0 19 63 150 1
8 1961 135 272 0 30 65 130 0
1 1962 122 267 0 27 65 101 1
2 1962 116 284 1 24 66 117 0
3 1962 140 281 1 22 69 135 0
4 1962 132 284 0 29 64 122 0
5 1962 127 293 0 31 67 137 0
6 1962 107 303 1 25 67 133 0
7 1962 110 321 0 28 66 180 0
8 1962 91 266 0 23 60 120 1
1 1963 129 293 0 30 61 160 0
2 1963 131 262 0 22 67 135 0
3 1963 134 287 1 33 67 131 0
4 1963 80 266 1 25 62 125 0
5 1963 126 288 0 31 62 150 0
6 1963 136 295 0 23 64 147 0
7 1963 135 284 1 19 60 95 0
8 1963 129 276 0 31 63 125 0
1 1964 110 278 0 23 63 177 0
2 1964 151 286 1 22 66 130 0
3 1964 120 280 0 31 61 111 0
4 1964 109 286 0 24 64 125 1
5 1964 126 282 1 23 66 115 1
6 1964 101 278 0 27 61 99 1
7 1964 114 290 1 21 65 120 1
8 1964 155 290 0 26 66 129 1
1 1965 111 270 0 27 61 119 0
2 1965 88 273 0 20 66 110 1
3 1965 123 296 1 26 64 110 1
4 1965 111 306 0 27 61 102 0
5 1965 127 279 0 26 67 155 1
6 1965 100 275 1 25 64 125 0
7 1965 124 288 1 21 64 116 1
8 1965 109 274 0 33 69 144 1
1 1966 87 248 0 37 65 130 1
2 1966 137 284 0 30 67 110 0
3 1966 102 275 0 43 64 160 0
4 1966 143 292 1 21 65 125 0
5 1966 98 275 0 25 65 112 1
6 1966 109 272 0 41 66 154 1
7 1966 115 262 1 23 64 136 1
8 1966 80 262 1 31 61 100 1
1 1967 143 274 0 27 63 110 1
2 1967 127 289 0 23 67 140 0
3 1967 55 204 0 35 65 140 0
4 1967 136 290 0 26 66 135 0
5 1967 127 288 1 21 66 130 0
6 1967 117 281 1 21 70 141 1
7 1967 143 281 0 28 65 135 1
8 1967 125 273 0 30 64 145 0
1 1968 155 294 0 32 66 150 0
2 1968 96 278 1 18 60 120 1
3 1968 103 276 1 19 63 149 1
4 1968 110 285 1 19 64 130 0
5 1968 129 299 0 22 68 145 0
6 1968 88 252 1 21 60 115 1
7 1968 113 287 1 29 70 145 1
8 1968 94 284 0 24 63 104 1
1 1969 110 272 0 25 60 90 0
2 1969 129 281 0 31 67 155 0
3 1969 123 283 0 21 65 110 0
4 1969 98 257 0 29 66 130 1
5 1969 131 292 1 22 64 124 1
6 1969 95 270 0 35 65 135 1
7 1969 109 244 1 21 63 102 1
8 1969 148 281 0 27 63 110 1
1 1970 122 275 0 26 66 147 0
2 1970 128 288 1 26 65 114 0
3 1970 105 270 1 27 65 134 1
4 1970 108 305 1 24 65 112 0
5 1970 132 289 1 19 66 145 0
6 1970 127 291 1 24 66 135 1
7 1970 103 278 0 30 60 87 1
8 1970 73 277 0 29 65 145 0
1 1971 145 291 0 26 63 119 1
2 1971 85 255 0 24 68 159 0
3 1971 138 289 0 33 65 155 0
4 1971 101 295 0 18 62 145 1
5 1971 127 280 0 27 62 118 0
6 1971 107 293 0 20 65 155 1
7 1971 118 276 0 34 64 116 0
8 1971 123 267 1 19 66 132 1
1 1972 115 258 0 26 62 130 0
2 1972 111 281 1 27 64 112 0
3 1972 128 281 0 28 63 150 0
4 1972 71 281 0 32 60 117 1
5 1972 99 313 1 34 59 100 1
6 1972 126 262 0 37 66 135 1
7 1972 127 290 0 27 65 121 0
8 1972 65 232 0 24 66 125 1
1 1973 108 283 0 31 65 148 1
2 1973 124 275 0 28 61 116 0
3 1973 139 285 0 30 65 129 1
4 1973 124 292 0 29 68 176 1
5 1973 115 290 0 30 64 140 1
6 1973 98 278 0 27 63 110 1
7 1973 132 270 0 27 65 126 0
8 1973 118 279 1 21 64 108 0
1 1974 102 282 0 28 61 110 0
2 1974 112 292 1 28 62 110 1
3 1974 104 288 1 27 61 122 1
4 1974 106 276 0 30 66 130 0
5 1974 145 290 1 24 67 125 0
6 1974 96 241 0 23 64 130 1
7 1974 113 275 1 27 60 100 0
8 1974 102 283 0 39 60 119 0
1 1975 143 286 0 31 64 126 0
2 1975 115 281 0 28 61 128 1
3 1975 159 296 1 27 64 112 0
4 1975 101 278 0 25 62 112 1
5 1975 102 249 1 23 67 134 1
6 1975 104 282 0 24 63 144 0
7 1975 128 265 0 24 67 120 0
8 1975 120 280 0 24 61 118 0
1 1976 146 267 0 30 67 132 0
2 1976 72 271 0 39 61 136 0
3 1976 118 276 0 29 62 130 1
4 1976 100 277 0 31 62 100 1
5 1976 136 299 0 29 64 115 0
6 1976 133 273 1 33 63 135 0
7 1976 130 291 0 30 65 150 1
8 1976 108 270 1 21 65 130 1
1 1977 124 275 0 22 60 130 0
2 1977 122 281 1 24 65 137 1
3 1977 99 285 0 25 69 128 1
4 1977 104 269 0 35 63 110 1
5 1977 121 282 0 22 66 133 0
6 1977 93 267 0 25 63 135 1
7 1977 125 281 1 21 65 110 0
8 1977 122 280 1 45 62 128 0
1 1978 124 278 0 26 70 145 1
2 1978 116 291 0 26 66 153 0
3 1978 144 281 0 20 63 120 0
4 1978 117 270 0 24 67 135 1
5 1978 120 286 0 25 62 105 0
6 1978 101 280 1 24 65 123 1
7 1978 117 297 0 38 65 129 0
8 1978 103 268 0 32 62 97 1
1 1979 145 257 0 33 65 140 0
2 1979 127 272 0 20 64 130 1
3 1979 121 270 0 25 62 108 1
4 1979 117 267 0 29 65 120 1
5 1979 118 261 0 26 60 104 0
6 1979 118 277 0 21 64 155 0
7 1979 141 277 0 38 66 162 0
8 1979 105 312 0 41 61 115 1
1 1980 106 273 0 28 60 116 0
2 1980 90 266 0 23 61 99 1
3 1980 117 265 1 24 66 98 0
4 1980 149 279 0 25 67 135 0
5 1980 127 304 1 26 62 105 0
6 1980 130 289 0 21 61 130 1
7 1980 130 270 1 19 66 130 0
8 1980 126 273 1 25 68 135 0
1 1981 75 232 0 33 61 110 0
2 1981 99 273 1 27 59 115 0
3 1981 119 293 1 23 65 127 0
4 1981 135 284 0 25 66 123 0
5 1981 132 281 1 24 63 117 0
6 1981 125 288 0 22 63 128 1
7 1981 139 299 1 20 67 112 0
8 1981 145 316 0 22 67 142 0
1 1982 107 273 0 24 61 96 0
2 1982 144 307 1 26 66 125 0
3 1982 105 281 1 19 61 130 0
4 1982 110 283 1 21 66 129 0
5 1982 102 258 1 22 65 135 0
6 1982 140 291 1 19 65 122 0
7 1982 130 283 0 32 65 118 0
8 1982 139 293 0 34 66 131 0
1 1983 124 288 0 22 67 118 0
2 1983 138 280 1 30 65 175 0
3 1983 125 283 0 37 63 145 1
4 1983 121 276 0 31 67 130 0
5 1983 143 279 0 39 65 129 1
6 1983 115 290 1 19 65 118 0
7 1983 113 289 1 26 59 91 0
8 1983 124 290 0 26 65 165 0
1 1984 122 280 0 23 65 125 1
2 1984 58 245 0 34 64 156 1
3 1984 119 259 0 37 62 130 0
4 1984 142 285 1 24 66 136 0
5 1984 118 277 0 25 62 120 0
6 1984 130 293 0 26 63 123 0
7 1984 77 238 1 23 63 103 1
8 1984 121 282 0 30 65 122 0
1 1985 101 245 0 23 63 130 1
2 1985 109 265 1 24 63 107 1
3 1985 101 273 0 39 60 113 0
4 1985 104 260 0 33 64 145 0
5 1985 102 286 1 22 64 140 0
6 1985 114 277 1 31 64 125 0
7 1985 62 228 0 24 61 107 0
8 1985 126 299 1 21 60 114 0
1 1986 128 283 0 28 63 125 1
2 1986 110 277 1 19 62 160 0
3 1986 105 277 1 25 64 156 0
4 1986 138 296 0 34 66 120 0
5 1986 163 280 0 35 69 139 0
6 1986 105 278 0 21 64 120 0
7 1986 93 245 0 33 61 100 1
8 1986 119 286 1 33 67 137 0
1 1987 104 282 0 36 65 115 1
2 1987 129 278 0 27 63 128 0
3 1987 110 281 0 27 60 110 0
4 1987 112 278 1 21 63 120 0
5 1987 132 294 0 32 64 116 0
6 1987 101 289 1 31 60 125 0
7 1987 109 275 1 37 63 112 1
8 1987 114 277 1 19 63 107 0
1 1988 97 246 0 37 63 150 0
2 1988 150 284 0 40 67 130 0
3 1988 100 270 1 21 65 132 1
4 1988 117 293 0 39 60 120 1
5 1988 116 276 0 33 61 180 0
6 1988 132 286 0 26 67 122 1
7 1988 145 283 0 27 65 125 1
8 1988 118 272 0 23 64 113 0
1 1989 137 274 0 26 69 137 1
2 1989 128 279 0 27 66 135 0
3 1989 98 284 0 29 68 140 0
4 1989 109 282 0 25 62 106 1
5 1989 138 288 1 19 66 124 0
6 1989 112 252 0 37 64 162 0
7 1989 92 224 0 19 63 134 1
8 1989 127 295 0 36 65 145 0
1 1990 103 273 0 31 63 170 1
2 1990 142 284 1 31 66 137 1
3 1990 127 276 0 37 64 159 0
4 1990 131 266 1 28 67 135 0
5 1990 139 279 0 20 64 143 0
6 1990 69 232 0 31 59 103 1
7 1990 120 281 0 26 61 115 0
8 1990 117 290 1 22 67 110 0
1 1991 142 276 0 38 63 170 0
2 1991 115 268 1 31 64 125 0
3 1991 117 324 0 22 62 164 1
4 1991 120 273 0 29 64 130 1
5 1991 132 298 1 23 61 137 0
6 1991 114 264 0 26 63 110 1
7 1991 135 284 0 39 67 141 0
8 1991 137 277 0 41 65 126 0
1 1992 130 289 0 27 66 130 0
2 1992 108 283 0 35 62 108 0
3 1992 122 278 0 37 68 114 0
4 1992 116 270 0 29 63 132 0
5 1992 87 282 0 27 63 104 1
6 1992 123 267 0 29 63 111 1
7 1992 113 287 0 36 63 118 0
8 1992 133 292 0 29 65 135 0
1 1993 156 292 0 26 63 118 0
2 1993 139 281 0 27 63 137 0
3 1993 122 273 1 23 64 130 1
4 1993 140 290 0 23 65 110 0
5 1993 131 297 0 30 67 132 0
6 1993 129 284 1 20 66 130 1
7 1993 126 251 1 28 64 123 0
8 1993 100 264 0 28 60 111 1
1 1994 133 284 0 25 66 125 1
2 1994 115 275 0 25 61 155 1
3 1994 118 281 1 36 66 140 1
4 1994 103 273 1 22 64 110 1
5 1994 130 282 0 26 67 147 1
6 1994 114 283 1 15 64 117 1
7 1994 143 270 1 27 70 148 0
8 1994 107 273 1 26 65 135 0
1 1995 120 274 0 24 62 120 0
2 1995 136 288 0 23 62 217 0
3 1995 137 303 1 23 66 127 1
4 1995 120 279 1 23 67 135 0
5 1995 123 290 0 28 66 107 1
6 1995 115 290 0 31 62 95 0
7 1995 128 282 1 25 64 125 0
8 1995 115 276 1 20 62 105 1
1 1996 91 270 0 24 60 149 1
2 1996 163 289 1 25 64 126 1
3 1996 120 275 0 32 63 115 1
4 1996 139 260 1 32 64 127 0
5 1996 115 276 1 18 63 110 0
6 1996 98 272 1 35 64 129 0
7 1996 98 262 0 22 67 120 0
8 1996 91 292 1 26 61 113 1
1 1997 127 274 0 21 62 110 0
2 1997 131 285 0 26 64 130 0
3 1997 143 285 0 27 68 185 0
4 1997 123 254 0 26 62 130 1
5 1997 116 272 0 27 64 130 1
6 1997 128 283 0 27 67 126 0
7 1997 110 306 1 32 61 122 0
8 1997 112 287 0 27 64 110 1
1 1998 153 286 0 26 63 107 1
2 1998 77 238 0 38 67 135 1
3 1998 108 270 0 29 67 124 1
4 1998 104 280 1 23 64 107 1
5 1998 119 286 1 20 67 130 0
6 1998 119 271 0 28 64 175 1
7 1998 162 284 0 27 64 126 0
8 1998 125 289 1 31 61 120 0
1 1999 121 276 0 39 63 130 0
2 1999 124 283 1 33 67 156 1
3 1999 131 284 1 19 61 114 1
4 1999 111 270 0 22 59 103 0
5 1999 125 279 1 19 67 135 0
6 1999 154 288 0 25 65 147 0
7 1999 116 292 1 20 65 118 0
8 1999 157 291 0 33 65 121 0
1 2000 120 277 0 27 63 126 0
2 2000 104 270 1 26 62 115 0
3 2000 110 277 0 36 61 116 0
4 2000 122 277 0 32 63 157 1
5 2000 144 282 0 33 66 155 1
6 2000 127 247 1 21 63 140 0
7 2000 128 284 0 23 62 110 0
8 2000 108 256 1 26 67 130 0
1 2001 99 272 0 27 62 103 1
2 2001 102 267 1 24 61 109 1
3 2001 105 276 0 20 62 112 1
4 2001 116 271 1 30 67 144 1
5 2001 123 269 0 26 67 132 0
6 2001 131 263 0 29 64 180 1
7 2001 111 275 1 18 61 108 1
8 2001 130 279 0 31 62 122 0
1 2002 149 293 0 35 65 116 0
2 2002 94 268 0 30 62 105 1
3 2002 125 255 0 23 63 133 0
4 2002 129 277 0 27 68 130 1
5 2002 120 276 0 23 66 114 0
6 2002 129 288 0 28 59 102 0
7 2002 137 280 0 34 60 107 0
8 2002 135 289 0 25 64 127 0
1 2003 129 280 0 23 64 104 0
2 2003 158 295 1 37 70 137 0
3 2003 78 258 1 24 66 115 1
4 2003 133 292 0 30 65 112 1
5 2003 140 251 0 28 63 210 0
6 2003 114 286 1 22 64 116 1
7 2003 100 264 0 29 64 120 1
8 2003 123 277 0 24 66 122 0
1 2004 139 292 0 25 68 135 0
2 2004 112 275 1 21 68 143 1
3 2004 114 289 0 36 60 115 0
4 2004 110 277 0 25 61 130 0
5 2004 120 271 1 17 64 142 1
6 2004 110 280 0 29 62 110 1
7 2004 160 271 0 32 67 215 0
8 2004 100 281 0 24 61 115 0
is.data.frame(vy1) #kiểm tra "vy1" có phải là data frame không, nếu đúng thì true và ngược lại
## [1] TRUE

1.4 . Thông tin tổng quan


length(vy1) #cho ra số biến của "vy1"
## [1] 9
names(vy1) #cho ra tên các biến của "vy1"
## [1] "id"        "year"      "bwt"       "gestation" "parity"    "age"      
## [7] "height"    "weight"    "smoke"
dim(vy1) #cho ra số quan sát và số biến của "vy1"
## [1] 640   9
sum(is.na(vy1)) #cho ra tổng số object của "vy1"
## [1] 0
library(skimr) 
skim(vy1)
Data summary
Name vy1
Number of rows 640
Number of columns 9
_______________________
Column type frequency:
numeric 9
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
id 0 1 4.50 2.29 1 2.75 4.5 6.25 8 ▇▃▇▃▇
year 0 1 1964.50 23.11 1925 1944.75 1964.5 1984.25 2004 ▇▇▇▇▇
bwt 0 1 118.89 18.14 55 107.75 120.0 131.00 169 ▁▂▇▆▁
gestation 0 1 279.33 15.80 181 273.00 280.0 288.00 351 ▁▁▇▅▁
parity 0 1 0.31 0.46 0 0.00 0.0 1.00 1 ▇▁▁▁▃
age 0 1 27.28 5.86 15 23.00 26.0 31.00 45 ▃▇▅▂▁
height 0 1 64.10 2.50 53 62.00 64.0 66.00 71 ▁▁▅▇▁
weight 0 1 128.22 19.49 87 115.00 126.0 137.00 217 ▃▇▃▁▁
smoke 0 1 0.40 0.49 0 0.00 0.0 1.00 1 ▇▁▁▁▆

Mô tả

  • n_missing: số ô dữ liệu trống
  • complete_rate: tỷ lệ ô có dữ liệu
  • mean: trung bình
  • sd: độ lệch chuẩn
  • p0: giá trị min
  • p25: phân vị thứ nhất
  • p50: phân vị thứ hai(trung vị)
  • p75: phân vị thứ ba
  • p100: giá trị max
  • hist: biểu đồ Histogram
head(vy1,28) #lấy 28 dòng đầu từ "vy1"
##    id year bwt gestation parity age height weight smoke
## 1   1 1925 120       284      0  27     62    100     0
## 2   2 1925 112       267      1  22     62    138     0
## 3   3 1925 119       286      0  26     64    123     1
## 4   4 1925 124       287      0  27     62    105     1
## 5   5 1925 105       276      0  22     67    130     0
## 6   6 1925 120       289      1  31     59    102     0
## 7   7 1925  82       274      0  31     64    101     1
## 8   8 1925 111       278      0  29     65    145     1
## 9   1 1926 113       282      0  33     64    135     0
## 10  2 1926 134       297      0  27     67    170     1
## 11  3 1926  97       279      0  29     68    178     1
## 12  4 1926 125       292      0  22     65    122     0
## 13  5 1926  93       246      0  37     65    130     0
## 14  6 1926 146       280      0  23     61    145     0
## 15  7 1926 100       274      0  24     63    113     0
## 16  8 1926 103       250      0  40     59    140     0
## 17  1 1927 128       279      0  28     64    115     1
## 18  2 1927 145       308      0  35     64    110     1
## 19  3 1927  99       252      0  21     64    120     0
## 20  4 1927 110       262      0  25     66    140     0
## 21  5 1927 122       281      0  42     63    103     1
## 22  6 1927 112       283      1  21     62    102     1
## 23  7 1927 114       271      0  32     61    130     0
## 24  8 1927 114       276      0  26     62    127     0
## 25  1 1928 108       282      0  23     67    125     1
## 26  2 1928 116       295      0  32     65    120     0
## 27  3 1928 115       264      1  23     67    134     1
## 28  4 1928 125       279      0  23     63    104     1
tail(vy1,28) #lấy 28 dòng cuối từ "vy1"
##     id year bwt gestation parity age height weight smoke
## 613  5 2001 123       269      0  26     67    132     0
## 614  6 2001 131       263      0  29     64    180     1
## 615  7 2001 111       275      1  18     61    108     1
## 616  8 2001 130       279      0  31     62    122     0
## 617  1 2002 149       293      0  35     65    116     0
## 618  2 2002  94       268      0  30     62    105     1
## 619  3 2002 125       255      0  23     63    133     0
## 620  4 2002 129       277      0  27     68    130     1
## 621  5 2002 120       276      0  23     66    114     0
## 622  6 2002 129       288      0  28     59    102     0
## 623  7 2002 137       280      0  34     60    107     0
## 624  8 2002 135       289      0  25     64    127     0
## 625  1 2003 129       280      0  23     64    104     0
## 626  2 2003 158       295      1  37     70    137     0
## 627  3 2003  78       258      1  24     66    115     1
## 628  4 2003 133       292      0  30     65    112     1
## 629  5 2003 140       251      0  28     63    210     0
## 630  6 2003 114       286      1  22     64    116     1
## 631  7 2003 100       264      0  29     64    120     1
## 632  8 2003 123       277      0  24     66    122     0
## 633  1 2004 139       292      0  25     68    135     0
## 634  2 2004 112       275      1  21     68    143     1
## 635  3 2004 114       289      0  36     60    115     0
## 636  4 2004 110       277      0  25     61    130     0
## 637  5 2004 120       271      1  17     64    142     1
## 638  6 2004 110       280      0  29     62    110     1
## 639  7 2004 160       271      0  32     67    215     0
## 640  8 2004 100       281      0  24     61    115     0
is.na(vy1) # tìm ô không có dữ liệu trong "vy1", nếu "False" là có dữ liệu và ngược lại
##        id  year   bwt gestation parity   age height weight smoke
## 1   FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 2   FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 3   FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 4   FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 5   FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 6   FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 7   FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 8   FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 9   FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 10  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 11  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 12  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 13  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 14  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 15  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 16  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 17  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 18  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 19  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 20  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 21  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 22  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 23  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 24  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 25  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 26  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 27  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 28  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 29  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 30  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 31  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 32  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 33  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 34  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 35  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 36  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 37  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 38  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 39  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 40  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 41  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 42  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 43  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 44  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 45  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 46  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 47  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 48  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 49  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 50  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 51  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 52  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 53  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 54  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 55  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 56  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 57  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 58  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 59  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 60  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 61  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 62  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 63  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 64  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 65  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 66  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 67  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 68  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 69  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 70  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 71  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 72  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 73  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 74  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 75  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 76  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 77  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 78  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 79  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 80  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 81  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 82  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 83  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 84  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 85  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 86  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 87  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 88  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 89  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 90  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 91  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 92  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 93  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 94  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 95  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 96  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 97  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 98  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 99  FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 100 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 101 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 102 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 103 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 104 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 105 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 106 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 107 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 108 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 109 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 110 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 111 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 112 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 113 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 114 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 115 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 116 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 117 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 118 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 119 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 120 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 121 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 122 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 123 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 124 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 125 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 126 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 127 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 128 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 129 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 130 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 131 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 132 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 133 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 134 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 135 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 136 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 137 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 138 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 139 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 140 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 141 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 142 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 143 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 144 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 145 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 146 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 147 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 148 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 149 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 150 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 151 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 152 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 153 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 154 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 155 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 156 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 157 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 158 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 159 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 160 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 161 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 162 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 163 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 164 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 165 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 166 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 167 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 168 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 169 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 170 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 171 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 172 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 173 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 174 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 175 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 176 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 177 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 178 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 179 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 180 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 181 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 182 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 183 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 184 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 185 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 186 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 187 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 188 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 189 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 190 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 191 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 192 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 193 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 194 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 195 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 196 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 197 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 198 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 199 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 200 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 201 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 202 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 203 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 204 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 205 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 206 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 207 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 208 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 209 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 210 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 211 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 212 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 213 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 214 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 215 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 216 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 217 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 218 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 219 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 220 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 221 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 222 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 223 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 224 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 225 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 226 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 227 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 228 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 229 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 230 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 231 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 232 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 233 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 234 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 235 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 236 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 237 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 238 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 239 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 240 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 241 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 242 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 243 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 244 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 245 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 246 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 247 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 248 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 249 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 250 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 251 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 252 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 253 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 254 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 255 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 256 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 257 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 258 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 259 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 260 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 261 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 262 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 263 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 264 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 265 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 266 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 267 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 268 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 269 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 270 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 271 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 272 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 273 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 274 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 275 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 276 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 277 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 278 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 279 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 280 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 281 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 282 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 283 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 284 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 285 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 286 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 287 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 288 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 289 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 290 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 291 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 292 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 293 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 294 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 295 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 296 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 297 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 298 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 299 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 300 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 301 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 302 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 303 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 304 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 305 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 306 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 307 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 308 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 309 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 310 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 311 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 312 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 313 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 314 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 315 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 316 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 317 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 318 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 319 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 320 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 321 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 322 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 323 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 324 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 325 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 326 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 327 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 328 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 329 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 330 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 331 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 332 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 333 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 334 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 335 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 336 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 337 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 338 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 339 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 340 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 341 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 342 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 343 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 344 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 345 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 346 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 347 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 348 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 349 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 350 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 351 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 352 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 353 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 354 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 355 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 356 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 357 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 358 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 359 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 360 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 361 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 362 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 363 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 364 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 365 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 366 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 367 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 368 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 369 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 370 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 371 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 372 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 373 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 374 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 375 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 376 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 377 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 378 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 379 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 380 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 381 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 382 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 383 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 384 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 385 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 386 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 387 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 388 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 389 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 390 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 391 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 392 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 393 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 394 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 395 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 396 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 397 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 398 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 399 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 400 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 401 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 402 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 403 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 404 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 405 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 406 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 407 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 408 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 409 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 410 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 411 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 412 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 413 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 414 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 415 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 416 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 417 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 418 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 419 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 420 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 421 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 422 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 423 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 424 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 425 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 426 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 427 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 428 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 429 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 430 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 431 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 432 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 433 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 434 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 435 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 436 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 437 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 438 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 439 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 440 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 441 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 442 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 443 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 444 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 445 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 446 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 447 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 448 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 449 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 450 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 451 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 452 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 453 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 454 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 455 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 456 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 457 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 458 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 459 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 460 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 461 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 462 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 463 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 464 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 465 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 466 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 467 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 468 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 469 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 470 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 471 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 472 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 473 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 474 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 475 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 476 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 477 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 478 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 479 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 480 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 481 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 482 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 483 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 484 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 485 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 486 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 487 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 488 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 489 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 490 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 491 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 492 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 493 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 494 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 495 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 496 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 497 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 498 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 499 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 500 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 501 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 502 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 503 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 504 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 505 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 506 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 507 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 508 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 509 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 510 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 511 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 512 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 513 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 514 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 515 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 516 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 517 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 518 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 519 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 520 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 521 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 522 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 523 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 524 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 525 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 526 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 527 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 528 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 529 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 530 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 531 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 532 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 533 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 534 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 535 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 536 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 537 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 538 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 539 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 540 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 541 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 542 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 543 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 544 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 545 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 546 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 547 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 548 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 549 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 550 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 551 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 552 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 553 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 554 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 555 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 556 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 557 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 558 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 559 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 560 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 561 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 562 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 563 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 564 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 565 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 566 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 567 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 568 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 569 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 570 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 571 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 572 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 573 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 574 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 575 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 576 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 577 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 578 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 579 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 580 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 581 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 582 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 583 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 584 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 585 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 586 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 587 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 588 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 589 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 590 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 591 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 592 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 593 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 594 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 595 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 596 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 597 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 598 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 599 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 600 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 601 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 602 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 603 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 604 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 605 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 606 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 607 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 608 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 609 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 610 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 611 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 612 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 613 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 614 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 615 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 616 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 617 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 618 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 619 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 620 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 621 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 622 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 623 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 624 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 625 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 626 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 627 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 628 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 629 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 630 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 631 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 632 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 633 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 634 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 635 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 636 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 637 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 638 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 639 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## 640 FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
sum(is.na(vy1)) # cho biết tổng số ô trống trong "vy1'
## [1] 0
which(is.na(vy1)) # cho biết vị trí ô trống trong "vy1"
## integer(0)

1.5 . Xử lý dữ liệu bị trùng lắp


library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
vy <- unique(vy1) #lấy lượng biến của "vy1"
str(vy)
## 'data.frame':    640 obs. of  9 variables:
##  $ id       : num  1 2 3 4 5 6 7 8 1 2 ...
##  $ year     : num  1925 1925 1925 1925 1925 ...
##  $ bwt      : num  120 112 119 124 105 120 82 111 113 134 ...
##  $ gestation: num  284 267 286 287 276 289 274 278 282 297 ...
##  $ parity   : num  0 1 0 0 0 1 0 0 0 0 ...
##  $ age      : num  27 22 26 27 22 31 31 29 33 27 ...
##  $ height   : num  62 62 64 62 67 59 64 65 64 67 ...
##  $ weight   : num  100 138 123 105 130 102 101 145 135 170 ...
##  $ smoke    : num  0 0 1 1 0 0 1 1 0 1 ...
vyy <- distinct(vy1) #Loại bỏ trung lắp trong "vy1"
str(vyy)
## 'data.frame':    640 obs. of  9 variables:
##  $ id       : num  1 2 3 4 5 6 7 8 1 2 ...
##  $ year     : num  1925 1925 1925 1925 1925 ...
##  $ bwt      : num  120 112 119 124 105 120 82 111 113 134 ...
##  $ gestation: num  284 267 286 287 276 289 274 278 282 297 ...
##  $ parity   : num  0 1 0 0 0 1 0 0 0 0 ...
##  $ age      : num  27 22 26 27 22 31 31 29 33 27 ...
##  $ height   : num  62 62 64 62 67 59 64 65 64 67 ...
##  $ weight   : num  100 138 123 105 130 102 101 145 135 170 ...
##  $ smoke    : num  0 0 1 1 0 0 1 1 0 1 ...

1.6 . Rút trích dữ liệu


Mục đích của việc rút trích dữ liệu là để thu được những trường thông tin cần thiết nhằm phục vụ cho các mục tác vụ phân tích hoặc lưu trữ.


names(vy1) <- c("i", "y","b","g","p","a","h","w","s")
names(vy1)
## [1] "i" "y" "b" "g" "p" "a" "h" "w" "s"
vy2 <- vy1[5,3] #gán "vy2" là giá trị quan sát 5, biến 3
str(vy2)
##  num 105
vy3 <- vy1[1:5,4] # lấy giá trị 5 hàng đầu tiên biến "g"
str(vy3)
##  num [1:5] 284 267 286 287 276
vy4 <- vy1[c(1,2,3,4), c(3,4)] # lấy giá trị các quan sát 1,2,3,4 của biến "b" và "g"
str(vy4)
## 'data.frame':    4 obs. of  2 variables:
##  $ b: num  120 112 119 124
##  $ g: num  284 267 286 287
vy5 <- vy1[vy1$w >=100 & vy1$w <=108,] #Lấy giá trị những quan sát có giá trị ở biến "w" lớn hơn bằng 100 và bé hơn bằng 108
str(vy1)
## 'data.frame':    640 obs. of  9 variables:
##  $ i: num  1 2 3 4 5 6 7 8 1 2 ...
##  $ y: num  1925 1925 1925 1925 1925 ...
##  $ b: num  120 112 119 124 105 120 82 111 113 134 ...
##  $ g: num  284 267 286 287 276 289 274 278 282 297 ...
##  $ p: num  0 1 0 0 0 1 0 0 0 0 ...
##  $ a: num  27 22 26 27 22 31 31 29 33 27 ...
##  $ h: num  62 62 64 62 67 59 64 65 64 67 ...
##  $ w: num  100 138 123 105 130 102 101 145 135 170 ...
##  $ s: num  0 0 1 1 0 0 1 1 0 1 ...
vy6 <- vy1[vy1$w >130,] # lấy giá trị quan sát có giá trị ở biến "w" lớn hơn 130
str(vy6)
## 'data.frame':    233 obs. of  9 variables:
##  $ i: num  2 8 1 2 3 6 8 4 3 6 ...
##  $ y: num  1925 1925 1926 1926 1926 ...
##  $ b: num  112 111 113 134 97 146 103 110 115 132 ...
##  $ g: num  267 278 282 297 279 280 250 262 264 278 ...
##  $ p: num  1 0 0 0 0 0 0 0 1 0 ...
##  $ a: num  22 29 33 27 29 23 40 25 23 20 ...
##  $ h: num  62 65 64 67 68 61 59 66 67 64 ...
##  $ w: num  138 145 135 170 178 145 140 140 134 150 ...
##  $ s: num  0 1 0 1 1 0 0 0 1 1 ...
vy7 <- vy1[vy1$a == 30 | vy1$a == 40,] #lấy giá trị những quan sát ở biến "a" bằng 30 hoặc bằng 40
str(vy1)
## 'data.frame':    640 obs. of  9 variables:
##  $ i: num  1 2 3 4 5 6 7 8 1 2 ...
##  $ y: num  1925 1925 1925 1925 1925 ...
##  $ b: num  120 112 119 124 105 120 82 111 113 134 ...
##  $ g: num  284 267 286 287 276 289 274 278 282 297 ...
##  $ p: num  0 1 0 0 0 1 0 0 0 0 ...
##  $ a: num  27 22 26 27 22 31 31 29 33 27 ...
##  $ h: num  62 62 64 62 67 59 64 65 64 67 ...
##  $ w: num  100 138 123 105 130 102 101 145 135 170 ...
##  $ s: num  0 0 1 1 0 0 1 1 0 1 ...
vy8 <- filter(vy1,vy1$a >= 27 & vy1$g > 290) # lấy những quan sát có tuổi của mẹ lớn hơn hoặc bằng 27 và thời gian mang thai lớn hơn 290 ngày
str(vy8)
## 'data.frame':    61 obs. of  9 variables:
##  $ i: num  2 2 2 4 8 3 6 7 2 1 ...
##  $ y: num  1926 1927 1928 1929 1929 ...
##  $ b: num  134 145 116 138 169 144 128 152 109 143 ...
##  $ g: num  297 308 295 294 296 304 292 295 291 299 ...
##  $ p: num  0 0 0 0 0 1 0 0 0 0 ...
##  $ a: num  27 35 32 40 33 27 32 39 39 30 ...
##  $ h: num  67 64 65 64 67 58 66 62 64 66 ...
##  $ w: num  170 110 120 125 185 102 130 140 107 136 ...
##  $ s: num  1 1 0 0 0 1 0 0 0 1 ...
library(dplyr)
vy9 <- select(vy1,a,y,s) #chỉ lấy những biến tuổi của mẹ, năm lấy số liệu và hút thuốc lúc mang thai trong object "vy1"
str(vy9)
## 'data.frame':    640 obs. of  3 variables:
##  $ a: num  27 22 26 27 22 31 31 29 33 27 ...
##  $ y: num  1925 1925 1925 1925 1925 ...
##  $ s: num  0 0 1 1 0 0 1 1 0 1 ...
vy10 <- filter(vy1,a < 27 & w > 170) %>% select (i,a,h) # lấy những biến khu vực, tuổi, chiều cao với điều kiện quan sát có tuổi bé hơn 27 và cân nặng lớn hơn 170 pound
str(vy10)
## 'data.frame':    5 obs. of  3 variables:
##  $ i: num  2 2 1 1 2
##  $ a: num  22 26 20 23 23
##  $ h: num  63 66 65 63 62

1.7 . Tạo dữ liệu mới từ dữ liệu có sẵn


Tạo ra object mới là “vyx” từ object cũ là “vy1”. Có thêm các biến mới là: - tmg: thời gian mang thai tính bằng tháng - gra: trọng lượng lúc sinh tính bằng gram - kha: khả năng mang thai ở mức 30 tuổi ( trên 30 tuổi và dưới 30 tuổi) - dukien: dự kiến thời gian sinh em bé

vyx <- mutate(vy1, tmg= g/30) %>% mutate(vy1, gra= b*28.3495) #thêm biến thời gian mang thai tính bằng tháng và trọng lượng lúc sinh tính bằng gram
str(vyx)
## 'data.frame':    640 obs. of  11 variables:
##  $ i  : num  1 2 3 4 5 6 7 8 1 2 ...
##  $ y  : num  1925 1925 1925 1925 1925 ...
##  $ b  : num  120 112 119 124 105 120 82 111 113 134 ...
##  $ g  : num  284 267 286 287 276 289 274 278 282 297 ...
##  $ p  : num  0 1 0 0 0 1 0 0 0 0 ...
##  $ a  : num  27 22 26 27 22 31 31 29 33 27 ...
##  $ h  : num  62 62 64 62 67 59 64 65 64 67 ...
##  $ w  : num  100 138 123 105 130 102 101 145 135 170 ...
##  $ s  : num  0 0 1 1 0 0 1 1 0 1 ...
##  $ tmg: num  9.47 8.9 9.53 9.57 9.2 ...
##  $ gra: num  3402 3175 3374 3515 2977 ...
vyx$kha <- ifelse(vyx$a > 30 ,'thấp', 'cao') #thêm biến xác định khả năng mang thay trong ngoài 30 tuổi
str(vyx)
## 'data.frame':    640 obs. of  12 variables:
##  $ i  : num  1 2 3 4 5 6 7 8 1 2 ...
##  $ y  : num  1925 1925 1925 1925 1925 ...
##  $ b  : num  120 112 119 124 105 120 82 111 113 134 ...
##  $ g  : num  284 267 286 287 276 289 274 278 282 297 ...
##  $ p  : num  0 1 0 0 0 1 0 0 0 0 ...
##  $ a  : num  27 22 26 27 22 31 31 29 33 27 ...
##  $ h  : num  62 62 64 62 67 59 64 65 64 67 ...
##  $ w  : num  100 138 123 105 130 102 101 145 135 170 ...
##  $ s  : num  0 0 1 1 0 0 1 1 0 1 ...
##  $ tmg: num  9.47 8.9 9.53 9.57 9.2 ...
##  $ gra: num  3402 3175 3374 3515 2977 ...
##  $ kha: chr  "cao" "cao" "cao" "cao" ...
vyx$dukien <- case_when(vyx$g< 266 ~ 'sớm hơn dự kiến' , vyx$g < 280 ~ 'dự kiến' , vyx$g > 280 ~ ' trễ hơn dự kiến') # thêm biến dự kiến thời gian sinh
str(vyx)
## 'data.frame':    640 obs. of  13 variables:
##  $ i     : num  1 2 3 4 5 6 7 8 1 2 ...
##  $ y     : num  1925 1925 1925 1925 1925 ...
##  $ b     : num  120 112 119 124 105 120 82 111 113 134 ...
##  $ g     : num  284 267 286 287 276 289 274 278 282 297 ...
##  $ p     : num  0 1 0 0 0 1 0 0 0 0 ...
##  $ a     : num  27 22 26 27 22 31 31 29 33 27 ...
##  $ h     : num  62 62 64 62 67 59 64 65 64 67 ...
##  $ w     : num  100 138 123 105 130 102 101 145 135 170 ...
##  $ s     : num  0 0 1 1 0 0 1 1 0 1 ...
##  $ tmg   : num  9.47 8.9 9.53 9.57 9.2 ...
##  $ gra   : num  3402 3175 3374 3515 2977 ...
##  $ kha   : chr  "cao" "cao" "cao" "cao" ...
##  $ dukien: chr  " trễ hơn dự kiến" "dự kiến" " trễ hơn dự kiến" " trễ hơn dự kiến" ...

1.8 . Bảng tần số


table(vyx$dukien) # tần số của biến dự kiến thời gian sinh
## 
##  trễ hơn dự kiến          dự kiến  sớm hơn dự kiến 
##              319              217               82
stem(vyx$tmg) # biểu đồ nhánh của biến thời gian mang thai theo tháng
## 
##   The decimal point is at the |
## 
##    6 | 0
##    6 | 8
##    7 | 4
##    7 | 5677788999
##    8 | 01112222222223333344444
##    8 | 55555555666666667777777777777777788888888888889999999999999999999999
##    9 | 00000000000000000000000000000000000001111111111111111111111111111111+208
##    9 | 55555555555555555555555555555555555555555555555555555555555555566666+121
##   10 | 00000000011111111122222222334444
##   10 | 55566788
##   11 | 03
##   11 | 7

2 . NHIỆM VỤ 2.2

2.1 . Tóm tắt


Nhiệm vụ 2.2 thực hiện thao tác trên datasets Financial Sample Excel, là 1 dataset thống kê tình hình tài chính nổi bật của một số thị trường trên thế giới giai đoạn 2013-2014.

2.2 . Mô tả cơ bản


Datasets có 1006 quan sát và 16 biến như sau:

  • Segment: thị trường
  • Country: quốc gia
  • Product: sản phẩm tài chính
  • Discount Band: đánh giá mức độ rủi ro
  • Units Sold: số lượng sản phẩm hoặc dịch vụ đã bán
  • Manufacturing Price: chi phí sản xuất của 1 sản phẩm dịch vụ -
  • Sale Price: giá bán
  • Gross Sales: tổng doanh thu
  • Discounts: chiết khấu
  • Sales: doanh số bán hàng
  • COGS: số tiền chi trả sản xuất hoặc mua hàng hóa dịch vụ ảnh hưởng trực tiếp đến hoạt động tổ chức ( Cost of goods sold)
  • Profit: lợi nhuận
  • Date: ngày giá trị
  • Month Number: số thứ tự tháng trong năm
  • Month Name: tên tháng trong năm
  • Year: năm thu thập số liệu
library(openxlsx)
navy <- read.xlsx("/Users/xuyenchi/Library/Containers/com.microsoft.Excel/Data/Downloads/R Code/Financial Sample.xlsx") #Đọc dữ liệu từ file excel
table <- knitr::kable(navy,format="markdown")
table 
Segment Country Product Discount.Band Units.Sold Manufacturing.Price Sale.Price Gross.Sales Discounts Sales COGS Profit Date Month.Number Month.Name Year
Government Canada Carretera None 1618.5 3 20 32370.0 0.000 32370.000 16185.0 16185.000 41640 1 January 2014
Government Germany Carretera None 1321.0 3 20 26420.0 0.000 26420.000 13210.0 13210.000 41640 1 January 2014
Midmarket France Carretera None 2178.0 3 15 32670.0 0.000 32670.000 21780.0 10890.000 41791 6 June 2014
Midmarket Germany Carretera None 888.0 3 15 13320.0 0.000 13320.000 8880.0 4440.000 41791 6 June 2014
Midmarket Mexico Carretera None 2470.0 3 15 37050.0 0.000 37050.000 24700.0 12350.000 41791 6 June 2014
Government Germany Carretera None 1513.0 3 350 529550.0 0.000 529550.000 393380.0 136170.000 41974 12 December 2014
Midmarket Germany Montana None 921.0 5 15 13815.0 0.000 13815.000 9210.0 4605.000 41699 3 March 2014
Channel Partners Canada Montana None 2518.0 5 12 30216.0 0.000 30216.000 7554.0 22662.000 41791 6 June 2014
Government France Montana None 1899.0 5 20 37980.0 0.000 37980.000 18990.0 18990.000 41791 6 June 2014
Channel Partners Germany Montana None 1545.0 5 12 18540.0 0.000 18540.000 4635.0 13905.000 41791 6 June 2014
Midmarket Mexico Montana None 2470.0 5 15 37050.0 0.000 37050.000 24700.0 12350.000 41791 6 June 2014
Enterprise Canada Montana None 2665.5 5 125 333187.5 0.000 333187.500 319860.0 13327.500 41821 7 July 2014
Small Business Mexico Montana None 958.0 5 300 287400.0 0.000 287400.000 239500.0 47900.000 41852 8 August 2014
Government Germany Montana None 2146.0 5 7 15022.0 0.000 15022.000 10730.0 4292.000 41883 9 September 2014
Enterprise Canada Montana None 345.0 5 125 43125.0 0.000 43125.000 41400.0 1725.000 41548 10 October 2013
Midmarket United States of America Montana None 615.0 5 15 9225.0 0.000 9225.000 6150.0 3075.000 41974 12 December 2014
Government Canada Paseo None 292.0 10 20 5840.0 0.000 5840.000 2920.0 2920.000 41671 2 February 2014
Midmarket Mexico Paseo None 974.0 10 15 14610.0 0.000 14610.000 9740.0 4870.000 41671 2 February 2014
Channel Partners Canada Paseo None 2518.0 10 12 30216.0 0.000 30216.000 7554.0 22662.000 41791 6 June 2014
Government Germany Paseo None 1006.0 10 350 352100.0 0.000 352100.000 261560.0 90540.000 41791 6 June 2014
Channel Partners Germany Paseo None 367.0 10 12 4404.0 0.000 4404.000 1101.0 3303.000 41821 7 July 2014
Government Mexico Paseo None 883.0 10 7 6181.0 0.000 6181.000 4415.0 1766.000 41852 8 August 2014
Midmarket France Paseo None 549.0 10 15 8235.0 0.000 8235.000 5490.0 2745.000 41518 9 September 2013
Small Business Mexico Paseo None 788.0 10 300 236400.0 0.000 236400.000 197000.0 39400.000 41518 9 September 2013
Midmarket Mexico Paseo None 2472.0 10 15 37080.0 0.000 37080.000 24720.0 12360.000 41883 9 September 2014
Government United States of America Paseo None 1143.0 10 7 8001.0 0.000 8001.000 5715.0 2286.000 41913 10 October 2014
Government Canada Paseo None 1725.0 10 350 603750.0 0.000 603750.000 448500.0 155250.000 41579 11 November 2013
Channel Partners United States of America Paseo None 912.0 10 12 10944.0 0.000 10944.000 2736.0 8208.000 41579 11 November 2013
Midmarket Canada Paseo None 2152.0 10 15 32280.0 0.000 32280.000 21520.0 10760.000 41609 12 December 2013
Government Canada Paseo None 1817.0 10 20 36340.0 0.000 36340.000 18170.0 18170.000 41974 12 December 2014
Government Germany Paseo None 1513.0 10 350 529550.0 0.000 529550.000 393380.0 136170.000 41974 12 December 2014
Government Mexico Velo None 1493.0 120 7 10451.0 0.000 10451.000 7465.0 2986.000 41640 1 January 2014
Enterprise France Velo None 1804.0 120 125 225500.0 0.000 225500.000 216480.0 9020.000 41671 2 February 2014
Channel Partners Germany Velo None 2161.0 120 12 25932.0 0.000 25932.000 6483.0 19449.000 41699 3 March 2014
Government Germany Velo None 1006.0 120 350 352100.0 0.000 352100.000 261560.0 90540.000 41791 6 June 2014
Channel Partners Germany Velo None 1545.0 120 12 18540.0 0.000 18540.000 4635.0 13905.000 41791 6 June 2014
Enterprise United States of America Velo None 2821.0 120 125 352625.0 0.000 352625.000 338520.0 14105.000 41852 8 August 2014
Enterprise Canada Velo None 345.0 120 125 43125.0 0.000 43125.000 41400.0 1725.000 41548 10 October 2013
Small Business Canada VTT None 2001.0 250 300 600300.0 0.000 600300.000 500250.0 100050.000 41671 2 February 2014
Channel Partners Germany VTT None 2838.0 250 12 34056.0 0.000 34056.000 8514.0 25542.000 41730 4 April 2014
Midmarket France VTT None 2178.0 250 15 32670.0 0.000 32670.000 21780.0 10890.000 41791 6 June 2014
Midmarket Germany VTT None 888.0 250 15 13320.0 0.000 13320.000 8880.0 4440.000 41791 6 June 2014
Government France VTT None 1527.0 250 350 534450.0 0.000 534450.000 397020.0 137430.000 41518 9 September 2013
Small Business France VTT None 2151.0 250 300 645300.0 0.000 645300.000 537750.0 107550.000 41883 9 September 2014
Government Canada VTT None 1817.0 250 20 36340.0 0.000 36340.000 18170.0 18170.000 41974 12 December 2014
Government France Amarilla None 2750.0 260 350 962500.0 0.000 962500.000 715000.0 247500.000 41671 2 February 2014
Channel Partners United States of America Amarilla None 1953.0 260 12 23436.0 0.000 23436.000 5859.0 17577.000 41730 4 April 2014
Enterprise Germany Amarilla None 4219.5 260 125 527437.5 0.000 527437.500 506340.0 21097.500 41730 4 April 2014
Government France Amarilla None 1899.0 260 20 37980.0 0.000 37980.000 18990.0 18990.000 41791 6 June 2014
Government Germany Amarilla None 1686.0 260 7 11802.0 0.000 11802.000 8430.0 3372.000 41821 7 July 2014
Channel Partners United States of America Amarilla None 2141.0 260 12 25692.0 0.000 25692.000 6423.0 19269.000 41852 8 August 2014
Government United States of America Amarilla None 1143.0 260 7 8001.0 0.000 8001.000 5715.0 2286.000 41913 10 October 2014
Midmarket United States of America Amarilla None 615.0 260 15 9225.0 0.000 9225.000 6150.0 3075.000 41974 12 December 2014
Government France Paseo Low 3945.0 10 7 27615.0 276.150 27338.850 19725.0 7613.850 41640 1 January 2014
Midmarket France Paseo Low 2296.0 10 15 34440.0 344.400 34095.600 22960.0 11135.600 41671 2 February 2014
Government France Paseo Low 1030.0 10 7 7210.0 72.100 7137.900 5150.0 1987.900 41760 5 May 2014
Government France Velo Low 639.0 120 7 4473.0 44.730 4428.270 3195.0 1233.270 41944 11 November 2014
Government Canada VTT Low 1326.0 250 7 9282.0 92.820 9189.180 6630.0 2559.180 41699 3 March 2014
Channel Partners United States of America Carretera Low 1858.0 3 12 22296.0 222.960 22073.040 5574.0 16499.040 41671 2 February 2014
Government Mexico Carretera Low 1210.0 3 350 423500.0 4235.000 419265.000 314600.0 104665.000 41699 3 March 2014
Government United States of America Carretera Low 2529.0 3 7 17703.0 177.030 17525.970 12645.0 4880.970 41821 7 July 2014
Channel Partners Canada Carretera Low 1445.0 3 12 17340.0 173.400 17166.600 4335.0 12831.600 41883 9 September 2014
Enterprise United States of America Carretera Low 330.0 3 125 41250.0 412.500 40837.500 39600.0 1237.500 41518 9 September 2013
Channel Partners France Carretera Low 2671.0 3 12 32052.0 320.520 31731.480 8013.0 23718.480 41883 9 September 2014
Channel Partners Germany Carretera Low 766.0 3 12 9192.0 91.920 9100.080 2298.0 6802.080 41548 10 October 2013
Small Business Mexico Carretera Low 494.0 3 300 148200.0 1482.000 146718.000 123500.0 23218.000 41548 10 October 2013
Government Mexico Carretera Low 1397.0 3 350 488950.0 4889.500 484060.500 363220.0 120840.500 41913 10 October 2014
Government France Carretera Low 2155.0 3 350 754250.0 7542.500 746707.500 560300.0 186407.500 41974 12 December 2014
Midmarket Mexico Montana Low 2214.0 5 15 33210.0 332.100 32877.900 22140.0 10737.900 41699 3 March 2014
Small Business United States of America Montana Low 2301.0 5 300 690300.0 6903.000 683397.000 575250.0 108147.000 41730 4 April 2014
Government France Montana Low 1375.5 5 20 27510.0 275.100 27234.900 13755.0 13479.900 41821 7 July 2014
Government Canada Montana Low 1830.0 5 7 12810.0 128.100 12681.900 9150.0 3531.900 41852 8 August 2014
Small Business United States of America Montana Low 2498.0 5 300 749400.0 7494.000 741906.000 624500.0 117406.000 41518 9 September 2013
Enterprise United States of America Montana Low 663.0 5 125 82875.0 828.750 82046.250 79560.0 2486.250 41548 10 October 2013
Midmarket United States of America Paseo Low 1514.0 10 15 22710.0 227.100 22482.900 15140.0 7342.900 41671 2 February 2014
Government United States of America Paseo Low 4492.5 10 7 31447.5 314.475 31133.025 22462.5 8670.525 41730 4 April 2014
Enterprise United States of America Paseo Low 727.0 10 125 90875.0 908.750 89966.250 87240.0 2726.250 41791 6 June 2014
Enterprise France Paseo Low 787.0 10 125 98375.0 983.750 97391.250 94440.0 2951.250 41791 6 June 2014
Enterprise Mexico Paseo Low 1823.0 10 125 227875.0 2278.750 225596.250 218760.0 6836.250 41821 7 July 2014
Midmarket Germany Paseo Low 747.0 10 15 11205.0 112.050 11092.950 7470.0 3622.950 41883 9 September 2014
Channel Partners Germany Paseo Low 766.0 10 12 9192.0 91.920 9100.080 2298.0 6802.080 41548 10 October 2013
Small Business United States of America Paseo Low 2905.0 10 300 871500.0 8715.000 862785.000 726250.0 136535.000 41944 11 November 2014
Government France Paseo Low 2155.0 10 350 754250.0 7542.500 746707.500 560300.0 186407.500 41974 12 December 2014
Government France Velo Low 3864.0 120 20 77280.0 772.800 76507.200 38640.0 37867.200 41730 4 April 2014
Government Mexico Velo Low 362.0 120 7 2534.0 25.340 2508.660 1810.0 698.660 41760 5 May 2014
Enterprise Canada Velo Low 923.0 120 125 115375.0 1153.750 114221.250 110760.0 3461.250 41852 8 August 2014
Enterprise United States of America Velo Low 663.0 120 125 82875.0 828.750 82046.250 79560.0 2486.250 41548 10 October 2013
Government Canada Velo Low 2092.0 120 7 14644.0 146.440 14497.560 10460.0 4037.560 41579 11 November 2013
Government Germany VTT Low 263.0 250 7 1841.0 18.410 1822.590 1315.0 507.590 41699 3 March 2014
Government Canada VTT Low 943.5 250 350 330225.0 3302.250 326922.750 245310.0 81612.750 41730 4 April 2014
Enterprise United States of America VTT Low 727.0 250 125 90875.0 908.750 89966.250 87240.0 2726.250 41791 6 June 2014
Enterprise France VTT Low 787.0 250 125 98375.0 983.750 97391.250 94440.0 2951.250 41791 6 June 2014
Small Business Germany VTT Low 986.0 250 300 295800.0 2958.000 292842.000 246500.0 46342.000 41883 9 September 2014
Small Business Mexico VTT Low 494.0 250 300 148200.0 1482.000 146718.000 123500.0 23218.000 41548 10 October 2013
Government Mexico VTT Low 1397.0 250 350 488950.0 4889.500 484060.500 363220.0 120840.500 41913 10 October 2014
Enterprise France VTT Low 1744.0 250 125 218000.0 2180.000 215820.000 209280.0 6540.000 41944 11 November 2014
Channel Partners United States of America Amarilla Low 1989.0 260 12 23868.0 238.680 23629.320 5967.0 17662.320 41518 9 September 2013
Midmarket France Amarilla Low 321.0 260 15 4815.0 48.150 4766.850 3210.0 1556.850 41579 11 November 2013
Enterprise Canada Carretera Low 742.5 3 125 92812.5 1856.250 90956.250 89100.0 1856.250 41730 4 April 2014
Channel Partners Canada Carretera Low 1295.0 3 12 15540.0 310.800 15229.200 3885.0 11344.200 41913 10 October 2014
Small Business Germany Carretera Low 214.0 3 300 64200.0 1284.000 62916.000 53500.0 9416.000 41548 10 October 2013
Government France Carretera Low 2145.0 3 7 15015.0 300.300 14714.700 10725.0 3989.700 41579 11 November 2013
Government Canada Carretera Low 2852.0 3 350 998200.0 19964.000 978236.000 741520.0 236716.000 41974 12 December 2014
Channel Partners United States of America Montana Low 1142.0 5 12 13704.0 274.080 13429.920 3426.0 10003.920 41791 6 June 2014
Government United States of America Montana Low 1566.0 5 20 31320.0 626.400 30693.600 15660.0 15033.600 41913 10 October 2014
Channel Partners Mexico Montana Low 690.0 5 12 8280.0 165.600 8114.400 2070.0 6044.400 41944 11 November 2014
Enterprise Mexico Montana Low 1660.0 5 125 207500.0 4150.000 203350.000 199200.0 4150.000 41579 11 November 2013
Midmarket Canada Paseo Low 2363.0 10 15 35445.0 708.900 34736.100 23630.0 11106.100 41671 2 February 2014
Small Business France Paseo Low 918.0 10 300 275400.0 5508.000 269892.000 229500.0 40392.000 41760 5 May 2014
Small Business Germany Paseo Low 1728.0 10 300 518400.0 10368.000 508032.000 432000.0 76032.000 41760 5 May 2014
Channel Partners United States of America Paseo Low 1142.0 10 12 13704.0 274.080 13429.920 3426.0 10003.920 41791 6 June 2014
Enterprise Mexico Paseo Low 662.0 10 125 82750.0 1655.000 81095.000 79440.0 1655.000 41791 6 June 2014
Channel Partners Canada Paseo Low 1295.0 10 12 15540.0 310.800 15229.200 3885.0 11344.200 41913 10 October 2014
Enterprise Germany Paseo Low 809.0 10 125 101125.0 2022.500 99102.500 97080.0 2022.500 41548 10 October 2013
Enterprise Mexico Paseo Low 2145.0 10 125 268125.0 5362.500 262762.500 257400.0 5362.500 41548 10 October 2013
Channel Partners France Paseo Low 1785.0 10 12 21420.0 428.400 20991.600 5355.0 15636.600 41579 11 November 2013
Small Business Canada Paseo Low 1916.0 10 300 574800.0 11496.000 563304.000 479000.0 84304.000 41974 12 December 2014
Government Canada Paseo Low 2852.0 10 350 998200.0 19964.000 978236.000 741520.0 236716.000 41974 12 December 2014
Enterprise Canada Paseo Low 2729.0 10 125 341125.0 6822.500 334302.500 327480.0 6822.500 41974 12 December 2014
Midmarket United States of America Paseo Low 1925.0 10 15 28875.0 577.500 28297.500 19250.0 9047.500 41609 12 December 2013
Government United States of America Paseo Low 2013.0 10 7 14091.0 281.820 13809.180 10065.0 3744.180 41609 12 December 2013
Channel Partners France Paseo Low 1055.0 10 12 12660.0 253.200 12406.800 3165.0 9241.800 41974 12 December 2014
Channel Partners Mexico Paseo Low 1084.0 10 12 13008.0 260.160 12747.840 3252.0 9495.840 41974 12 December 2014
Government United States of America Velo Low 1566.0 120 20 31320.0 626.400 30693.600 15660.0 15033.600 41913 10 October 2014
Government Germany Velo Low 2966.0 120 350 1038100.0 20762.000 1017338.000 771160.0 246178.000 41548 10 October 2013
Government Germany Velo Low 2877.0 120 350 1006950.0 20139.000 986811.000 748020.0 238791.000 41913 10 October 2014
Enterprise Germany Velo Low 809.0 120 125 101125.0 2022.500 99102.500 97080.0 2022.500 41548 10 October 2013
Enterprise Mexico Velo Low 2145.0 120 125 268125.0 5362.500 262762.500 257400.0 5362.500 41548 10 October 2013
Channel Partners France Velo Low 1055.0 120 12 12660.0 253.200 12406.800 3165.0 9241.800 41974 12 December 2014
Government Mexico Velo Low 544.0 120 20 10880.0 217.600 10662.400 5440.0 5222.400 41609 12 December 2013
Channel Partners Mexico Velo Low 1084.0 120 12 13008.0 260.160 12747.840 3252.0 9495.840 41974 12 December 2014
Enterprise Mexico VTT Low 662.0 250 125 82750.0 1655.000 81095.000 79440.0 1655.000 41791 6 June 2014
Small Business Germany VTT Low 214.0 250 300 64200.0 1284.000 62916.000 53500.0 9416.000 41548 10 October 2013
Government Germany VTT Low 2877.0 250 350 1006950.0 20139.000 986811.000 748020.0 238791.000 41913 10 October 2014
Enterprise Canada VTT Low 2729.0 250 125 341125.0 6822.500 334302.500 327480.0 6822.500 41974 12 December 2014
Government United States of America VTT Low 266.0 250 350 93100.0 1862.000 91238.000 69160.0 22078.000 41609 12 December 2013
Government Mexico VTT Low 1940.0 250 350 679000.0 13580.000 665420.000 504400.0 161020.000 41609 12 December 2013
Small Business Germany Amarilla Low 259.0 260 300 77700.0 1554.000 76146.000 64750.0 11396.000 41699 3 March 2014
Small Business Mexico Amarilla Low 1101.0 260 300 330300.0 6606.000 323694.000 275250.0 48444.000 41699 3 March 2014
Enterprise Germany Amarilla Low 2276.0 260 125 284500.0 5690.000 278810.000 273120.0 5690.000 41760 5 May 2014
Government Germany Amarilla Low 2966.0 260 350 1038100.0 20762.000 1017338.000 771160.0 246178.000 41548 10 October 2013
Government United States of America Amarilla Low 1236.0 260 20 24720.0 494.400 24225.600 12360.0 11865.600 41944 11 November 2014
Government France Amarilla Low 941.0 260 20 18820.0 376.400 18443.600 9410.0 9033.600 41944 11 November 2014
Small Business Canada Amarilla Low 1916.0 260 300 574800.0 11496.000 563304.000 479000.0 84304.000 41974 12 December 2014
Enterprise France Carretera Low 4243.5 3 125 530437.5 15913.125 514524.375 509220.0 5304.375 41730 4 April 2014
Government Germany Carretera Low 2580.0 3 20 51600.0 1548.000 50052.000 25800.0 24252.000 41730 4 April 2014
Small Business Germany Carretera Low 689.0 3 300 206700.0 6201.000 200499.000 172250.0 28249.000 41791 6 June 2014
Channel Partners United States of America Carretera Low 1947.0 3 12 23364.0 700.920 22663.080 5841.0 16822.080 41883 9 September 2014
Channel Partners Canada Carretera Low 908.0 3 12 10896.0 326.880 10569.120 2724.0 7845.120 41609 12 December 2013
Government Germany Montana Low 1958.0 5 7 13706.0 411.180 13294.820 9790.0 3504.820 41671 2 February 2014
Channel Partners France Montana Low 1901.0 5 12 22812.0 684.360 22127.640 5703.0 16424.640 41791 6 June 2014
Government France Montana Low 544.0 5 7 3808.0 114.240 3693.760 2720.0 973.760 41883 9 September 2014
Government Germany Montana Low 1797.0 5 350 628950.0 18868.500 610081.500 467220.0 142861.500 41518 9 September 2013
Enterprise France Montana Low 1287.0 5 125 160875.0 4826.250 156048.750 154440.0 1608.750 41974 12 December 2014
Enterprise Germany Montana Low 1706.0 5 125 213250.0 6397.500 206852.500 204720.0 2132.500 41974 12 December 2014
Small Business France Paseo Low 2434.5 10 300 730350.0 21910.500 708439.500 608625.0 99814.500 41640 1 January 2014
Enterprise Canada Paseo Low 1774.0 10 125 221750.0 6652.500 215097.500 212880.0 2217.500 41699 3 March 2014
Channel Partners France Paseo Low 1901.0 10 12 22812.0 684.360 22127.640 5703.0 16424.640 41791 6 June 2014
Small Business Germany Paseo Low 689.0 10 300 206700.0 6201.000 200499.000 172250.0 28249.000 41791 6 June 2014
Enterprise Germany Paseo Low 1570.0 10 125 196250.0 5887.500 190362.500 188400.0 1962.500 41791 6 June 2014
Channel Partners United States of America Paseo Low 1369.5 10 12 16434.0 493.020 15940.980 4108.5 11832.480 41821 7 July 2014
Enterprise Canada Paseo Low 2009.0 10 125 251125.0 7533.750 243591.250 241080.0 2511.250 41913 10 October 2014
Midmarket Germany Paseo Low 1945.0 10 15 29175.0 875.250 28299.750 19450.0 8849.750 41548 10 October 2013
Enterprise France Paseo Low 1287.0 10 125 160875.0 4826.250 156048.750 154440.0 1608.750 41974 12 December 2014
Enterprise Germany Paseo Low 1706.0 10 125 213250.0 6397.500 206852.500 204720.0 2132.500 41974 12 December 2014
Enterprise Canada Velo Low 2009.0 120 125 251125.0 7533.750 243591.250 241080.0 2511.250 41913 10 October 2014
Small Business United States of America VTT Low 2844.0 250 300 853200.0 25596.000 827604.000 711000.0 116604.000 41671 2 February 2014
Channel Partners Mexico VTT Low 1916.0 250 12 22992.0 689.760 22302.240 5748.0 16554.240 41730 4 April 2014
Enterprise Germany VTT Low 1570.0 250 125 196250.0 5887.500 190362.500 188400.0 1962.500 41791 6 June 2014
Small Business Canada VTT Low 1874.0 250 300 562200.0 16866.000 545334.000 468500.0 76834.000 41852 8 August 2014
Government Mexico VTT Low 1642.0 250 350 574700.0 17241.000 557459.000 426920.0 130539.000 41852 8 August 2014
Midmarket Germany VTT Low 1945.0 250 15 29175.0 875.250 28299.750 19450.0 8849.750 41548 10 October 2013
Government Canada Carretera Low 831.0 3 20 16620.0 498.600 16121.400 8310.0 7811.400 41760 5 May 2014
Government Mexico Paseo Low 1760.0 10 7 12320.0 369.600 11950.400 8800.0 3150.400 41518 9 September 2013
Government Canada Velo Low 3850.5 120 20 77010.0 2310.300 74699.700 38505.0 36194.700 41730 4 April 2014
Channel Partners Germany VTT Low 2479.0 250 12 29748.0 892.440 28855.560 7437.0 21418.560 41640 1 January 2014
Midmarket Mexico Montana Low 2031.0 5 15 30465.0 1218.600 29246.400 20310.0 8936.400 41913 10 October 2014
Midmarket Mexico Paseo Low 2031.0 10 15 30465.0 1218.600 29246.400 20310.0 8936.400 41913 10 October 2014
Midmarket France Paseo Low 2261.0 10 15 33915.0 1356.600 32558.400 22610.0 9948.400 41609 12 December 2013
Government United States of America Velo Low 736.0 120 20 14720.0 588.800 14131.200 7360.0 6771.200 41518 9 September 2013
Government Canada Carretera Low 2851.0 3 7 19957.0 798.280 19158.720 14255.0 4903.720 41548 10 October 2013
Small Business Germany Carretera Low 2021.0 3 300 606300.0 24252.000 582048.000 505250.0 76798.000 41913 10 October 2014
Government United States of America Carretera Low 274.0 3 350 95900.0 3836.000 92064.000 71240.0 20824.000 41974 12 December 2014
Midmarket Canada Montana Low 1967.0 5 15 29505.0 1180.200 28324.800 19670.0 8654.800 41699 3 March 2014
Small Business Germany Montana Low 1859.0 5 300 557700.0 22308.000 535392.000 464750.0 70642.000 41852 8 August 2014
Government Canada Montana Low 2851.0 5 7 19957.0 798.280 19158.720 14255.0 4903.720 41548 10 October 2013
Small Business Germany Montana Low 2021.0 5 300 606300.0 24252.000 582048.000 505250.0 76798.000 41913 10 October 2014
Enterprise Mexico Montana Low 1138.0 5 125 142250.0 5690.000 136560.000 136560.0 0.000 41974 12 December 2014
Government Canada Paseo Low 4251.0 10 7 29757.0 1190.280 28566.720 21255.0 7311.720 41640 1 January 2014
Enterprise Germany Paseo Low 795.0 10 125 99375.0 3975.000 95400.000 95400.0 0.000 41699 3 March 2014
Small Business Germany Paseo Low 1414.5 10 300 424350.0 16974.000 407376.000 353625.0 53751.000 41730 4 April 2014
Small Business United States of America Paseo Low 2918.0 10 300 875400.0 35016.000 840384.000 729500.0 110884.000 41760 5 May 2014
Government United States of America Paseo Low 3450.0 10 350 1207500.0 48300.000 1159200.000 897000.0 262200.000 41821 7 July 2014
Enterprise France Paseo Low 2988.0 10 125 373500.0 14940.000 358560.000 358560.0 0.000 41821 7 July 2014
Midmarket Canada Paseo Low 218.0 10 15 3270.0 130.800 3139.200 2180.0 959.200 41883 9 September 2014
Government Canada Paseo Low 2074.0 10 20 41480.0 1659.200 39820.800 20740.0 19080.800 41883 9 September 2014
Government United States of America Paseo Low 1056.0 10 20 21120.0 844.800 20275.200 10560.0 9715.200 41883 9 September 2014
Midmarket United States of America Paseo Low 671.0 10 15 10065.0 402.600 9662.400 6710.0 2952.400 41548 10 October 2013
Midmarket Mexico Paseo Low 1514.0 10 15 22710.0 908.400 21801.600 15140.0 6661.600 41548 10 October 2013
Government United States of America Paseo Low 274.0 10 350 95900.0 3836.000 92064.000 71240.0 20824.000 41974 12 December 2014
Enterprise Mexico Paseo Low 1138.0 10 125 142250.0 5690.000 136560.000 136560.0 0.000 41974 12 December 2014
Channel Partners United States of America Velo Low 1465.0 120 12 17580.0 703.200 16876.800 4395.0 12481.800 41699 3 March 2014
Government Canada Velo Low 2646.0 120 20 52920.0 2116.800 50803.200 26460.0 24343.200 41518 9 September 2013
Government France Velo Low 2177.0 120 350 761950.0 30478.000 731472.000 566020.0 165452.000 41913 10 October 2014
Channel Partners France VTT Low 866.0 250 12 10392.0 415.680 9976.320 2598.0 7378.320 41760 5 May 2014
Government United States of America VTT Low 349.0 250 350 122150.0 4886.000 117264.000 90740.0 26524.000 41518 9 September 2013
Government France VTT Low 2177.0 250 350 761950.0 30478.000 731472.000 566020.0 165452.000 41913 10 October 2014
Midmarket Mexico VTT Low 1514.0 250 15 22710.0 908.400 21801.600 15140.0 6661.600 41548 10 October 2013
Government Mexico Amarilla Low 1865.0 260 350 652750.0 26110.000 626640.000 484900.0 141740.000 41671 2 February 2014
Enterprise Mexico Amarilla Low 1074.0 260 125 134250.0 5370.000 128880.000 128880.0 0.000 41730 4 April 2014
Government Germany Amarilla Low 1907.0 260 350 667450.0 26698.000 640752.000 495820.0 144932.000 41883 9 September 2014
Midmarket United States of America Amarilla Low 671.0 260 15 10065.0 402.600 9662.400 6710.0 2952.400 41548 10 October 2013
Government Canada Amarilla Low 1778.0 260 350 622300.0 24892.000 597408.000 462280.0 135128.000 41609 12 December 2013
Government Germany Montana Medium 1159.0 5 7 8113.0 405.650 7707.350 5795.0 1912.350 41548 10 October 2013
Government Germany Paseo Medium 1372.0 10 7 9604.0 480.200 9123.800 6860.0 2263.800 41640 1 January 2014
Government Canada Paseo Medium 2349.0 10 7 16443.0 822.150 15620.850 11745.0 3875.850 41518 9 September 2013
Government Mexico Paseo Medium 2689.0 10 7 18823.0 941.150 17881.850 13445.0 4436.850 41913 10 October 2014
Channel Partners Canada Paseo Medium 2431.0 10 12 29172.0 1458.600 27713.400 7293.0 20420.400 41974 12 December 2014
Channel Partners Canada Velo Medium 2431.0 120 12 29172.0 1458.600 27713.400 7293.0 20420.400 41974 12 December 2014
Government Mexico VTT Medium 2689.0 250 7 18823.0 941.150 17881.850 13445.0 4436.850 41913 10 October 2014
Government Mexico Amarilla Medium 1683.0 260 7 11781.0 589.050 11191.950 8415.0 2776.950 41821 7 July 2014
Channel Partners Mexico Amarilla Medium 1123.0 260 12 13476.0 673.800 12802.200 3369.0 9433.200 41852 8 August 2014
Government Germany Amarilla Medium 1159.0 260 7 8113.0 405.650 7707.350 5795.0 1912.350 41548 10 October 2013
Channel Partners France Carretera Medium 1865.0 3 12 22380.0 1119.000 21261.000 5595.0 15666.000 41671 2 February 2014
Channel Partners Germany Carretera Medium 1116.0 3 12 13392.0 669.600 12722.400 3348.0 9374.400 41671 2 February 2014
Government France Carretera Medium 1563.0 3 20 31260.0 1563.000 29697.000 15630.0 14067.000 41760 5 May 2014
Small Business United States of America Carretera Medium 991.0 3 300 297300.0 14865.000 282435.000 247750.0 34685.000 41791 6 June 2014
Government Germany Carretera Medium 1016.0 3 7 7112.0 355.600 6756.400 5080.0 1676.400 41579 11 November 2013
Midmarket Mexico Carretera Medium 2791.0 3 15 41865.0 2093.250 39771.750 27910.0 11861.750 41944 11 November 2014
Government United States of America Carretera Medium 570.0 3 7 3990.0 199.500 3790.500 2850.0 940.500 41974 12 December 2014
Government France Carretera Medium 2487.0 3 7 17409.0 870.450 16538.550 12435.0 4103.550 41974 12 December 2014
Government France Montana Medium 1384.5 5 350 484575.0 24228.750 460346.250 359970.0 100376.250 41640 1 January 2014
Enterprise United States of America Montana Medium 3627.0 5 125 453375.0 22668.750 430706.250 435240.0 -4533.750 41821 7 July 2014
Government Mexico Montana Medium 720.0 5 350 252000.0 12600.000 239400.000 187200.0 52200.000 41518 9 September 2013
Channel Partners Germany Montana Medium 2342.0 5 12 28104.0 1405.200 26698.800 7026.0 19672.800 41944 11 November 2014
Small Business Mexico Montana Medium 1100.0 5 300 330000.0 16500.000 313500.000 275000.0 38500.000 41609 12 December 2013
Government France Paseo Medium 1303.0 10 20 26060.0 1303.000 24757.000 13030.0 11727.000 41671 2 February 2014
Enterprise United States of America Paseo Medium 2992.0 10 125 374000.0 18700.000 355300.000 359040.0 -3740.000 41699 3 March 2014
Enterprise France Paseo Medium 2385.0 10 125 298125.0 14906.250 283218.750 286200.0 -2981.250 41699 3 March 2014
Small Business Mexico Paseo Medium 1607.0 10 300 482100.0 24105.000 457995.000 401750.0 56245.000 41730 4 April 2014
Government United States of America Paseo Medium 2327.0 10 7 16289.0 814.450 15474.550 11635.0 3839.550 41760 5 May 2014
Small Business United States of America Paseo Medium 991.0 10 300 297300.0 14865.000 282435.000 247750.0 34685.000 41791 6 June 2014
Government United States of America Paseo Medium 602.0 10 350 210700.0 10535.000 200165.000 156520.0 43645.000 41791 6 June 2014
Midmarket France Paseo Medium 2620.0 10 15 39300.0 1965.000 37335.000 26200.0 11135.000 41883 9 September 2014
Government Canada Paseo Medium 1228.0 10 350 429800.0 21490.000 408310.000 319280.0 89030.000 41548 10 October 2013
Government Canada Paseo Medium 1389.0 10 20 27780.0 1389.000 26391.000 13890.0 12501.000 41548 10 October 2013
Enterprise United States of America Paseo Medium 861.0 10 125 107625.0 5381.250 102243.750 103320.0 -1076.250 41913 10 October 2014
Enterprise France Paseo Medium 704.0 10 125 88000.0 4400.000 83600.000 84480.0 -880.000 41548 10 October 2013
Government Canada Paseo Medium 1802.0 10 20 36040.0 1802.000 34238.000 18020.0 16218.000 41609 12 December 2013
Government United States of America Paseo Medium 2663.0 10 20 53260.0 2663.000 50597.000 26630.0 23967.000 41974 12 December 2014
Government France Paseo Medium 2136.0 10 7 14952.0 747.600 14204.400 10680.0 3524.400 41609 12 December 2013
Midmarket Germany Paseo Medium 2116.0 10 15 31740.0 1587.000 30153.000 21160.0 8993.000 41609 12 December 2013
Midmarket United States of America Velo Medium 555.0 120 15 8325.0 416.250 7908.750 5550.0 2358.750 41640 1 January 2014
Midmarket Mexico Velo Medium 2861.0 120 15 42915.0 2145.750 40769.250 28610.0 12159.250 41640 1 January 2014
Enterprise Germany Velo Medium 807.0 120 125 100875.0 5043.750 95831.250 96840.0 -1008.750 41671 2 February 2014
Government United States of America Velo Medium 602.0 120 350 210700.0 10535.000 200165.000 156520.0 43645.000 41791 6 June 2014
Government United States of America Velo Medium 2832.0 120 20 56640.0 2832.000 53808.000 28320.0 25488.000 41852 8 August 2014
Government France Velo Medium 1579.0 120 20 31580.0 1579.000 30001.000 15790.0 14211.000 41852 8 August 2014
Enterprise United States of America Velo Medium 861.0 120 125 107625.0 5381.250 102243.750 103320.0 -1076.250 41913 10 October 2014
Enterprise France Velo Medium 704.0 120 125 88000.0 4400.000 83600.000 84480.0 -880.000 41548 10 October 2013
Government France Velo Medium 1033.0 120 20 20660.0 1033.000 19627.000 10330.0 9297.000 41609 12 December 2013
Small Business Germany Velo Medium 1250.0 120 300 375000.0 18750.000 356250.000 312500.0 43750.000 41974 12 December 2014
Government Canada VTT Medium 1389.0 250 20 27780.0 1389.000 26391.000 13890.0 12501.000 41548 10 October 2013
Government United States of America VTT Medium 1265.0 250 20 25300.0 1265.000 24035.000 12650.0 11385.000 41579 11 November 2013
Government Germany VTT Medium 2297.0 250 20 45940.0 2297.000 43643.000 22970.0 20673.000 41579 11 November 2013
Government United States of America VTT Medium 2663.0 250 20 53260.0 2663.000 50597.000 26630.0 23967.000 41974 12 December 2014
Government United States of America VTT Medium 570.0 250 7 3990.0 199.500 3790.500 2850.0 940.500 41974 12 December 2014
Government France VTT Medium 2487.0 250 7 17409.0 870.450 16538.550 12435.0 4103.550 41974 12 December 2014
Government Germany Amarilla Medium 1350.0 260 350 472500.0 23625.000 448875.000 351000.0 97875.000 41671 2 February 2014
Government Canada Amarilla Medium 552.0 260 350 193200.0 9660.000 183540.000 143520.0 40020.000 41852 8 August 2014
Government Canada Amarilla Medium 1228.0 260 350 429800.0 21490.000 408310.000 319280.0 89030.000 41548 10 October 2013
Small Business Germany Amarilla Medium 1250.0 260 300 375000.0 18750.000 356250.000 312500.0 43750.000 41974 12 December 2014
Midmarket France Paseo Medium 3801.0 10 15 57015.0 3420.900 53594.100 38010.0 15584.100 41730 4 April 2014
Government United States of America Carretera Medium 1117.5 3 20 22350.0 1341.000 21009.000 11175.0 9834.000 41640 1 January 2014
Midmarket Canada Carretera Medium 2844.0 3 15 42660.0 2559.600 40100.400 28440.0 11660.400 41791 6 June 2014
Channel Partners Mexico Carretera Medium 562.0 3 12 6744.0 404.640 6339.360 1686.0 4653.360 41883 9 September 2014
Channel Partners Canada Carretera Medium 2299.0 3 12 27588.0 1655.280 25932.720 6897.0 19035.720 41548 10 October 2013
Midmarket United States of America Carretera Medium 2030.0 3 15 30450.0 1827.000 28623.000 20300.0 8323.000 41944 11 November 2014
Government United States of America Carretera Medium 263.0 3 7 1841.0 110.460 1730.540 1315.0 415.540 41579 11 November 2013
Enterprise Germany Carretera Medium 887.0 3 125 110875.0 6652.500 104222.500 106440.0 -2217.500 41609 12 December 2013
Government Mexico Montana Medium 980.0 5 350 343000.0 20580.000 322420.000 254800.0 67620.000 41730 4 April 2014
Government Germany Montana Medium 1460.0 5 350 511000.0 30660.000 480340.000 379600.0 100740.000 41760 5 May 2014
Government France Montana Medium 1403.0 5 7 9821.0 589.260 9231.740 7015.0 2216.740 41548 10 October 2013
Channel Partners United States of America Montana Medium 2723.0 5 12 32676.0 1960.560 30715.440 8169.0 22546.440 41944 11 November 2014
Government France Paseo Medium 1496.0 10 350 523600.0 31416.000 492184.000 388960.0 103224.000 41791 6 June 2014
Channel Partners Canada Paseo Medium 2299.0 10 12 27588.0 1655.280 25932.720 6897.0 19035.720 41548 10 October 2013
Government United States of America Paseo Medium 727.0 10 350 254450.0 15267.000 239183.000 189020.0 50163.000 41548 10 October 2013
Enterprise Canada Velo Medium 952.0 120 125 119000.0 7140.000 111860.000 114240.0 -2380.000 41671 2 February 2014
Enterprise United States of America Velo Medium 2755.0 120 125 344375.0 20662.500 323712.500 330600.0 -6887.500 41671 2 February 2014
Midmarket Germany Velo Medium 1530.0 120 15 22950.0 1377.000 21573.000 15300.0 6273.000 41760 5 May 2014
Government France Velo Medium 1496.0 120 350 523600.0 31416.000 492184.000 388960.0 103224.000 41791 6 June 2014
Government Mexico Velo Medium 1498.0 120 7 10486.0 629.160 9856.840 7490.0 2366.840 41791 6 June 2014
Small Business France Velo Medium 1221.0 120 300 366300.0 21978.000 344322.000 305250.0 39072.000 41548 10 October 2013
Government France Velo Medium 2076.0 120 350 726600.0 43596.000 683004.000 539760.0 143244.000 41548 10 October 2013
Midmarket Canada VTT Medium 2844.0 250 15 42660.0 2559.600 40100.400 28440.0 11660.400 41791 6 June 2014
Government Mexico VTT Medium 1498.0 250 7 10486.0 629.160 9856.840 7490.0 2366.840 41791 6 June 2014
Small Business France VTT Medium 1221.0 250 300 366300.0 21978.000 344322.000 305250.0 39072.000 41548 10 October 2013
Government Mexico VTT Medium 1123.0 250 20 22460.0 1347.600 21112.400 11230.0 9882.400 41579 11 November 2013
Small Business Canada VTT Medium 2436.0 250 300 730800.0 43848.000 686952.000 609000.0 77952.000 41609 12 December 2013
Enterprise France Amarilla Medium 1987.5 260 125 248437.5 14906.250 233531.250 238500.0 -4968.750 41640 1 January 2014
Government Mexico Amarilla Medium 1679.0 260 350 587650.0 35259.000 552391.000 436540.0 115851.000 41883 9 September 2014
Government United States of America Amarilla Medium 727.0 260 350 254450.0 15267.000 239183.000 189020.0 50163.000 41548 10 October 2013
Government France Amarilla Medium 1403.0 260 7 9821.0 589.260 9231.740 7015.0 2216.740 41548 10 October 2013
Government France Amarilla Medium 2076.0 260 350 726600.0 43596.000 683004.000 539760.0 143244.000 41548 10 October 2013
Government France Montana Medium 1757.0 5 20 35140.0 2108.400 33031.600 17570.0 15461.600 41548 10 October 2013
Midmarket United States of America Paseo Medium 2198.0 10 15 32970.0 1978.200 30991.800 21980.0 9011.800 41852 8 August 2014
Midmarket Germany Paseo Medium 1743.0 10 15 26145.0 1568.700 24576.300 17430.0 7146.300 41852 8 August 2014
Midmarket United States of America Paseo Medium 1153.0 10 15 17295.0 1037.700 16257.300 11530.0 4727.300 41913 10 October 2014
Government France Paseo Medium 1757.0 10 20 35140.0 2108.400 33031.600 17570.0 15461.600 41548 10 October 2013
Government Germany Velo Medium 1001.0 120 20 20020.0 1201.200 18818.800 10010.0 8808.800 41852 8 August 2014
Government Mexico Velo Medium 1333.0 120 7 9331.0 559.860 8771.140 6665.0 2106.140 41944 11 November 2014
Midmarket United States of America VTT Medium 1153.0 250 15 17295.0 1037.700 16257.300 11530.0 4727.300 41913 10 October 2014
Channel Partners Mexico Carretera Medium 727.0 3 12 8724.0 610.680 8113.320 2181.0 5932.320 41671 2 February 2014
Channel Partners Canada Carretera Medium 1884.0 3 12 22608.0 1582.560 21025.440 5652.0 15373.440 41852 8 August 2014
Government Mexico Carretera Medium 1834.0 3 20 36680.0 2567.600 34112.400 18340.0 15772.400 41518 9 September 2013
Channel Partners Mexico Montana Medium 2340.0 5 12 28080.0 1965.600 26114.400 7020.0 19094.400 41640 1 January 2014
Channel Partners France Montana Medium 2342.0 5 12 28104.0 1967.280 26136.720 7026.0 19110.720 41944 11 November 2014
Government France Paseo Medium 1031.0 10 7 7217.0 505.190 6711.810 5155.0 1556.810 41518 9 September 2013
Midmarket Canada Velo Medium 1262.0 120 15 18930.0 1325.100 17604.900 12620.0 4984.900 41760 5 May 2014
Government Canada Velo Medium 1135.0 120 7 7945.0 556.150 7388.850 5675.0 1713.850 41791 6 June 2014
Government United States of America Velo Medium 547.0 120 7 3829.0 268.030 3560.970 2735.0 825.970 41944 11 November 2014
Government Canada Velo Medium 1582.0 120 7 11074.0 775.180 10298.820 7910.0 2388.820 41974 12 December 2014
Channel Partners France VTT Medium 1738.5 250 12 20862.0 1460.340 19401.660 5215.5 14186.160 41730 4 April 2014
Channel Partners Germany VTT Medium 2215.0 250 12 26580.0 1860.600 24719.400 6645.0 18074.400 41518 9 September 2013
Government Canada VTT Medium 1582.0 250 7 11074.0 775.180 10298.820 7910.0 2388.820 41974 12 December 2014
Government Canada Amarilla Medium 1135.0 260 7 7945.0 556.150 7388.850 5675.0 1713.850 41791 6 June 2014
Government United States of America Carretera Medium 1761.0 3 350 616350.0 43144.500 573205.500 457860.0 115345.500 41699 3 March 2014
Small Business France Carretera Medium 448.0 3 300 134400.0 9408.000 124992.000 112000.0 12992.000 41791 6 June 2014
Small Business France Carretera Medium 2181.0 3 300 654300.0 45801.000 608499.000 545250.0 63249.000 41913 10 October 2014
Government France Montana Medium 1976.0 5 20 39520.0 2766.400 36753.600 19760.0 16993.600 41913 10 October 2014
Small Business France Montana Medium 2181.0 5 300 654300.0 45801.000 608499.000 545250.0 63249.000 41913 10 October 2014
Enterprise Germany Montana Medium 2500.0 5 125 312500.0 21875.000 290625.000 300000.0 -9375.000 41579 11 November 2013
Small Business Canada Paseo Medium 1702.0 10 300 510600.0 35742.000 474858.000 425500.0 49358.000 41760 5 May 2014
Small Business France Paseo Medium 448.0 10 300 134400.0 9408.000 124992.000 112000.0 12992.000 41791 6 June 2014
Enterprise Germany Paseo Medium 3513.0 10 125 439125.0 30738.750 408386.250 421560.0 -13173.750 41821 7 July 2014
Midmarket France Paseo Medium 2101.0 10 15 31515.0 2206.050 29308.950 21010.0 8298.950 41852 8 August 2014
Midmarket United States of America Paseo Medium 2931.0 10 15 43965.0 3077.550 40887.450 29310.0 11577.450 41518 9 September 2013
Government France Paseo Medium 1535.0 10 20 30700.0 2149.000 28551.000 15350.0 13201.000 41883 9 September 2014
Small Business Germany Paseo Medium 1123.0 10 300 336900.0 23583.000 313317.000 280750.0 32567.000 41518 9 September 2013
Small Business Canada Paseo Medium 1404.0 10 300 421200.0 29484.000 391716.000 351000.0 40716.000 41579 11 November 2013
Channel Partners Mexico Paseo Medium 2763.0 10 12 33156.0 2320.920 30835.080 8289.0 22546.080 41579 11 November 2013
Government Germany Paseo Medium 2125.0 10 7 14875.0 1041.250 13833.750 10625.0 3208.750 41609 12 December 2013
Small Business France Velo Medium 1659.0 120 300 497700.0 34839.000 462861.000 414750.0 48111.000 41821 7 July 2014
Government Mexico Velo Medium 609.0 120 20 12180.0 852.600 11327.400 6090.0 5237.400 41852 8 August 2014
Enterprise Germany Velo Medium 2087.0 120 125 260875.0 18261.250 242613.750 250440.0 -7826.250 41883 9 September 2014
Government France Velo Medium 1976.0 120 20 39520.0 2766.400 36753.600 19760.0 16993.600 41913 10 October 2014
Government United States of America Velo Medium 1421.0 120 20 28420.0 1989.400 26430.600 14210.0 12220.600 41609 12 December 2013
Small Business United States of America Velo Medium 1372.0 120 300 411600.0 28812.000 382788.000 343000.0 39788.000 41974 12 December 2014
Government Germany Velo Medium 588.0 120 20 11760.0 823.200 10936.800 5880.0 5056.800 41609 12 December 2013
Channel Partners Canada VTT Medium 3244.5 250 12 38934.0 2725.380 36208.620 9733.5 26475.120 41640 1 January 2014
Small Business France VTT Medium 959.0 250 300 287700.0 20139.000 267561.000 239750.0 27811.000 41671 2 February 2014
Small Business Mexico VTT Medium 2747.0 250 300 824100.0 57687.000 766413.000 686750.0 79663.000 41671 2 February 2014
Enterprise Canada Amarilla Medium 1645.0 260 125 205625.0 14393.750 191231.250 197400.0 -6168.750 41760 5 May 2014
Government France Amarilla Medium 2876.0 260 350 1006600.0 70462.000 936138.000 747760.0 188378.000 41883 9 September 2014
Enterprise Germany Amarilla Medium 994.0 260 125 124250.0 8697.500 115552.500 119280.0 -3727.500 41518 9 September 2013
Government Canada Amarilla Medium 1118.0 260 20 22360.0 1565.200 20794.800 11180.0 9614.800 41944 11 November 2014
Small Business United States of America Amarilla Medium 1372.0 260 300 411600.0 28812.000 382788.000 343000.0 39788.000 41974 12 December 2014
Government Canada Montana Medium 488.0 5 7 3416.0 273.280 3142.720 2440.0 702.720 41671 2 February 2014
Government United States of America Montana Medium 1282.0 5 20 25640.0 2051.200 23588.800 12820.0 10768.800 41791 6 June 2014
Government Canada Paseo Medium 257.0 10 7 1799.0 143.920 1655.080 1285.0 370.080 41760 5 May 2014
Government United States of America Amarilla Medium 1282.0 260 20 25640.0 2051.200 23588.800 12820.0 10768.800 41791 6 June 2014
Enterprise Mexico Carretera Medium 1540.0 3 125 192500.0 15400.000 177100.000 184800.0 -7700.000 41852 8 August 2014
Midmarket France Carretera Medium 490.0 3 15 7350.0 588.000 6762.000 4900.0 1862.000 41944 11 November 2014
Government Mexico Carretera Medium 1362.0 3 350 476700.0 38136.000 438564.000 354120.0 84444.000 41974 12 December 2014
Midmarket France Montana Medium 2501.0 5 15 37515.0 3001.200 34513.800 25010.0 9503.800 41699 3 March 2014
Government Canada Montana Medium 708.0 5 20 14160.0 1132.800 13027.200 7080.0 5947.200 41791 6 June 2014
Government Germany Montana Medium 645.0 5 20 12900.0 1032.000 11868.000 6450.0 5418.000 41821 7 July 2014
Small Business France Montana Medium 1562.0 5 300 468600.0 37488.000 431112.000 390500.0 40612.000 41852 8 August 2014
Small Business Canada Montana Medium 1283.0 5 300 384900.0 30792.000 354108.000 320750.0 33358.000 41518 9 September 2013
Midmarket Germany Montana Medium 711.0 5 15 10665.0 853.200 9811.800 7110.0 2701.800 41974 12 December 2014
Enterprise Mexico Paseo Medium 1114.0 10 125 139250.0 11140.000 128110.000 133680.0 -5570.000 41699 3 March 2014
Government Germany Paseo Medium 1259.0 10 7 8813.0 705.040 8107.960 6295.0 1812.960 41730 4 April 2014
Government Germany Paseo Medium 1095.0 10 7 7665.0 613.200 7051.800 5475.0 1576.800 41760 5 May 2014
Government Germany Paseo Medium 1366.0 10 20 27320.0 2185.600 25134.400 13660.0 11474.400 41791 6 June 2014
Small Business Mexico Paseo Medium 2460.0 10 300 738000.0 59040.000 678960.000 615000.0 63960.000 41791 6 June 2014
Government United States of America Paseo Medium 678.0 10 7 4746.0 379.680 4366.320 3390.0 976.320 41852 8 August 2014
Government Germany Paseo Medium 1598.0 10 7 11186.0 894.880 10291.120 7990.0 2301.120 41852 8 August 2014
Government Germany Paseo Medium 2409.0 10 7 16863.0 1349.040 15513.960 12045.0 3468.960 41518 9 September 2013
Government Germany Paseo Medium 1934.0 10 20 38680.0 3094.400 35585.600 19340.0 16245.600 41883 9 September 2014
Government Mexico Paseo Medium 2993.0 10 20 59860.0 4788.800 55071.200 29930.0 25141.200 41883 9 September 2014
Government Germany Paseo Medium 2146.0 10 350 751100.0 60088.000 691012.000 557960.0 133052.000 41579 11 November 2013
Government Mexico Paseo Medium 1946.0 10 7 13622.0 1089.760 12532.240 9730.0 2802.240 41609 12 December 2013
Government Mexico Paseo Medium 1362.0 10 350 476700.0 38136.000 438564.000 354120.0 84444.000 41974 12 December 2014
Channel Partners Canada Velo Medium 598.0 120 12 7176.0 574.080 6601.920 1794.0 4807.920 41699 3 March 2014
Government United States of America Velo Medium 2907.0 120 7 20349.0 1627.920 18721.080 14535.0 4186.080 41791 6 June 2014
Government Germany Velo Medium 2338.0 120 7 16366.0 1309.280 15056.720 11690.0 3366.720 41791 6 June 2014
Small Business France Velo Medium 386.0 120 300 115800.0 9264.000 106536.000 96500.0 10036.000 41579 11 November 2013
Small Business Mexico Velo Medium 635.0 120 300 190500.0 15240.000 175260.000 158750.0 16510.000 41974 12 December 2014
Government France VTT Medium 574.5 250 350 201075.0 16086.000 184989.000 149370.0 35619.000 41730 4 April 2014
Government Germany VTT Medium 2338.0 250 7 16366.0 1309.280 15056.720 11690.0 3366.720 41791 6 June 2014
Government France VTT Medium 381.0 250 350 133350.0 10668.000 122682.000 99060.0 23622.000 41852 8 August 2014
Government Germany VTT Medium 422.0 250 350 147700.0 11816.000 135884.000 109720.0 26164.000 41852 8 August 2014
Small Business Canada VTT Medium 2134.0 250 300 640200.0 51216.000 588984.000 533500.0 55484.000 41883 9 September 2014
Small Business United States of America VTT Medium 808.0 250 300 242400.0 19392.000 223008.000 202000.0 21008.000 41609 12 December 2013
Government Canada Amarilla Medium 708.0 260 20 14160.0 1132.800 13027.200 7080.0 5947.200 41791 6 June 2014
Government United States of America Amarilla Medium 2907.0 260 7 20349.0 1627.920 18721.080 14535.0 4186.080 41791 6 June 2014
Government Germany Amarilla Medium 1366.0 260 20 27320.0 2185.600 25134.400 13660.0 11474.400 41791 6 June 2014
Small Business Mexico Amarilla Medium 2460.0 260 300 738000.0 59040.000 678960.000 615000.0 63960.000 41791 6 June 2014
Government Germany Amarilla Medium 1520.0 260 20 30400.0 2432.000 27968.000 15200.0 12768.000 41944 11 November 2014
Midmarket Germany Amarilla Medium 711.0 260 15 10665.0 853.200 9811.800 7110.0 2701.800 41974 12 December 2014
Channel Partners Mexico Amarilla Medium 1375.0 260 12 16500.0 1320.000 15180.000 4125.0 11055.000 41609 12 December 2013
Small Business Mexico Amarilla Medium 635.0 260 300 190500.0 15240.000 175260.000 158750.0 16510.000 41974 12 December 2014
Government United States of America VTT Medium 436.5 250 20 8730.0 698.400 8031.600 4365.0 3666.600 41821 7 July 2014
Small Business Canada Carretera Medium 1094.0 3 300 328200.0 29538.000 298662.000 273500.0 25162.000 41791 6 June 2014
Channel Partners Mexico Carretera Medium 367.0 3 12 4404.0 396.360 4007.640 1101.0 2906.640 41548 10 October 2013
Small Business Canada Montana Medium 3802.5 5 300 1140750.0 102667.500 1038082.500 950625.0 87457.500 41730 4 April 2014
Government France Montana Medium 1666.0 5 350 583100.0 52479.000 530621.000 433160.0 97461.000 41760 5 May 2014
Small Business France Montana Medium 322.0 5 300 96600.0 8694.000 87906.000 80500.0 7406.000 41518 9 September 2013
Channel Partners Canada Montana Medium 2321.0 5 12 27852.0 2506.680 25345.320 6963.0 18382.320 41944 11 November 2014
Enterprise France Montana Medium 1857.0 5 125 232125.0 20891.250 211233.750 222840.0 -11606.250 41579 11 November 2013
Government Canada Montana Medium 1611.0 5 7 11277.0 1014.930 10262.070 8055.0 2207.070 41609 12 December 2013
Enterprise United States of America Montana Medium 2797.0 5 125 349625.0 31466.250 318158.750 335640.0 -17481.250 41974 12 December 2014
Small Business Germany Montana Medium 334.0 5 300 100200.0 9018.000 91182.000 83500.0 7682.000 41609 12 December 2013
Small Business Mexico Paseo Medium 2565.0 10 300 769500.0 69255.000 700245.000 641250.0 58995.000 41640 1 January 2014
Government Mexico Paseo Medium 2417.0 10 350 845950.0 76135.500 769814.500 628420.0 141394.500 41640 1 January 2014
Midmarket United States of America Paseo Medium 3675.0 10 15 55125.0 4961.250 50163.750 36750.0 13413.750 41730 4 April 2014
Small Business Canada Paseo Medium 1094.0 10 300 328200.0 29538.000 298662.000 273500.0 25162.000 41791 6 June 2014
Midmarket France Paseo Medium 1227.0 10 15 18405.0 1656.450 16748.550 12270.0 4478.550 41913 10 October 2014
Channel Partners Mexico Paseo Medium 367.0 10 12 4404.0 396.360 4007.640 1101.0 2906.640 41548 10 October 2013
Small Business France Paseo Medium 1324.0 10 300 397200.0 35748.000 361452.000 331000.0 30452.000 41944 11 November 2014
Channel Partners Germany Paseo Medium 1775.0 10 12 21300.0 1917.000 19383.000 5325.0 14058.000 41579 11 November 2013
Enterprise United States of America Paseo Medium 2797.0 10 125 349625.0 31466.250 318158.750 335640.0 -17481.250 41974 12 December 2014
Midmarket Mexico Velo Medium 245.0 120 15 3675.0 330.750 3344.250 2450.0 894.250 41760 5 May 2014
Small Business Canada Velo Medium 3793.5 120 300 1138050.0 102424.500 1035625.500 948375.0 87250.500 41821 7 July 2014
Government Germany Velo Medium 1307.0 120 350 457450.0 41170.500 416279.500 339820.0 76459.500 41821 7 July 2014
Enterprise Canada Velo Medium 567.0 120 125 70875.0 6378.750 64496.250 68040.0 -3543.750 41883 9 September 2014
Enterprise Mexico Velo Medium 2110.0 120 125 263750.0 23737.500 240012.500 253200.0 -13187.500 41883 9 September 2014
Government Canada Velo Medium 1269.0 120 350 444150.0 39973.500 404176.500 329940.0 74236.500 41913 10 October 2014
Channel Partners United States of America VTT Medium 1956.0 250 12 23472.0 2112.480 21359.520 5868.0 15491.520 41640 1 January 2014
Small Business Germany VTT Medium 2659.0 250 300 797700.0 71793.000 725907.000 664750.0 61157.000 41671 2 February 2014
Government United States of America VTT Medium 1351.5 250 350 473025.0 42572.250 430452.750 351390.0 79062.750 41730 4 April 2014
Channel Partners Germany VTT Medium 880.0 250 12 10560.0 950.400 9609.600 2640.0 6969.600 41760 5 May 2014
Small Business United States of America VTT Medium 1867.0 250 300 560100.0 50409.000 509691.000 466750.0 42941.000 41883 9 September 2014
Channel Partners France VTT Medium 2234.0 250 12 26808.0 2412.720 24395.280 6702.0 17693.280 41518 9 September 2013
Midmarket France VTT Medium 1227.0 250 15 18405.0 1656.450 16748.550 12270.0 4478.550 41913 10 October 2014
Enterprise Mexico VTT Medium 877.0 250 125 109625.0 9866.250 99758.750 105240.0 -5481.250 41944 11 November 2014
Government United States of America Amarilla Medium 2071.0 260 350 724850.0 65236.500 659613.500 538460.0 121153.500 41883 9 September 2014
Government Canada Amarilla Medium 1269.0 260 350 444150.0 39973.500 404176.500 329940.0 74236.500 41913 10 October 2014
Midmarket Germany Amarilla Medium 970.0 260 15 14550.0 1309.500 13240.500 9700.0 3540.500 41579 11 November 2013
Government Mexico Amarilla Medium 1694.0 260 20 33880.0 3049.200 30830.800 16940.0 13890.800 41944 11 November 2014
Government Germany Carretera Medium 663.0 3 20 13260.0 1193.400 12066.600 6630.0 5436.600 41760 5 May 2014
Government Canada Carretera Medium 819.0 3 7 5733.0 515.970 5217.030 4095.0 1122.030 41821 7 July 2014
Channel Partners Germany Carretera Medium 1580.0 3 12 18960.0 1706.400 17253.600 4740.0 12513.600 41883 9 September 2014
Government Mexico Carretera Medium 521.0 3 7 3647.0 328.230 3318.770 2605.0 713.770 41974 12 December 2014
Government United States of America Paseo Medium 973.0 10 20 19460.0 1751.400 17708.600 9730.0 7978.600 41699 3 March 2014
Government Mexico Paseo Medium 1038.0 10 20 20760.0 1868.400 18891.600 10380.0 8511.600 41791 6 June 2014
Government Germany Paseo Medium 360.0 10 7 2520.0 226.800 2293.200 1800.0 493.200 41913 10 October 2014
Channel Partners France Velo Medium 1967.0 120 12 23604.0 2124.360 21479.640 5901.0 15578.640 41699 3 March 2014
Midmarket Mexico Velo Medium 2628.0 120 15 39420.0 3547.800 35872.200 26280.0 9592.200 41730 4 April 2014
Government Germany VTT Medium 360.0 250 7 2520.0 226.800 2293.200 1800.0 493.200 41913 10 October 2014
Government France VTT Medium 2682.0 250 20 53640.0 4827.600 48812.400 26820.0 21992.400 41579 11 November 2013
Government Mexico VTT Medium 521.0 250 7 3647.0 328.230 3318.770 2605.0 713.770 41974 12 December 2014
Government Mexico Amarilla Medium 1038.0 260 20 20760.0 1868.400 18891.600 10380.0 8511.600 41791 6 June 2014
Midmarket Canada Amarilla Medium 1630.5 260 15 24457.5 2201.175 22256.325 16305.0 5951.325 41821 7 July 2014
Channel Partners France Amarilla Medium 306.0 260 12 3672.0 330.480 3341.520 918.0 2423.520 41609 12 December 2013
Channel Partners United States of America Carretera High 386.0 3 12 4632.0 463.200 4168.800 1158.0 3010.800 41548 10 October 2013
Government United States of America Montana High 2328.0 5 7 16296.0 1629.600 14666.400 11640.0 3026.400 41883 9 September 2014
Channel Partners United States of America Paseo High 386.0 10 12 4632.0 463.200 4168.800 1158.0 3010.800 41548 10 October 2013
Enterprise United States of America Carretera High 3445.5 3 125 430687.5 43068.750 387618.750 413460.0 -25841.250 41730 4 April 2014
Enterprise France Carretera High 1482.0 3 125 185250.0 18525.000 166725.000 177840.0 -11115.000 41609 12 December 2013
Government United States of America Montana High 2313.0 5 350 809550.0 80955.000 728595.000 601380.0 127215.000 41760 5 May 2014
Enterprise United States of America Montana High 1804.0 5 125 225500.0 22550.000 202950.000 216480.0 -13530.000 41579 11 November 2013
Midmarket France Montana High 2072.0 5 15 31080.0 3108.000 27972.000 20720.0 7252.000 41974 12 December 2014
Government France Paseo High 1954.0 10 20 39080.0 3908.000 35172.000 19540.0 15632.000 41699 3 March 2014
Small Business Mexico Paseo High 591.0 10 300 177300.0 17730.000 159570.000 147750.0 11820.000 41760 5 May 2014
Midmarket France Paseo High 2167.0 10 15 32505.0 3250.500 29254.500 21670.0 7584.500 41548 10 October 2013
Government Germany Paseo High 241.0 10 20 4820.0 482.000 4338.000 2410.0 1928.000 41913 10 October 2014
Midmarket Germany Velo High 681.0 120 15 10215.0 1021.500 9193.500 6810.0 2383.500 41640 1 January 2014
Midmarket Germany Velo High 510.0 120 15 7650.0 765.000 6885.000 5100.0 1785.000 41730 4 April 2014
Midmarket United States of America Velo High 790.0 120 15 11850.0 1185.000 10665.000 7900.0 2765.000 41760 5 May 2014
Government France Velo High 639.0 120 350 223650.0 22365.000 201285.000 166140.0 35145.000 41821 7 July 2014
Enterprise United States of America Velo High 1596.0 120 125 199500.0 19950.000 179550.000 191520.0 -11970.000 41883 9 September 2014
Small Business United States of America Velo High 2294.0 120 300 688200.0 68820.000 619380.000 573500.0 45880.000 41548 10 October 2013
Government Germany Velo High 241.0 120 20 4820.0 482.000 4338.000 2410.0 1928.000 41913 10 October 2014
Government Germany Velo High 2665.0 120 7 18655.0 1865.500 16789.500 13325.0 3464.500 41944 11 November 2014
Enterprise Canada Velo High 1916.0 120 125 239500.0 23950.000 215550.000 229920.0 -14370.000 41609 12 December 2013
Small Business France Velo High 853.0 120 300 255900.0 25590.000 230310.000 213250.0 17060.000 41974 12 December 2014
Enterprise Mexico VTT High 341.0 250 125 42625.0 4262.500 38362.500 40920.0 -2557.500 41760 5 May 2014
Midmarket Mexico VTT High 641.0 250 15 9615.0 961.500 8653.500 6410.0 2243.500 41821 7 July 2014
Government United States of America VTT High 2807.0 250 350 982450.0 98245.000 884205.000 729820.0 154385.000 41852 8 August 2014
Small Business Mexico VTT High 432.0 250 300 129600.0 12960.000 116640.000 108000.0 8640.000 41883 9 September 2014
Small Business United States of America VTT High 2294.0 250 300 688200.0 68820.000 619380.000 573500.0 45880.000 41548 10 October 2013
Midmarket France VTT High 2167.0 250 15 32505.0 3250.500 29254.500 21670.0 7584.500 41548 10 October 2013
Enterprise Canada VTT High 2529.0 250 125 316125.0 31612.500 284512.500 303480.0 -18967.500 41944 11 November 2014
Government Germany VTT High 1870.0 250 350 654500.0 65450.000 589050.000 486200.0 102850.000 41609 12 December 2013
Enterprise United States of America Amarilla High 579.0 260 125 72375.0 7237.500 65137.500 69480.0 -4342.500 41640 1 January 2014
Government Canada Amarilla High 2240.0 260 350 784000.0 78400.000 705600.000 582400.0 123200.000 41671 2 February 2014
Small Business United States of America Amarilla High 2993.0 260 300 897900.0 89790.000 808110.000 748250.0 59860.000 41699 3 March 2014
Channel Partners Canada Amarilla High 3520.5 260 12 42246.0 4224.600 38021.400 10561.5 27459.900 41730 4 April 2014
Government Mexico Amarilla High 2039.0 260 20 40780.0 4078.000 36702.000 20390.0 16312.000 41760 5 May 2014
Channel Partners Germany Amarilla High 2574.0 260 12 30888.0 3088.800 27799.200 7722.0 20077.200 41852 8 August 2014
Government Canada Amarilla High 707.0 260 350 247450.0 24745.000 222705.000 183820.0 38885.000 41883 9 September 2014
Midmarket France Amarilla High 2072.0 260 15 31080.0 3108.000 27972.000 20720.0 7252.000 41974 12 December 2014
Small Business France Amarilla High 853.0 260 300 255900.0 25590.000 230310.000 213250.0 17060.000 41974 12 December 2014
Channel Partners France Carretera High 1198.0 3 12 14376.0 1581.360 12794.640 3594.0 9200.640 41548 10 October 2013
Government France Paseo High 2532.0 10 7 17724.0 1949.640 15774.360 12660.0 3114.360 41730 4 April 2014
Channel Partners France Paseo High 1198.0 10 12 14376.0 1581.360 12794.640 3594.0 9200.640 41548 10 October 2013
Midmarket Canada Velo High 384.0 120 15 5760.0 633.600 5126.400 3840.0 1286.400 41640 1 January 2014
Channel Partners Germany Velo High 472.0 120 12 5664.0 623.040 5040.960 1416.0 3624.960 41913 10 October 2014
Government United States of America VTT High 1579.0 250 7 11053.0 1215.830 9837.170 7895.0 1942.170 41699 3 March 2014
Channel Partners Mexico VTT High 1005.0 250 12 12060.0 1326.600 10733.400 3015.0 7718.400 41518 9 September 2013
Midmarket United States of America Amarilla High 3199.5 260 15 47992.5 5279.175 42713.325 31995.0 10718.325 41821 7 July 2014
Channel Partners Germany Amarilla High 472.0 260 12 5664.0 623.040 5040.960 1416.0 3624.960 41913 10 October 2014
Channel Partners Canada Carretera High 1937.0 3 12 23244.0 2556.840 20687.160 5811.0 14876.160 41671 2 February 2014
Government Germany Carretera High 792.0 3 350 277200.0 30492.000 246708.000 205920.0 40788.000 41699 3 March 2014
Small Business Germany Carretera High 2811.0 3 300 843300.0 92763.000 750537.000 702750.0 47787.000 41821 7 July 2014
Enterprise France Carretera High 2441.0 3 125 305125.0 33563.750 271561.250 292920.0 -21358.750 41913 10 October 2014
Midmarket Canada Carretera High 1560.0 3 15 23400.0 2574.000 20826.000 15600.0 5226.000 41579 11 November 2013
Government Mexico Carretera High 2706.0 3 7 18942.0 2083.620 16858.380 13530.0 3328.380 41579 11 November 2013
Government Germany Montana High 766.0 5 350 268100.0 29491.000 238609.000 199160.0 39449.000 41640 1 January 2014
Government Germany Montana High 2992.0 5 20 59840.0 6582.400 53257.600 29920.0 23337.600 41548 10 October 2013
Midmarket Mexico Montana High 2157.0 5 15 32355.0 3559.050 28795.950 21570.0 7225.950 41974 12 December 2014
Small Business Canada Paseo High 873.0 10 300 261900.0 28809.000 233091.000 218250.0 14841.000 41640 1 January 2014
Government Mexico Paseo High 1122.0 10 20 22440.0 2468.400 19971.600 11220.0 8751.600 41699 3 March 2014
Government Canada Paseo High 2104.5 10 350 736575.0 81023.250 655551.750 547170.0 108381.750 41821 7 July 2014
Channel Partners Canada Paseo High 4026.0 10 12 48312.0 5314.320 42997.680 12078.0 30919.680 41821 7 July 2014
Channel Partners France Paseo High 2425.5 10 12 29106.0 3201.660 25904.340 7276.5 18627.840 41821 7 July 2014
Government Canada Paseo High 2394.0 10 20 47880.0 5266.800 42613.200 23940.0 18673.200 41852 8 August 2014
Midmarket Mexico Paseo High 1984.0 10 15 29760.0 3273.600 26486.400 19840.0 6646.400 41852 8 August 2014
Enterprise France Paseo High 2441.0 10 125 305125.0 33563.750 271561.250 292920.0 -21358.750 41913 10 October 2014
Government Germany Paseo High 2992.0 10 20 59840.0 6582.400 53257.600 29920.0 23337.600 41548 10 October 2013
Small Business Canada Paseo High 1366.0 10 300 409800.0 45078.000 364722.000 341500.0 23222.000 41944 11 November 2014
Government France Velo High 2805.0 120 20 56100.0 6171.000 49929.000 28050.0 21879.000 41518 9 September 2013
Midmarket Mexico Velo High 655.0 120 15 9825.0 1080.750 8744.250 6550.0 2194.250 41518 9 September 2013
Government Mexico Velo High 344.0 120 350 120400.0 13244.000 107156.000 89440.0 17716.000 41548 10 October 2013
Government Canada Velo High 1808.0 120 7 12656.0 1392.160 11263.840 9040.0 2223.840 41944 11 November 2014
Channel Partners France VTT High 1734.0 250 12 20808.0 2288.880 18519.120 5202.0 13317.120 41640 1 January 2014
Enterprise Mexico VTT High 554.0 250 125 69250.0 7617.500 61632.500 66480.0 -4847.500 41640 1 January 2014
Government Canada VTT High 2935.0 250 20 58700.0 6457.000 52243.000 29350.0 22893.000 41579 11 November 2013
Enterprise Germany Amarilla High 3165.0 260 125 395625.0 43518.750 352106.250 379800.0 -27693.750 41640 1 January 2014
Government Mexico Amarilla High 2629.0 260 20 52580.0 5783.800 46796.200 26290.0 20506.200 41640 1 January 2014
Enterprise France Amarilla High 1433.0 260 125 179125.0 19703.750 159421.250 171960.0 -12538.750 41760 5 May 2014
Enterprise Mexico Amarilla High 947.0 260 125 118375.0 13021.250 105353.750 113640.0 -8286.250 41518 9 September 2013
Government Mexico Amarilla High 344.0 260 350 120400.0 13244.000 107156.000 89440.0 17716.000 41548 10 October 2013
Midmarket Mexico Amarilla High 2157.0 260 15 32355.0 3559.050 28795.950 21570.0 7225.950 41974 12 December 2014
Government United States of America Paseo High 380.0 10 7 2660.0 292.600 2367.400 1900.0 467.400 41518 9 September 2013
Government Mexico Carretera High 886.0 3 350 310100.0 37212.000 272888.000 230360.0 42528.000 41791 6 June 2014
Enterprise Canada Carretera High 2416.0 3 125 302000.0 36240.000 265760.000 289920.0 -24160.000 41518 9 September 2013
Enterprise Mexico Carretera High 2156.0 3 125 269500.0 32340.000 237160.000 258720.0 -21560.000 41913 10 October 2014
Midmarket Canada Carretera High 2689.0 3 15 40335.0 4840.200 35494.800 26890.0 8604.800 41944 11 November 2014
Midmarket United States of America Montana High 677.0 5 15 10155.0 1218.600 8936.400 6770.0 2166.400 41699 3 March 2014
Small Business France Montana High 1773.0 5 300 531900.0 63828.000 468072.000 443250.0 24822.000 41730 4 April 2014
Government Mexico Montana High 2420.0 5 7 16940.0 2032.800 14907.200 12100.0 2807.200 41883 9 September 2014
Government Canada Montana High 2734.0 5 7 19138.0 2296.560 16841.440 13670.0 3171.440 41913 10 October 2014
Government Mexico Montana High 1715.0 5 20 34300.0 4116.000 30184.000 17150.0 13034.000 41548 10 October 2013
Small Business France Montana High 1186.0 5 300 355800.0 42696.000 313104.000 296500.0 16604.000 41609 12 December 2013
Small Business United States of America Paseo High 3495.0 10 300 1048500.0 125820.000 922680.000 873750.0 48930.000 41640 1 January 2014
Government Mexico Paseo High 886.0 10 350 310100.0 37212.000 272888.000 230360.0 42528.000 41791 6 June 2014
Enterprise Mexico Paseo High 2156.0 10 125 269500.0 32340.000 237160.000 258720.0 -21560.000 41913 10 October 2014
Government Mexico Paseo High 905.0 10 20 18100.0 2172.000 15928.000 9050.0 6878.000 41913 10 October 2014
Government Mexico Paseo High 1715.0 10 20 34300.0 4116.000 30184.000 17150.0 13034.000 41548 10 October 2013
Government France Paseo High 1594.0 10 350 557900.0 66948.000 490952.000 414440.0 76512.000 41944 11 November 2014
Small Business Germany Paseo High 1359.0 10 300 407700.0 48924.000 358776.000 339750.0 19026.000 41944 11 November 2014
Small Business Mexico Paseo High 2150.0 10 300 645000.0 77400.000 567600.000 537500.0 30100.000 41944 11 November 2014
Government Mexico Paseo High 1197.0 10 350 418950.0 50274.000 368676.000 311220.0 57456.000 41944 11 November 2014
Midmarket Mexico Paseo High 380.0 10 15 5700.0 684.000 5016.000 3800.0 1216.000 41609 12 December 2013
Government Mexico Paseo High 1233.0 10 20 24660.0 2959.200 21700.800 12330.0 9370.800 41974 12 December 2014
Government Mexico Velo High 1395.0 120 350 488250.0 58590.000 429660.000 362700.0 66960.000 41821 7 July 2014
Government United States of America Velo High 986.0 120 350 345100.0 41412.000 303688.000 256360.0 47328.000 41913 10 October 2014
Government Mexico Velo High 905.0 120 20 18100.0 2172.000 15928.000 9050.0 6878.000 41913 10 October 2014
Channel Partners Canada VTT High 2109.0 250 12 25308.0 3036.960 22271.040 6327.0 15944.040 41760 5 May 2014
Midmarket France VTT High 3874.5 250 15 58117.5 6974.100 51143.400 38745.0 12398.400 41821 7 July 2014
Government Canada VTT High 623.0 250 350 218050.0 26166.000 191884.000 161980.0 29904.000 41518 9 September 2013
Government United States of America VTT High 986.0 250 350 345100.0 41412.000 303688.000 256360.0 47328.000 41913 10 October 2014
Enterprise United States of America VTT High 2387.0 250 125 298375.0 35805.000 262570.000 286440.0 -23870.000 41944 11 November 2014
Government Mexico VTT High 1233.0 250 20 24660.0 2959.200 21700.800 12330.0 9370.800 41974 12 December 2014
Government United States of America Amarilla High 270.0 260 350 94500.0 11340.000 83160.000 70200.0 12960.000 41671 2 February 2014
Government France Amarilla High 3421.5 260 7 23950.5 2874.060 21076.440 17107.5 3968.940 41821 7 July 2014
Government Canada Amarilla High 2734.0 260 7 19138.0 2296.560 16841.440 13670.0 3171.440 41913 10 October 2014
Midmarket United States of America Amarilla High 2548.0 260 15 38220.0 4586.400 33633.600 25480.0 8153.600 41579 11 November 2013
Government France Carretera High 2521.5 3 20 50430.0 6051.600 44378.400 25215.0 19163.400 41640 1 January 2014
Channel Partners Mexico Montana High 2661.0 5 12 31932.0 3831.840 28100.160 7983.0 20117.160 41760 5 May 2014
Government Germany Paseo High 1531.0 10 20 30620.0 3674.400 26945.600 15310.0 11635.600 41974 12 December 2014
Government France VTT High 1491.0 250 7 10437.0 1252.440 9184.560 7455.0 1729.560 41699 3 March 2014
Government Germany VTT High 1531.0 250 20 30620.0 3674.400 26945.600 15310.0 11635.600 41974 12 December 2014
Channel Partners Canada Amarilla High 2761.0 260 12 33132.0 3975.840 29156.160 8283.0 20873.160 41518 9 September 2013
Midmarket United States of America Carretera High 2567.0 3 15 38505.0 5005.650 33499.350 25670.0 7829.350 41791 6 June 2014
Midmarket United States of America VTT High 2567.0 250 15 38505.0 5005.650 33499.350 25670.0 7829.350 41791 6 June 2014
Government Canada Carretera High 923.0 3 350 323050.0 41996.500 281053.500 239980.0 41073.500 41699 3 March 2014
Government France Carretera High 1790.0 3 350 626500.0 81445.000 545055.000 465400.0 79655.000 41699 3 March 2014
Government Germany Carretera High 442.0 3 20 8840.0 1149.200 7690.800 4420.0 3270.800 41518 9 September 2013
Government United States of America Montana High 982.5 5 350 343875.0 44703.750 299171.250 255450.0 43721.250 41640 1 January 2014
Government United States of America Montana High 1298.0 5 7 9086.0 1181.180 7904.820 6490.0 1414.820 41671 2 February 2014
Channel Partners Mexico Montana High 604.0 5 12 7248.0 942.240 6305.760 1812.0 4493.760 41791 6 June 2014
Government Mexico Montana High 2255.0 5 20 45100.0 5863.000 39237.000 22550.0 16687.000 41821 7 July 2014
Government Canada Montana High 1249.0 5 20 24980.0 3247.400 21732.600 12490.0 9242.600 41913 10 October 2014
Government United States of America Paseo High 1438.5 10 7 10069.5 1309.035 8760.465 7192.5 1567.965 41640 1 January 2014
Small Business Germany Paseo High 807.0 10 300 242100.0 31473.000 210627.000 201750.0 8877.000 41640 1 January 2014
Government United States of America Paseo High 2641.0 10 20 52820.0 6866.600 45953.400 26410.0 19543.400 41671 2 February 2014
Government Germany Paseo High 2708.0 10 20 54160.0 7040.800 47119.200 27080.0 20039.200 41671 2 February 2014
Government Canada Paseo High 2632.0 10 350 921200.0 119756.000 801444.000 684320.0 117124.000 41791 6 June 2014
Enterprise Canada Paseo High 1583.0 10 125 197875.0 25723.750 172151.250 189960.0 -17808.750 41791 6 June 2014
Channel Partners Mexico Paseo High 571.0 10 12 6852.0 890.760 5961.240 1713.0 4248.240 41821 7 July 2014
Government France Paseo High 2696.0 10 7 18872.0 2453.360 16418.640 13480.0 2938.640 41852 8 August 2014
Midmarket Canada Paseo High 1565.0 10 15 23475.0 3051.750 20423.250 15650.0 4773.250 41913 10 October 2014
Government Canada Paseo High 1249.0 10 20 24980.0 3247.400 21732.600 12490.0 9242.600 41913 10 October 2014
Government Germany Paseo High 357.0 10 350 124950.0 16243.500 108706.500 92820.0 15886.500 41944 11 November 2014
Channel Partners Germany Paseo High 1013.0 10 12 12156.0 1580.280 10575.720 3039.0 7536.720 41974 12 December 2014
Midmarket France Velo High 3997.5 120 15 59962.5 7795.125 52167.375 39975.0 12192.375 41640 1 January 2014
Government Canada Velo High 2632.0 120 350 921200.0 119756.000 801444.000 684320.0 117124.000 41791 6 June 2014
Government France Velo High 1190.0 120 7 8330.0 1082.900 7247.100 5950.0 1297.100 41791 6 June 2014
Channel Partners Mexico Velo High 604.0 120 12 7248.0 942.240 6305.760 1812.0 4493.760 41791 6 June 2014
Midmarket Germany Velo High 660.0 120 15 9900.0 1287.000 8613.000 6600.0 2013.000 41518 9 September 2013
Channel Partners Mexico Velo High 410.0 120 12 4920.0 639.600 4280.400 1230.0 3050.400 41913 10 October 2014
Small Business Mexico Velo High 2605.0 120 300 781500.0 101595.000 679905.000 651250.0 28655.000 41579 11 November 2013
Channel Partners Germany Velo High 1013.0 120 12 12156.0 1580.280 10575.720 3039.0 7536.720 41974 12 December 2014
Enterprise Canada VTT High 1583.0 250 125 197875.0 25723.750 172151.250 189960.0 -17808.750 41791 6 June 2014
Midmarket Canada VTT High 1565.0 250 15 23475.0 3051.750 20423.250 15650.0 4773.250 41913 10 October 2014
Enterprise Canada Amarilla High 1659.0 260 125 207375.0 26958.750 180416.250 199080.0 -18663.750 41640 1 January 2014
Government France Amarilla High 1190.0 260 7 8330.0 1082.900 7247.100 5950.0 1297.100 41791 6 June 2014
Channel Partners Mexico Amarilla High 410.0 260 12 4920.0 639.600 4280.400 1230.0 3050.400 41913 10 October 2014
Channel Partners Germany Amarilla High 1770.0 260 12 21240.0 2761.200 18478.800 5310.0 13168.800 41609 12 December 2013
Government Mexico Carretera High 2579.0 3 20 51580.0 7221.200 44358.800 25790.0 18568.800 41730 4 April 2014
Government United States of America Carretera High 1743.0 3 20 34860.0 4880.400 29979.600 17430.0 12549.600 41760 5 May 2014
Government United States of America Carretera High 2996.0 3 7 20972.0 2936.080 18035.920 14980.0 3055.920 41548 10 October 2013
Government Germany Carretera High 280.0 3 7 1960.0 274.400 1685.600 1400.0 285.600 41974 12 December 2014
Government France Montana High 293.0 5 7 2051.0 287.140 1763.860 1465.0 298.860 41671 2 February 2014
Government United States of America Montana High 2996.0 5 7 20972.0 2936.080 18035.920 14980.0 3055.920 41548 10 October 2013
Midmarket Germany Paseo High 278.0 10 15 4170.0 583.800 3586.200 2780.0 806.200 41671 2 February 2014
Government Canada Paseo High 2428.0 10 20 48560.0 6798.400 41761.600 24280.0 17481.600 41699 3 March 2014
Midmarket United States of America Paseo High 1767.0 10 15 26505.0 3710.700 22794.300 17670.0 5124.300 41883 9 September 2014
Channel Partners France Paseo High 1393.0 10 12 16716.0 2340.240 14375.760 4179.0 10196.760 41913 10 October 2014
Government Germany VTT High 280.0 250 7 1960.0 274.400 1685.600 1400.0 285.600 41974 12 December 2014
Channel Partners France Amarilla High 1393.0 260 12 16716.0 2340.240 14375.760 4179.0 10196.760 41913 10 October 2014
Channel Partners United States of America Amarilla High 2015.0 260 12 24180.0 3385.200 20794.800 6045.0 14749.800 41609 12 December 2013
Small Business Mexico Carretera High 801.0 3 300 240300.0 33642.000 206658.000 200250.0 6408.000 41821 7 July 2014
Enterprise France Carretera High 1023.0 3 125 127875.0 17902.500 109972.500 122760.0 -12787.500 41518 9 September 2013
Small Business Canada Carretera High 1496.0 3 300 448800.0 62832.000 385968.000 374000.0 11968.000 41913 10 October 2014
Small Business United States of America Carretera High 1010.0 3 300 303000.0 42420.000 260580.000 252500.0 8080.000 41913 10 October 2014
Midmarket Germany Carretera High 1513.0 3 15 22695.0 3177.300 19517.700 15130.0 4387.700 41944 11 November 2014
Midmarket Canada Carretera High 2300.0 3 15 34500.0 4830.000 29670.000 23000.0 6670.000 41974 12 December 2014
Enterprise Mexico Carretera High 2821.0 3 125 352625.0 49367.500 303257.500 338520.0 -35262.500 41609 12 December 2013
Government Canada Montana High 2227.5 5 350 779625.0 109147.500 670477.500 579150.0 91327.500 41640 1 January 2014
Government Germany Montana High 1199.0 5 350 419650.0 58751.000 360899.000 311740.0 49159.000 41730 4 April 2014
Government Canada Montana High 200.0 5 350 70000.0 9800.000 60200.000 52000.0 8200.000 41760 5 May 2014
Government Canada Montana High 388.0 5 7 2716.0 380.240 2335.760 1940.0 395.760 41883 9 September 2014
Government Mexico Montana High 1727.0 5 7 12089.0 1692.460 10396.540 8635.0 1761.540 41548 10 October 2013
Midmarket Canada Montana High 2300.0 5 15 34500.0 4830.000 29670.000 23000.0 6670.000 41974 12 December 2014
Government Mexico Paseo High 260.0 10 20 5200.0 728.000 4472.000 2600.0 1872.000 41671 2 February 2014
Midmarket Canada Paseo High 2470.0 10 15 37050.0 5187.000 31863.000 24700.0 7163.000 41518 9 September 2013
Midmarket Canada Paseo High 1743.0 10 15 26145.0 3660.300 22484.700 17430.0 5054.700 41548 10 October 2013
Channel Partners United States of America Paseo High 2914.0 10 12 34968.0 4895.520 30072.480 8742.0 21330.480 41913 10 October 2014
Government France Paseo High 1731.0 10 7 12117.0 1696.380 10420.620 8655.0 1765.620 41913 10 October 2014
Government Canada Paseo High 700.0 10 350 245000.0 34300.000 210700.000 182000.0 28700.000 41944 11 November 2014
Channel Partners Canada Paseo High 2222.0 10 12 26664.0 3732.960 22931.040 6666.0 16265.040 41579 11 November 2013
Government United States of America Paseo High 1177.0 10 350 411950.0 57673.000 354277.000 306020.0 48257.000 41944 11 November 2014
Government France Paseo High 1922.0 10 350 672700.0 94178.000 578522.000 499720.0 78802.000 41579 11 November 2013
Enterprise Mexico Velo High 1575.0 120 125 196875.0 27562.500 169312.500 189000.0 -19687.500 41671 2 February 2014
Government United States of America Velo High 606.0 120 20 12120.0 1696.800 10423.200 6060.0 4363.200 41730 4 April 2014
Small Business United States of America Velo High 2460.0 120 300 738000.0 103320.000 634680.000 615000.0 19680.000 41821 7 July 2014
Small Business Canada Velo High 269.0 120 300 80700.0 11298.000 69402.000 67250.0 2152.000 41548 10 October 2013
Small Business Germany Velo High 2536.0 120 300 760800.0 106512.000 654288.000 634000.0 20288.000 41579 11 November 2013
Government Mexico VTT High 2903.0 250 7 20321.0 2844.940 17476.060 14515.0 2961.060 41699 3 March 2014
Small Business United States of America VTT High 2541.0 250 300 762300.0 106722.000 655578.000 635250.0 20328.000 41852 8 August 2014
Small Business Canada VTT High 269.0 250 300 80700.0 11298.000 69402.000 67250.0 2152.000 41548 10 October 2013
Small Business Canada VTT High 1496.0 250 300 448800.0 62832.000 385968.000 374000.0 11968.000 41913 10 October 2014
Small Business United States of America VTT High 1010.0 250 300 303000.0 42420.000 260580.000 252500.0 8080.000 41913 10 October 2014
Government France VTT High 1281.0 250 350 448350.0 62769.000 385581.000 333060.0 52521.000 41609 12 December 2013
Small Business Canada Amarilla High 888.0 260 300 266400.0 37296.000 229104.000 222000.0 7104.000 41699 3 March 2014
Enterprise United States of America Amarilla High 2844.0 260 125 355500.0 49770.000 305730.000 341280.0 -35550.000 41760 5 May 2014
Channel Partners France Amarilla High 2475.0 260 12 29700.0 4158.000 25542.000 7425.0 18117.000 41852 8 August 2014
Midmarket Canada Amarilla High 1743.0 260 15 26145.0 3660.300 22484.700 17430.0 5054.700 41548 10 October 2013
Channel Partners United States of America Amarilla High 2914.0 260 12 34968.0 4895.520 30072.480 8742.0 21330.480 41913 10 October 2014
Government France Amarilla High 1731.0 260 7 12117.0 1696.380 10420.620 8655.0 1765.620 41913 10 October 2014
Government Mexico Amarilla High 1727.0 260 7 12089.0 1692.460 10396.540 8635.0 1761.540 41548 10 October 2013
Midmarket Mexico Amarilla High 1870.0 260 15 28050.0 3927.000 24123.000 18700.0 5423.000 41579 11 November 2013
Enterprise France Carretera High 1174.0 3 125 146750.0 22012.500 124737.500 140880.0 -16142.500 41852 8 August 2014
Enterprise Germany Carretera High 2767.0 3 125 345875.0 51881.250 293993.750 332040.0 -38046.250 41852 8 August 2014
Enterprise Germany Carretera High 1085.0 3 125 135625.0 20343.750 115281.250 130200.0 -14918.750 41913 10 October 2014
Small Business Mexico Montana High 546.0 5 300 163800.0 24570.000 139230.000 136500.0 2730.000 41913 10 October 2014
Government Germany Paseo High 1158.0 10 20 23160.0 3474.000 19686.000 11580.0 8106.000 41699 3 March 2014
Midmarket Canada Paseo High 1614.0 10 15 24210.0 3631.500 20578.500 16140.0 4438.500 41730 4 April 2014
Government Mexico Paseo High 2535.0 10 7 17745.0 2661.750 15083.250 12675.0 2408.250 41730 4 April 2014
Government Mexico Paseo High 2851.0 10 350 997850.0 149677.500 848172.500 741260.0 106912.500 41760 5 May 2014
Midmarket Canada Paseo High 2559.0 10 15 38385.0 5757.750 32627.250 25590.0 7037.250 41852 8 August 2014
Government United States of America Paseo High 267.0 10 20 5340.0 801.000 4539.000 2670.0 1869.000 41548 10 October 2013
Enterprise Germany Paseo High 1085.0 10 125 135625.0 20343.750 115281.250 130200.0 -14918.750 41913 10 October 2014
Midmarket Germany Paseo High 1175.0 10 15 17625.0 2643.750 14981.250 11750.0 3231.250 41913 10 October 2014
Government United States of America Paseo High 2007.0 10 350 702450.0 105367.500 597082.500 521820.0 75262.500 41579 11 November 2013
Government Mexico Paseo High 2151.0 10 350 752850.0 112927.500 639922.500 559260.0 80662.500 41579 11 November 2013
Channel Partners United States of America Paseo High 914.0 10 12 10968.0 1645.200 9322.800 2742.0 6580.800 41974 12 December 2014
Government France Paseo High 293.0 10 20 5860.0 879.000 4981.000 2930.0 2051.000 41974 12 December 2014
Channel Partners Mexico Velo High 500.0 120 12 6000.0 900.000 5100.000 1500.0 3600.000 41699 3 March 2014
Midmarket France Velo High 2826.0 120 15 42390.0 6358.500 36031.500 28260.0 7771.500 41760 5 May 2014
Enterprise France Velo High 663.0 120 125 82875.0 12431.250 70443.750 79560.0 -9116.250 41883 9 September 2014
Small Business United States of America Velo High 2574.0 120 300 772200.0 115830.000 656370.000 643500.0 12870.000 41579 11 November 2013
Enterprise United States of America Velo High 2438.0 120 125 304750.0 45712.500 259037.500 292560.0 -33522.500 41609 12 December 2013
Channel Partners United States of America Velo High 914.0 120 12 10968.0 1645.200 9322.800 2742.0 6580.800 41974 12 December 2014
Government Canada VTT High 865.5 250 20 17310.0 2596.500 14713.500 8655.0 6058.500 41821 7 July 2014
Midmarket Germany VTT High 492.0 250 15 7380.0 1107.000 6273.000 4920.0 1353.000 41821 7 July 2014
Government United States of America VTT High 267.0 250 20 5340.0 801.000 4539.000 2670.0 1869.000 41548 10 October 2013
Midmarket Germany VTT High 1175.0 250 15 17625.0 2643.750 14981.250 11750.0 3231.250 41913 10 October 2014
Enterprise Canada VTT High 2954.0 250 125 369250.0 55387.500 313862.500 354480.0 -40617.500 41579 11 November 2013
Enterprise Germany VTT High 552.0 250 125 69000.0 10350.000 58650.000 66240.0 -7590.000 41944 11 November 2014
Government France VTT High 293.0 250 20 5860.0 879.000 4981.000 2930.0 2051.000 41974 12 December 2014
Small Business France Amarilla High 2475.0 260 300 742500.0 111375.000 631125.000 618750.0 12375.000 41699 3 March 2014
Small Business Mexico Amarilla High 546.0 260 300 163800.0 24570.000 139230.000 136500.0 2730.000 41913 10 October 2014
Government Mexico Montana High 1368.0 5 7 9576.0 1436.400 8139.600 6840.0 1299.600 41671 2 February 2014
Government Canada Paseo High 723.0 10 7 5061.0 759.150 4301.850 3615.0 686.850 41730 4 April 2014
Channel Partners United States of America VTT High 1806.0 250 12 21672.0 3250.800 18421.200 5418.0 13003.200 41760 5 May 2014
Government France Paseo High 1954.0 10 20 39080.0 3908.000 35172.000 19540.0 15632.000 41699 3 March 2014
Small Business Mexico Paseo High 591.0 10 300 177300.0 17730.000 159570.000 147750.0 11820.000 41760 5 May 2014
Midmarket France Paseo High 2167.0 10 15 32505.0 3250.500 29254.500 21670.0 7584.500 41548 10 October 2013
Government Germany Paseo High 241.0 10 20 4820.0 482.000 4338.000 2410.0 1928.000 41913 10 October 2014
Midmarket Germany Velo High 681.0 120 15 10215.0 1021.500 9193.500 6810.0 2383.500 41640 1 January 2014
Midmarket Germany Velo High 510.0 120 15 7650.0 765.000 6885.000 5100.0 1785.000 41730 4 April 2014
Midmarket United States of America Velo High 790.0 120 15 11850.0 1185.000 10665.000 7900.0 2765.000 41760 5 May 2014
Government France Velo High 639.0 120 350 223650.0 22365.000 201285.000 166140.0 35145.000 41821 7 July 2014
Enterprise United States of America Velo High 1596.0 120 125 199500.0 19950.000 179550.000 191520.0 -11970.000 41883 9 September 2014
Small Business United States of America Velo High 2294.0 120 300 688200.0 68820.000 619380.000 573500.0 45880.000 41548 10 October 2013
Government Germany Velo High 241.0 120 20 4820.0 482.000 4338.000 2410.0 1928.000 41913 10 October 2014
Government Germany Velo High 2665.0 120 7 18655.0 1865.500 16789.500 13325.0 3464.500 41944 11 November 2014
Enterprise Canada Velo High 1916.0 120 125 239500.0 23950.000 215550.000 229920.0 -14370.000 41609 12 December 2013
Small Business France Velo High 853.0 120 300 255900.0 25590.000 230310.000 213250.0 17060.000 41974 12 December 2014
Enterprise Mexico VTT High 341.0 250 125 42625.0 4262.500 38362.500 40920.0 -2557.500 41760 5 May 2014
Midmarket Mexico VTT High 641.0 250 15 9615.0 961.500 8653.500 6410.0 2243.500 41821 7 July 2014
Government United States of America VTT High 2807.0 250 350 982450.0 98245.000 884205.000 729820.0 154385.000 41852 8 August 2014
Small Business Mexico VTT High 432.0 250 300 129600.0 12960.000 116640.000 108000.0 8640.000 41883 9 September 2014
Small Business United States of America VTT High 2294.0 250 300 688200.0 68820.000 619380.000 573500.0 45880.000 41548 10 October 2013
Midmarket France VTT High 2167.0 250 15 32505.0 3250.500 29254.500 21670.0 7584.500 41548 10 October 2013
Enterprise Canada VTT High 2529.0 250 125 316125.0 31612.500 284512.500 303480.0 -18967.500 41944 11 November 2014
Government Germany VTT High 1870.0 250 350 654500.0 65450.000 589050.000 486200.0 102850.000 41609 12 December 2013
Enterprise United States of America Amarilla High 579.0 260 125 72375.0 7237.500 65137.500 69480.0 -4342.500 41640 1 January 2014
Government Canada Amarilla High 2240.0 260 350 784000.0 78400.000 705600.000 582400.0 123200.000 41671 2 February 2014
Small Business United States of America Amarilla High 2993.0 260 300 897900.0 89790.000 808110.000 748250.0 59860.000 41699 3 March 2014
Channel Partners Canada Amarilla High 3520.5 260 12 42246.0 4224.600 38021.400 10561.5 27459.900 41730 4 April 2014
Government Mexico Amarilla High 2039.0 260 20 40780.0 4078.000 36702.000 20390.0 16312.000 41760 5 May 2014
Channel Partners Germany Amarilla High 2574.0 260 12 30888.0 3088.800 27799.200 7722.0 20077.200 41852 8 August 2014
Government Canada Amarilla High 707.0 260 350 247450.0 24745.000 222705.000 183820.0 38885.000 41883 9 September 2014
Midmarket France Amarilla High 2072.0 260 15 31080.0 3108.000 27972.000 20720.0 7252.000 41974 12 December 2014
Small Business France Amarilla High 853.0 260 300 255900.0 25590.000 230310.000 213250.0 17060.000 41974 12 December 2014
Channel Partners France Carretera High 1198.0 3 12 14376.0 1581.360 12794.640 3594.0 9200.640 41548 10 October 2013
Government France Paseo High 2532.0 10 7 17724.0 1949.640 15774.360 12660.0 3114.360 41730 4 April 2014
Channel Partners France Paseo High 1198.0 10 12 14376.0 1581.360 12794.640 3594.0 9200.640 41548 10 October 2013
Midmarket Canada Velo High 384.0 120 15 5760.0 633.600 5126.400 3840.0 1286.400 41640 1 January 2014
Channel Partners Germany Velo High 472.0 120 12 5664.0 623.040 5040.960 1416.0 3624.960 41913 10 October 2014
Government United States of America VTT High 1579.0 250 7 11053.0 1215.830 9837.170 7895.0 1942.170 41699 3 March 2014
Channel Partners Mexico VTT High 1005.0 250 12 12060.0 1326.600 10733.400 3015.0 7718.400 41518 9 September 2013
Midmarket United States of America Amarilla High 3199.5 260 15 47992.5 5279.175 42713.325 31995.0 10718.325 41821 7 July 2014
Channel Partners Germany Amarilla High 472.0 260 12 5664.0 623.040 5040.960 1416.0 3624.960 41913 10 October 2014
Channel Partners Canada Carretera High 1937.0 3 12 23244.0 2556.840 20687.160 5811.0 14876.160 41671 2 February 2014
Government Germany Carretera High 792.0 3 350 277200.0 30492.000 246708.000 205920.0 40788.000 41699 3 March 2014
Small Business Germany Carretera High 2811.0 3 300 843300.0 92763.000 750537.000 702750.0 47787.000 41821 7 July 2014
Enterprise France Carretera High 2441.0 3 125 305125.0 33563.750 271561.250 292920.0 -21358.750 41913 10 October 2014
Midmarket Canada Carretera High 1560.0 3 15 23400.0 2574.000 20826.000 15600.0 5226.000 41579 11 November 2013
Government Mexico Carretera High 2706.0 3 7 18942.0 2083.620 16858.380 13530.0 3328.380 41579 11 November 2013
Government Germany Montana High 766.0 5 350 268100.0 29491.000 238609.000 199160.0 39449.000 41640 1 January 2014
Government Germany Montana High 2992.0 5 20 59840.0 6582.400 53257.600 29920.0 23337.600 41548 10 October 2013
Midmarket Mexico Montana High 2157.0 5 15 32355.0 3559.050 28795.950 21570.0 7225.950 41974 12 December 2014
Small Business Canada Paseo High 873.0 10 300 261900.0 28809.000 233091.000 218250.0 14841.000 41640 1 January 2014
Government Mexico Paseo High 1122.0 10 20 22440.0 2468.400 19971.600 11220.0 8751.600 41699 3 March 2014
Government Canada Paseo High 2104.5 10 350 736575.0 81023.250 655551.750 547170.0 108381.750 41821 7 July 2014
Channel Partners Canada Paseo High 4026.0 10 12 48312.0 5314.320 42997.680 12078.0 30919.680 41821 7 July 2014
Channel Partners France Paseo High 2425.5 10 12 29106.0 3201.660 25904.340 7276.5 18627.840 41821 7 July 2014
Government Canada Paseo High 2394.0 10 20 47880.0 5266.800 42613.200 23940.0 18673.200 41852 8 August 2014
Midmarket Mexico Paseo High 1984.0 10 15 29760.0 3273.600 26486.400 19840.0 6646.400 41852 8 August 2014
Enterprise France Paseo High 2441.0 10 125 305125.0 33563.750 271561.250 292920.0 -21358.750 41913 10 October 2014
Government Germany Paseo High 2992.0 10 20 59840.0 6582.400 53257.600 29920.0 23337.600 41548 10 October 2013
Small Business Canada Paseo High 1366.0 10 300 409800.0 45078.000 364722.000 341500.0 23222.000 41944 11 November 2014
Government France Velo High 2805.0 120 20 56100.0 6171.000 49929.000 28050.0 21879.000 41518 9 September 2013
Midmarket Mexico Velo High 655.0 120 15 9825.0 1080.750 8744.250 6550.0 2194.250 41518 9 September 2013
Government Mexico Velo High 344.0 120 350 120400.0 13244.000 107156.000 89440.0 17716.000 41548 10 October 2013
Government Canada Velo High 1808.0 120 7 12656.0 1392.160 11263.840 9040.0 2223.840 41944 11 November 2014
Channel Partners France VTT High 1734.0 250 12 20808.0 2288.880 18519.120 5202.0 13317.120 41640 1 January 2014
Enterprise Mexico VTT High 554.0 250 125 69250.0 7617.500 61632.500 66480.0 -4847.500 41640 1 January 2014
Government Canada VTT High 2935.0 250 20 58700.0 6457.000 52243.000 29350.0 22893.000 41579 11 November 2013
Enterprise Germany Amarilla High 3165.0 260 125 395625.0 43518.750 352106.250 379800.0 -27693.750 41640 1 January 2014
Government Mexico Amarilla High 2629.0 260 20 52580.0 5783.800 46796.200 26290.0 20506.200 41640 1 January 2014
Enterprise France Amarilla High 1433.0 260 125 179125.0 19703.750 159421.250 171960.0 -12538.750 41760 5 May 2014
Enterprise Mexico Amarilla High 947.0 260 125 118375.0 13021.250 105353.750 113640.0 -8286.250 41518 9 September 2013
Government Mexico Amarilla High 344.0 260 350 120400.0 13244.000 107156.000 89440.0 17716.000 41548 10 October 2013
Midmarket Mexico Amarilla High 2157.0 260 15 32355.0 3559.050 28795.950 21570.0 7225.950 41974 12 December 2014
Government United States of America Paseo High 380.0 10 7 2660.0 292.600 2367.400 1900.0 467.400 41518 9 September 2013
Government Mexico Carretera High 886.0 3 350 310100.0 37212.000 272888.000 230360.0 42528.000 41791 6 June 2014
Enterprise Canada Carretera High 2416.0 3 125 302000.0 36240.000 265760.000 289920.0 -24160.000 41518 9 September 2013
Enterprise Mexico Carretera High 2156.0 3 125 269500.0 32340.000 237160.000 258720.0 -21560.000 41913 10 October 2014
Midmarket Canada Carretera High 2689.0 3 15 40335.0 4840.200 35494.800 26890.0 8604.800 41944 11 November 2014
Midmarket United States of America Montana High 677.0 5 15 10155.0 1218.600 8936.400 6770.0 2166.400 41699 3 March 2014
Small Business France Montana High 1773.0 5 300 531900.0 63828.000 468072.000 443250.0 24822.000 41730 4 April 2014
Government Mexico Montana High 2420.0 5 7 16940.0 2032.800 14907.200 12100.0 2807.200 41883 9 September 2014
Government Canada Montana High 2734.0 5 7 19138.0 2296.560 16841.440 13670.0 3171.440 41913 10 October 2014
Government Mexico Montana High 1715.0 5 20 34300.0 4116.000 30184.000 17150.0 13034.000 41548 10 October 2013
Small Business France Montana High 1186.0 5 300 355800.0 42696.000 313104.000 296500.0 16604.000 41609 12 December 2013
Small Business United States of America Paseo High 3495.0 10 300 1048500.0 125820.000 922680.000 873750.0 48930.000 41640 1 January 2014
Government Mexico Paseo High 886.0 10 350 310100.0 37212.000 272888.000 230360.0 42528.000 41791 6 June 2014
Enterprise Mexico Paseo High 2156.0 10 125 269500.0 32340.000 237160.000 258720.0 -21560.000 41913 10 October 2014
Government Mexico Paseo High 905.0 10 20 18100.0 2172.000 15928.000 9050.0 6878.000 41913 10 October 2014
Government France VTT High 1491.0 250 7 10437.0 1252.440 9184.560 7455.0 1729.560 41699 3 March 2014
Government Germany VTT High 1531.0 250 20 30620.0 3674.400 26945.600 15310.0 11635.600 41974 12 December 2014
Channel Partners Canada Amarilla High 2761.0 260 12 33132.0 3975.840 29156.160 8283.0 20873.160 41518 9 September 2013
Midmarket United States of America Carretera High 2567.0 3 15 38505.0 5005.650 33499.350 25670.0 7829.350 41791 6 June 2014
Midmarket United States of America VTT High 2567.0 250 15 38505.0 5005.650 33499.350 25670.0 7829.350 41791 6 June 2014
Government Canada Carretera High 923.0 3 350 323050.0 41996.500 281053.500 239980.0 41073.500 41699 3 March 2014
Government France Carretera High 1790.0 3 350 626500.0 81445.000 545055.000 465400.0 79655.000 41699 3 March 2014
Government Germany Carretera High 442.0 3 20 8840.0 1149.200 7690.800 4420.0 3270.800 41518 9 September 2013
Government United States of America Montana High 982.5 5 350 343875.0 44703.750 299171.250 255450.0 43721.250 41640 1 January 2014
Government United States of America Montana High 1298.0 5 7 9086.0 1181.180 7904.820 6490.0 1414.820 41671 2 February 2014
Channel Partners Mexico Montana High 604.0 5 12 7248.0 942.240 6305.760 1812.0 4493.760 41791 6 June 2014
Government Mexico Montana High 2255.0 5 20 45100.0 5863.000 39237.000 22550.0 16687.000 41821 7 July 2014
Government Canada Montana High 1249.0 5 20 24980.0 3247.400 21732.600 12490.0 9242.600 41913 10 October 2014
Government United States of America Paseo High 1438.5 10 7 10069.5 1309.035 8760.465 7192.5 1567.965 41640 1 January 2014
Small Business Germany Paseo High 807.0 10 300 242100.0 31473.000 210627.000 201750.0 8877.000 41640 1 January 2014
Government United States of America Paseo High 2641.0 10 20 52820.0 6866.600 45953.400 26410.0 19543.400 41671 2 February 2014
Government Germany Paseo High 2708.0 10 20 54160.0 7040.800 47119.200 27080.0 20039.200 41671 2 February 2014
Government Canada Paseo High 2632.0 10 350 921200.0 119756.000 801444.000 684320.0 117124.000 41791 6 June 2014
Enterprise Canada Paseo High 1583.0 10 125 197875.0 25723.750 172151.250 189960.0 -17808.750 41791 6 June 2014
Channel Partners Mexico Paseo High 571.0 10 12 6852.0 890.760 5961.240 1713.0 4248.240 41821 7 July 2014
Government France Paseo High 2696.0 10 7 18872.0 2453.360 16418.640 13480.0 2938.640 41852 8 August 2014
Midmarket Canada Paseo High 1565.0 10 15 23475.0 3051.750 20423.250 15650.0 4773.250 41913 10 October 2014
Government Canada Paseo High 1249.0 10 20 24980.0 3247.400 21732.600 12490.0 9242.600 41913 10 October 2014
Government Germany Paseo High 357.0 10 350 124950.0 16243.500 108706.500 92820.0 15886.500 41944 11 November 2014
Channel Partners Germany Paseo High 1013.0 10 12 12156.0 1580.280 10575.720 3039.0 7536.720 41974 12 December 2014
Midmarket France Velo High 3997.5 120 15 59962.5 7795.125 52167.375 39975.0 12192.375 41640 1 January 2014
Government Canada Velo High 2632.0 120 350 921200.0 119756.000 801444.000 684320.0 117124.000 41791 6 June 2014
Government France Velo High 1190.0 120 7 8330.0 1082.900 7247.100 5950.0 1297.100 41791 6 June 2014
Channel Partners Mexico Velo High 604.0 120 12 7248.0 942.240 6305.760 1812.0 4493.760 41791 6 June 2014
Midmarket Germany Velo High 660.0 120 15 9900.0 1287.000 8613.000 6600.0 2013.000 41518 9 September 2013
Channel Partners Mexico Velo High 410.0 120 12 4920.0 639.600 4280.400 1230.0 3050.400 41913 10 October 2014
Small Business Mexico Velo High 2605.0 120 300 781500.0 101595.000 679905.000 651250.0 28655.000 41579 11 November 2013
Channel Partners Germany Velo High 1013.0 120 12 12156.0 1580.280 10575.720 3039.0 7536.720 41974 12 December 2014
Enterprise Canada VTT High 1583.0 250 125 197875.0 25723.750 172151.250 189960.0 -17808.750 41791 6 June 2014
Midmarket Canada VTT High 1565.0 250 15 23475.0 3051.750 20423.250 15650.0 4773.250 41913 10 October 2014
Enterprise Canada Amarilla High 1659.0 260 125 207375.0 26958.750 180416.250 199080.0 -18663.750 41640 1 January 2014
Government France Amarilla High 1190.0 260 7 8330.0 1082.900 7247.100 5950.0 1297.100 41791 6 June 2014
Channel Partners Mexico Amarilla High 410.0 260 12 4920.0 639.600 4280.400 1230.0 3050.400 41913 10 October 2014
Channel Partners Germany Amarilla High 1770.0 260 12 21240.0 2761.200 18478.800 5310.0 13168.800 41609 12 December 2013
Government Mexico Carretera High 2579.0 3 20 51580.0 7221.200 44358.800 25790.0 18568.800 41730 4 April 2014
Government United States of America Carretera High 1743.0 3 20 34860.0 4880.400 29979.600 17430.0 12549.600 41760 5 May 2014
Government United States of America Carretera High 2996.0 3 7 20972.0 2936.080 18035.920 14980.0 3055.920 41548 10 October 2013
Government Germany Carretera High 280.0 3 7 1960.0 274.400 1685.600 1400.0 285.600 41974 12 December 2014
Government France Montana High 293.0 5 7 2051.0 287.140 1763.860 1465.0 298.860 41671 2 February 2014
Government United States of America Montana High 2996.0 5 7 20972.0 2936.080 18035.920 14980.0 3055.920 41548 10 October 2013
Midmarket Germany Paseo High 278.0 10 15 4170.0 583.800 3586.200 2780.0 806.200 41671 2 February 2014
Government Canada Paseo High 2428.0 10 20 48560.0 6798.400 41761.600 24280.0 17481.600 41699 3 March 2014
Midmarket United States of America Paseo High 1767.0 10 15 26505.0 3710.700 22794.300 17670.0 5124.300 41883 9 September 2014
Channel Partners France Paseo High 1393.0 10 12 16716.0 2340.240 14375.760 4179.0 10196.760 41913 10 October 2014
Government Germany VTT High 280.0 250 7 1960.0 274.400 1685.600 1400.0 285.600 41974 12 December 2014
Channel Partners France Amarilla High 1393.0 260 12 16716.0 2340.240 14375.760 4179.0 10196.760 41913 10 October 2014
Government France Velo High 2805.0 120 20 56100.0 6171.000 49929.000 28050.0 21879.000 41518 9 September 2013
Midmarket Mexico Velo High 655.0 120 15 9825.0 1080.750 8744.250 6550.0 2194.250 41518 9 September 2013
Government Mexico Velo High 344.0 120 350 120400.0 13244.000 107156.000 89440.0 17716.000 41548 10 October 2013
Government Canada Velo High 1808.0 120 7 12656.0 1392.160 11263.840 9040.0 2223.840 41944 11 November 2014
Channel Partners France VTT High 1734.0 250 12 20808.0 2288.880 18519.120 5202.0 13317.120 41640 1 January 2014
Enterprise Mexico VTT High 554.0 250 125 69250.0 7617.500 61632.500 66480.0 -4847.500 41640 1 January 2014
Government Canada VTT High 2935.0 250 20 58700.0 6457.000 52243.000 29350.0 22893.000 41579 11 November 2013
Enterprise Germany Amarilla High 3165.0 260 125 395625.0 43518.750 352106.250 379800.0 -27693.750 41640 1 January 2014
Government Mexico Amarilla High 2629.0 260 20 52580.0 5783.800 46796.200 26290.0 20506.200 41640 1 January 2014
Enterprise France Amarilla High 1433.0 260 125 179125.0 19703.750 159421.250 171960.0 -12538.750 41760 5 May 2014
Enterprise Mexico Amarilla High 947.0 260 125 118375.0 13021.250 105353.750 113640.0 -8286.250 41518 9 September 2013
Government Mexico Amarilla High 344.0 260 350 120400.0 13244.000 107156.000 89440.0 17716.000 41548 10 October 2013
Midmarket Mexico Amarilla High 2157.0 260 15 32355.0 3559.050 28795.950 21570.0 7225.950 41974 12 December 2014
Government United States of America Paseo High 380.0 10 7 2660.0 292.600 2367.400 1900.0 467.400 41518 9 September 2013
Government Mexico Carretera High 886.0 3 350 310100.0 37212.000 272888.000 230360.0 42528.000 41791 6 June 2014
Enterprise Canada Carretera High 2416.0 3 125 302000.0 36240.000 265760.000 289920.0 -24160.000 41518 9 September 2013
Enterprise Mexico Carretera High 2156.0 3 125 269500.0 32340.000 237160.000 258720.0 -21560.000 41913 10 October 2014
Midmarket Canada Carretera High 2689.0 3 15 40335.0 4840.200 35494.800 26890.0 8604.800 41944 11 November 2014
Midmarket United States of America Montana High 677.0 5 15 10155.0 1218.600 8936.400 6770.0 2166.400 41699 3 March 2014
Small Business France Montana High 1773.0 5 300 531900.0 63828.000 468072.000 443250.0 24822.000 41730 4 April 2014
Government Mexico Montana High 2420.0 5 7 16940.0 2032.800 14907.200 12100.0 2807.200 41883 9 September 2014
Government Canada Montana High 2734.0 5 7 19138.0 2296.560 16841.440 13670.0 3171.440 41913 10 October 2014
Government Mexico Montana High 1715.0 5 20 34300.0 4116.000 30184.000 17150.0 13034.000 41548 10 October 2013
Small Business France Montana High 1186.0 5 300 355800.0 42696.000 313104.000 296500.0 16604.000 41609 12 December 2013
Small Business United States of America Paseo High 3495.0 10 300 1048500.0 125820.000 922680.000 873750.0 48930.000 41640 1 January 2014
Government Mexico Paseo High 886.0 10 350 310100.0 37212.000 272888.000 230360.0 42528.000 41791 6 June 2014
Enterprise Mexico Paseo High 2156.0 10 125 269500.0 32340.000 237160.000 258720.0 -21560.000 41913 10 October 2014
Government Mexico Paseo High 905.0 10 20 18100.0 2172.000 15928.000 9050.0 6878.000 41913 10 October 2014
Government Mexico Paseo High 1715.0 10 20 34300.0 4116.000 30184.000 17150.0 13034.000 41548 10 October 2013
Government France Paseo High 1594.0 10 350 557900.0 66948.000 490952.000 414440.0 76512.000 41944 11 November 2014
Small Business Germany Paseo High 1359.0 10 300 407700.0 48924.000 358776.000 339750.0 19026.000 41944 11 November 2014
Small Business Mexico Paseo High 2150.0 10 300 645000.0 77400.000 567600.000 537500.0 30100.000 41944 11 November 2014
Government Mexico Paseo High 1197.0 10 350 418950.0 50274.000 368676.000 311220.0 57456.000 41944 11 November 2014
Midmarket Mexico Paseo High 380.0 10 15 5700.0 684.000 5016.000 3800.0 1216.000 41609 12 December 2013
Government Mexico Paseo High 1233.0 10 20 24660.0 2959.200 21700.800 12330.0 9370.800 41974 12 December 2014
Government Mexico Velo High 1395.0 120 350 488250.0 58590.000 429660.000 362700.0 66960.000 41821 7 July 2014
Government United States of America Velo High 986.0 120 350 345100.0 41412.000 303688.000 256360.0 47328.000 41913 10 October 2014
Government Mexico Velo High 905.0 120 20 18100.0 2172.000 15928.000 9050.0 6878.000 41913 10 October 2014
Channel Partners Canada VTT High 2109.0 250 12 25308.0 3036.960 22271.040 6327.0 15944.040 41760 5 May 2014
Midmarket France VTT High 3874.5 250 15 58117.5 6974.100 51143.400 38745.0 12398.400 41821 7 July 2014
Government Canada VTT High 623.0 250 350 218050.0 26166.000 191884.000 161980.0 29904.000 41518 9 September 2013
Government United States of America VTT High 986.0 250 350 345100.0 41412.000 303688.000 256360.0 47328.000 41913 10 October 2014
Enterprise United States of America VTT High 2387.0 250 125 298375.0 35805.000 262570.000 286440.0 -23870.000 41944 11 November 2014
Government Mexico VTT High 1233.0 250 20 24660.0 2959.200 21700.800 12330.0 9370.800 41974 12 December 2014
Government United States of America Amarilla High 270.0 260 350 94500.0 11340.000 83160.000 70200.0 12960.000 41671 2 February 2014
Government France Amarilla High 3421.5 260 7 23950.5 2874.060 21076.440 17107.5 3968.940 41821 7 July 2014
Government Canada Amarilla High 2734.0 260 7 19138.0 2296.560 16841.440 13670.0 3171.440 41913 10 October 2014
Midmarket United States of America Amarilla High 2548.0 260 15 38220.0 4586.400 33633.600 25480.0 8153.600 41579 11 November 2013
Government France Carretera High 2521.5 3 20 50430.0 6051.600 44378.400 25215.0 19163.400 41640 1 January 2014
Channel Partners Mexico Montana High 2661.0 5 12 31932.0 3831.840 28100.160 7983.0 20117.160 41760 5 May 2014
Government Germany Paseo High 1531.0 10 20 30620.0 3674.400 26945.600 15310.0 11635.600 41974 12 December 2014
Government France VTT High 1491.0 250 7 10437.0 1252.440 9184.560 7455.0 1729.560 41699 3 March 2014
Government Germany VTT High 1531.0 250 20 30620.0 3674.400 26945.600 15310.0 11635.600 41974 12 December 2014
Channel Partners Canada Amarilla High 2761.0 260 12 33132.0 3975.840 29156.160 8283.0 20873.160 41518 9 September 2013
Midmarket United States of America Carretera High 2567.0 3 15 38505.0 5005.650 33499.350 25670.0 7829.350 41791 6 June 2014
Midmarket United States of America VTT High 2567.0 250 15 38505.0 5005.650 33499.350 25670.0 7829.350 41791 6 June 2014
Government France Velo High 2805.0 120 20 56100.0 6171.000 49929.000 28050.0 21879.000 41518 9 September 2013
Midmarket Mexico Velo High 655.0 120 15 9825.0 1080.750 8744.250 6550.0 2194.250 41518 9 September 2013
Government Mexico Velo High 344.0 120 350 120400.0 13244.000 107156.000 89440.0 17716.000 41548 10 October 2013
Government Canada Velo High 1808.0 120 7 12656.0 1392.160 11263.840 9040.0 2223.840 41944 11 November 2014
Channel Partners France VTT High 1734.0 250 12 20808.0 2288.880 18519.120 5202.0 13317.120 41640 1 January 2014
Enterprise Mexico VTT High 554.0 250 125 69250.0 7617.500 61632.500 66480.0 -4847.500 41640 1 January 2014
Government Canada VTT High 2935.0 250 20 58700.0 6457.000 52243.000 29350.0 22893.000 41579 11 November 2013
Enterprise Germany Amarilla High 3165.0 260 125 395625.0 43518.750 352106.250 379800.0 -27693.750 41640 1 January 2014
Government Mexico Amarilla High 2629.0 260 20 52580.0 5783.800 46796.200 26290.0 20506.200 41640 1 January 2014
Enterprise France Amarilla High 1433.0 260 125 179125.0 19703.750 159421.250 171960.0 -12538.750 41760 5 May 2014
Enterprise Mexico Amarilla High 947.0 260 125 118375.0 13021.250 105353.750 113640.0 -8286.250 41518 9 September 2013
Government Mexico Amarilla High 344.0 260 350 120400.0 13244.000 107156.000 89440.0 17716.000 41548 10 October 2013
Midmarket Mexico Amarilla High 2157.0 260 15 32355.0 3559.050 28795.950 21570.0 7225.950 41974 12 December 2014
Government United States of America Paseo High 380.0 10 7 2660.0 292.600 2367.400 1900.0 467.400 41518 9 September 2013
Government Mexico Carretera High 886.0 3 350 310100.0 37212.000 272888.000 230360.0 42528.000 41791 6 June 2014
Enterprise Canada Carretera High 2416.0 3 125 302000.0 36240.000 265760.000 289920.0 -24160.000 41518 9 September 2013
Enterprise Mexico Carretera High 2156.0 3 125 269500.0 32340.000 237160.000 258720.0 -21560.000 41913 10 October 2014
Midmarket Canada Carretera High 2689.0 3 15 40335.0 4840.200 35494.800 26890.0 8604.800 41944 11 November 2014
Midmarket United States of America Montana High 677.0 5 15 10155.0 1218.600 8936.400 6770.0 2166.400 41699 3 March 2014
Small Business France Montana High 1773.0 5 300 531900.0 63828.000 468072.000 443250.0 24822.000 41730 4 April 2014
Government Mexico Montana High 2420.0 5 7 16940.0 2032.800 14907.200 12100.0 2807.200 41883 9 September 2014
Government Canada Montana High 2734.0 5 7 19138.0 2296.560 16841.440 13670.0 3171.440 41913 10 October 2014
Government Mexico Montana High 1715.0 5 20 34300.0 4116.000 30184.000 17150.0 13034.000 41548 10 October 2013
Small Business France Montana High 1186.0 5 300 355800.0 42696.000 313104.000 296500.0 16604.000 41609 12 December 2013
Small Business United States of America Paseo High 3495.0 10 300 1048500.0 125820.000 922680.000 873750.0 48930.000 41640 1 January 2014
Government Mexico Paseo High 886.0 10 350 310100.0 37212.000 272888.000 230360.0 42528.000 41791 6 June 2014
Enterprise Mexico Paseo High 2156.0 10 125 269500.0 32340.000 237160.000 258720.0 -21560.000 41913 10 October 2014
Government Mexico Paseo High 905.0 10 20 18100.0 2172.000 15928.000 9050.0 6878.000 41913 10 October 2014
Government Mexico Paseo High 1715.0 10 20 34300.0 4116.000 30184.000 17150.0 13034.000 41548 10 October 2013
Government France Paseo High 1594.0 10 350 557900.0 66948.000 490952.000 414440.0 76512.000 41944 11 November 2014
Small Business Germany Paseo High 1359.0 10 300 407700.0 48924.000 358776.000 339750.0 19026.000 41944 11 November 2014
Small Business Mexico Paseo High 2150.0 10 300 645000.0 77400.000 567600.000 537500.0 30100.000 41944 11 November 2014
Government Mexico Paseo High 1197.0 10 350 418950.0 50274.000 368676.000 311220.0 57456.000 41944 11 November 2014
Midmarket Mexico Paseo High 380.0 10 15 5700.0 684.000 5016.000 3800.0 1216.000 41609 12 December 2013
Government Mexico Paseo High 1233.0 10 20 24660.0 2959.200 21700.800 12330.0 9370.800 41974 12 December 2014
Government Mexico Velo High 1395.0 120 350 488250.0 58590.000 429660.000 362700.0 66960.000 41821 7 July 2014
Government United States of America Velo High 986.0 120 350 345100.0 41412.000 303688.000 256360.0 47328.000 41913 10 October 2014
Government Mexico Velo High 905.0 120 20 18100.0 2172.000 15928.000 9050.0 6878.000 41913 10 October 2014
Channel Partners Canada VTT High 2109.0 250 12 25308.0 3036.960 22271.040 6327.0 15944.040 41760 5 May 2014
Midmarket France VTT High 3874.5 250 15 58117.5 6974.100 51143.400 38745.0 12398.400 41821 7 July 2014
Government Canada VTT High 623.0 250 350 218050.0 26166.000 191884.000 161980.0 29904.000 41518 9 September 2013
Government United States of America VTT High 986.0 250 350 345100.0 41412.000 303688.000 256360.0 47328.000 41913 10 October 2014
Enterprise United States of America VTT High 2387.0 250 125 298375.0 35805.000 262570.000 286440.0 -23870.000 41944 11 November 2014
Government Mexico VTT High 1233.0 250 20 24660.0 2959.200 21700.800 12330.0 9370.800 41974 12 December 2014
Government United States of America Amarilla High 270.0 260 350 94500.0 11340.000 83160.000 70200.0 12960.000 41671 2 February 2014
Government France Amarilla High 3421.5 260 7 23950.5 2874.060 21076.440 17107.5 3968.940 41821 7 July 2014
Government Canada Amarilla High 2734.0 260 7 19138.0 2296.560 16841.440 13670.0 3171.440 41913 10 October 2014
Midmarket United States of America Amarilla High 2548.0 260 15 38220.0 4586.400 33633.600 25480.0 8153.600 41579 11 November 2013
Government France Carretera High 2521.5 3 20 50430.0 6051.600 44378.400 25215.0 19163.400 41640 1 January 2014
Channel Partners Mexico Montana High 2661.0 5 12 31932.0 3831.840 28100.160 7983.0 20117.160 41760 5 May 2014
Government Germany Paseo High 1531.0 10 20 30620.0 3674.400 26945.600 15310.0 11635.600 41974 12 December 2014
Government France VTT High 1491.0 250 7 10437.0 1252.440 9184.560 7455.0 1729.560 41699 3 March 2014
Government Germany VTT High 1531.0 250 20 30620.0 3674.400 26945.600 15310.0 11635.600 41974 12 December 2014
Channel Partners Canada Amarilla High 2761.0 260 12 33132.0 3975.840 29156.160 8283.0 20873.160 41518 9 September 2013
Midmarket United States of America Carretera High 2567.0 3 15 38505.0 5005.650 33499.350 25670.0 7829.350 41791 6 June 2014
Midmarket United States of America VTT High 2567.0 250 15 38505.0 5005.650 33499.350 25670.0 7829.350 41791 6 June 2014
Government France Velo High 2805.0 120 20 56100.0 6171.000 49929.000 28050.0 21879.000 41518 9 September 2013
Midmarket Mexico Velo High 655.0 120 15 9825.0 1080.750 8744.250 6550.0 2194.250 41518 9 September 2013
Government Mexico Velo High 344.0 120 350 120400.0 13244.000 107156.000 89440.0 17716.000 41548 10 October 2013
Government Canada Velo High 1808.0 120 7 12656.0 1392.160 11263.840 9040.0 2223.840 41944 11 November 2014
Channel Partners France VTT High 1734.0 250 12 20808.0 2288.880 18519.120 5202.0 13317.120 41640 1 January 2014
Enterprise Mexico VTT High 554.0 250 125 69250.0 7617.500 61632.500 66480.0 -4847.500 41640 1 January 2014
Government Canada VTT High 2935.0 250 20 58700.0 6457.000 52243.000 29350.0 22893.000 41579 11 November 2013
Enterprise Germany Amarilla High 3165.0 260 125 395625.0 43518.750 352106.250 379800.0 -27693.750 41640 1 January 2014
Government Mexico Amarilla High 2629.0 260 20 52580.0 5783.800 46796.200 26290.0 20506.200 41640 1 January 2014
Enterprise France Amarilla High 1433.0 260 125 179125.0 19703.750 159421.250 171960.0 -12538.750 41760 5 May 2014
Enterprise Mexico Amarilla High 947.0 260 125 118375.0 13021.250 105353.750 113640.0 -8286.250 41518 9 September 2013
Government Mexico Amarilla High 344.0 260 350 120400.0 13244.000 107156.000 89440.0 17716.000 41548 10 October 2013
Midmarket Mexico Amarilla High 2157.0 260 15 32355.0 3559.050 28795.950 21570.0 7225.950 41974 12 December 2014
Government United States of America Paseo High 380.0 10 7 2660.0 292.600 2367.400 1900.0 467.400 41518 9 September 2013
Government Mexico Carretera High 886.0 3 350 310100.0 37212.000 272888.000 230360.0 42528.000 41791 6 June 2014
Enterprise Canada Carretera High 2416.0 3 125 302000.0 36240.000 265760.000 289920.0 -24160.000 41518 9 September 2013
Enterprise Mexico Carretera High 2156.0 3 125 269500.0 32340.000 237160.000 258720.0 -21560.000 41913 10 October 2014
Midmarket Canada Carretera High 2689.0 3 15 40335.0 4840.200 35494.800 26890.0 8604.800 41944 11 November 2014
Midmarket United States of America Montana High 677.0 5 15 10155.0 1218.600 8936.400 6770.0 2166.400 41699 3 March 2014
Small Business France Montana High 1773.0 5 300 531900.0 63828.000 468072.000 443250.0 24822.000 41730 4 April 2014
Government Mexico Montana High 2420.0 5 7 16940.0 2032.800 14907.200 12100.0 2807.200 41883 9 September 2014
Government Canada Montana High 2734.0 5 7 19138.0 2296.560 16841.440 13670.0 3171.440 41913 10 October 2014
Government Mexico Montana High 1715.0 5 20 34300.0 4116.000 30184.000 17150.0 13034.000 41548 10 October 2013
Small Business France Montana High 1186.0 5 300 355800.0 42696.000 313104.000 296500.0 16604.000 41609 12 December 2013
Small Business United States of America Paseo High 3495.0 10 300 1048500.0 125820.000 922680.000 873750.0 48930.000 41640 1 January 2014
Government Mexico Paseo High 886.0 10 350 310100.0 37212.000 272888.000 230360.0 42528.000 41791 6 June 2014
Enterprise Mexico Paseo High 2156.0 10 125 269500.0 32340.000 237160.000 258720.0 -21560.000 41913 10 October 2014
Government Mexico Paseo High 905.0 10 20 18100.0 2172.000 15928.000 9050.0 6878.000 41913 10 October 2014
Government Mexico Paseo High 1715.0 10 20 34300.0 4116.000 30184.000 17150.0 13034.000 41548 10 October 2013
Government France Paseo High 1594.0 10 350 557900.0 66948.000 490952.000 414440.0 76512.000 41944 11 November 2014
Small Business Germany Paseo High 1359.0 10 300 407700.0 48924.000 358776.000 339750.0 19026.000 41944 11 November 2014
Small Business Mexico Paseo High 2150.0 10 300 645000.0 77400.000 567600.000 537500.0 30100.000 41944 11 November 2014
Government Mexico Paseo High 1197.0 10 350 418950.0 50274.000 368676.000 311220.0 57456.000 41944 11 November 2014
Midmarket Mexico Paseo High 380.0 10 15 5700.0 684.000 5016.000 3800.0 1216.000 41609 12 December 2013
Government Mexico Paseo High 1233.0 10 20 24660.0 2959.200 21700.800 12330.0 9370.800 41974 12 December 2014
Government Mexico Velo High 1395.0 120 350 488250.0 58590.000 429660.000 362700.0 66960.000 41821 7 July 2014
Government United States of America Velo High 986.0 120 350 345100.0 41412.000 303688.000 256360.0 47328.000 41913 10 October 2014
Government Mexico Velo High 905.0 120 20 18100.0 2172.000 15928.000 9050.0 6878.000 41913 10 October 2014
Channel Partners Canada VTT High 2109.0 250 12 25308.0 3036.960 22271.040 6327.0 15944.040 41760 5 May 2014
Midmarket France VTT High 3874.5 250 15 58117.5 6974.100 51143.400 38745.0 12398.400 41821 7 July 2014
Government Canada VTT High 623.0 250 350 218050.0 26166.000 191884.000 161980.0 29904.000 41518 9 September 2013
Government United States of America VTT High 986.0 250 350 345100.0 41412.000 303688.000 256360.0 47328.000 41913 10 October 2014
Enterprise United States of America VTT High 2387.0 250 125 298375.0 35805.000 262570.000 286440.0 -23870.000 41944 11 November 2014
Government Mexico VTT High 1233.0 250 20 24660.0 2959.200 21700.800 12330.0 9370.800 41974 12 December 2014
Government United States of America Amarilla High 270.0 260 350 94500.0 11340.000 83160.000 70200.0 12960.000 41671 2 February 2014
Government France Amarilla High 3421.5 260 7 23950.5 2874.060 21076.440 17107.5 3968.940 41821 7 July 2014
Government Canada Amarilla High 2734.0 260 7 19138.0 2296.560 16841.440 13670.0 3171.440 41913 10 October 2014
Midmarket United States of America Amarilla High 2548.0 260 15 38220.0 4586.400 33633.600 25480.0 8153.600 41579 11 November 2013
Government France Carretera High 2521.5 3 20 50430.0 6051.600 44378.400 25215.0 19163.400 41640 1 January 2014
Channel Partners Mexico Montana High 2661.0 5 12 31932.0 3831.840 28100.160 7983.0 20117.160 41760 5 May 2014
Government Germany Paseo High 1531.0 10 20 30620.0 3674.400 26945.600 15310.0 11635.600 41974 12 December 2014
Government France VTT High 1491.0 250 7 10437.0 1252.440 9184.560 7455.0 1729.560 41699 3 March 2014
Government Germany VTT High 1531.0 250 20 30620.0 3674.400 26945.600 15310.0 11635.600 41974 12 December 2014
Channel Partners Canada Amarilla High 2761.0 260 12 33132.0 3975.840 29156.160 8283.0 20873.160 41518 9 September 2013
Midmarket United States of America Carretera High 2567.0 3 15 38505.0 5005.650 33499.350 25670.0 7829.350 41791 6 June 2014
Midmarket United States of America VTT High 2567.0 250 15 38505.0 5005.650 33499.350 25670.0 7829.350 41791 6 June 2014
library(skimr)
skim(navy)
Data summary
Name navy
Number of rows 1006
Number of columns 16
_______________________
Column type frequency:
character 6
numeric 10
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
Segment 0 1 9 16 0 5 0
Country 0 1 6 24 0 5 0
Product 0 1 3 9 0 6 0
Discount.Band 0 1 3 6 0 4 0
Month.Name 0 1 3 9 0 12 0
Year 0 1 4 4 0 2 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Units.Sold 0 1 1639.26 885.62 200.00 905.00 1566.00 2339.50 4492.5 ▇▇▇▂▁
Manufacturing.Price 0 1 101.69 110.35 3.00 5.00 10.00 250.00 260.0 ▇▁▂▁▅
Sale.Price 0 1 116.81 136.77 7.00 12.00 20.00 300.00 350.0 ▇▂▁▁▃
Gross.Sales 0 1 175936.31 245508.65 1799.00 18176.25 38592.50 269500.00 1207500.0 ▇▂▁▁▁
Discounts 0 1 14832.22 24110.38 0.00 1132.80 3559.05 19950.00 149677.5 ▇▁▁▁▁
Sales 0 1 161104.09 225860.91 1655.08 16748.55 35540.20 243346.88 1159200.0 ▇▂▁▁▁
COGS 0 1 139965.38 198115.49 918.00 8083.50 24490.00 236465.00 950625.0 ▇▂▁▁▁
Profit 0 1 21138.70 38428.09 -40617.50 2750.00 9242.60 21272.24 262200.0 ▇▂▁▁▁
Date 0 1 41756.63 149.55 41518.00 41640.00 41760.00 41913.00 41974.0 ▆▅▅▂▇
Month.Number 0 1 7.84 3.44 1.00 5.00 9.00 10.00 12.0 ▃▂▂▂▇

2.3 . Thống kê mô tả


Thực hiện gán object navy là datasets Financial Sample Excel, thực hiện các lệnh trên objec navy, ta có được những thông tin sau:

  • navy có 1006 quan sát và 16 biến
  • Không có dữ liệu trống
  • n_missing: số ô dữ liệu trống
  • complete_rate: tỷ lệ ô có dữ liệu
  • mean: trung bình
  • sd: độ lệch chuẩn
  • p0: giá trị min
  • p25: phân vị thứ nhất
  • p50: phân vị thứ hai(trung vị)
  • p75: phân vị thứ ba
  • p100: giá trị max
  • hist: biểu đồ Histogram

2.4 . Xử lý dữ liệu bị trùng lắp


library(tidyverse)
navy1 <- unique(navy) #lấy lượng biến trong "navy"
str(navy1)
## 'data.frame':    700 obs. of  16 variables:
##  $ Segment            : chr  "Government" "Government" "Midmarket" "Midmarket" ...
##  $ Country            : chr  "Canada" "Germany" "France" "Germany" ...
##  $ Product            : chr  "Carretera" "Carretera" "Carretera" "Carretera" ...
##  $ Discount.Band      : chr  "None" "None" "None" "None" ...
##  $ Units.Sold         : num  1618 1321 2178 888 2470 ...
##  $ Manufacturing.Price: num  3 3 3 3 3 3 5 5 5 5 ...
##  $ Sale.Price         : num  20 20 15 15 15 350 15 12 20 12 ...
##  $ Gross.Sales        : num  32370 26420 32670 13320 37050 ...
##  $ Discounts          : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Sales              : num  32370 26420 32670 13320 37050 ...
##  $ COGS               : num  16185 13210 21780 8880 24700 ...
##  $ Profit             : num  16185 13210 10890 4440 12350 ...
##  $ Date               : num  41640 41640 41791 41791 41791 ...
##  $ Month.Number       : num  1 1 6 6 6 12 3 6 6 6 ...
##  $ Month.Name         : chr  "January" "January" "June" "June" ...
##  $ Year               : chr  "2014" "2014" "2014" "2014" ...
navy2 <- distinct(navy) #Loại bỏ trung lắp trong "navy"
str(navy2)
## 'data.frame':    700 obs. of  16 variables:
##  $ Segment            : chr  "Government" "Government" "Midmarket" "Midmarket" ...
##  $ Country            : chr  "Canada" "Germany" "France" "Germany" ...
##  $ Product            : chr  "Carretera" "Carretera" "Carretera" "Carretera" ...
##  $ Discount.Band      : chr  "None" "None" "None" "None" ...
##  $ Units.Sold         : num  1618 1321 2178 888 2470 ...
##  $ Manufacturing.Price: num  3 3 3 3 3 3 5 5 5 5 ...
##  $ Sale.Price         : num  20 20 15 15 15 350 15 12 20 12 ...
##  $ Gross.Sales        : num  32370 26420 32670 13320 37050 ...
##  $ Discounts          : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Sales              : num  32370 26420 32670 13320 37050 ...
##  $ COGS               : num  16185 13210 21780 8880 24700 ...
##  $ Profit             : num  16185 13210 10890 4440 12350 ...
##  $ Date               : num  41640 41640 41791 41791 41791 ...
##  $ Month.Number       : num  1 1 6 6 6 12 3 6 6 6 ...
##  $ Month.Name         : chr  "January" "January" "June" "June" ...
##  $ Year               : chr  "2014" "2014" "2014" "2014" ...

2.5 . Rút trích dữ liệu


Giả sử yêu cầu lấy những thông tin trong datasets đã loại bỏ trùng lặp “navy2” như sau: - lấy 100 quan sát đầu tiên trong datasets - lấy 50 quan sát cuối trong datastest - chọn những quan sát quốc gia Germany - chọn những sản phẩm Paseo hoặc Velo - chọn những sản phẩm Paseo có rủi ro trung bình - chọn làm việc với biến Country,DateProductPaseo

navy100 <- head(navy,100)
str(navy100)
## 'data.frame':    100 obs. of  16 variables:
##  $ Segment            : chr  "Government" "Government" "Midmarket" "Midmarket" ...
##  $ Country            : chr  "Canada" "Germany" "France" "Germany" ...
##  $ Product            : chr  "Carretera" "Carretera" "Carretera" "Carretera" ...
##  $ Discount.Band      : chr  "None" "None" "None" "None" ...
##  $ Units.Sold         : num  1618 1321 2178 888 2470 ...
##  $ Manufacturing.Price: num  3 3 3 3 3 3 5 5 5 5 ...
##  $ Sale.Price         : num  20 20 15 15 15 350 15 12 20 12 ...
##  $ Gross.Sales        : num  32370 26420 32670 13320 37050 ...
##  $ Discounts          : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Sales              : num  32370 26420 32670 13320 37050 ...
##  $ COGS               : num  16185 13210 21780 8880 24700 ...
##  $ Profit             : num  16185 13210 10890 4440 12350 ...
##  $ Date               : num  41640 41640 41791 41791 41791 ...
##  $ Month.Number       : num  1 1 6 6 6 12 3 6 6 6 ...
##  $ Month.Name         : chr  "January" "January" "June" "June" ...
##  $ Year               : chr  "2014" "2014" "2014" "2014" ...
navy50 <- tail(navy,50)
str(navy50)
## 'data.frame':    50 obs. of  16 variables:
##  $ Segment            : chr  "Government" "Enterprise" "Government" "Enterprise" ...
##  $ Country            : chr  "Canada" "Germany" "Mexico" "France" ...
##  $ Product            : chr  "VTT" "Amarilla" "Amarilla" "Amarilla" ...
##  $ Discount.Band      : chr  "High" "High" "High" "High" ...
##  $ Units.Sold         : num  2935 3165 2629 1433 947 ...
##  $ Manufacturing.Price: num  250 260 260 260 260 260 260 10 3 3 ...
##  $ Sale.Price         : num  20 125 20 125 125 350 15 7 350 125 ...
##  $ Gross.Sales        : num  58700 395625 52580 179125 118375 ...
##  $ Discounts          : num  6457 43519 5784 19704 13021 ...
##  $ Sales              : num  52243 352106 46796 159421 105354 ...
##  $ COGS               : num  29350 379800 26290 171960 113640 ...
##  $ Profit             : num  22893 -27694 20506 -12539 -8286 ...
##  $ Date               : num  41579 41640 41640 41760 41518 ...
##  $ Month.Number       : num  11 1 1 5 9 10 12 9 6 9 ...
##  $ Month.Name         : chr  "November" "January" "January" "May" ...
##  $ Year               : chr  "2013" "2014" "2014" "2014" ...
navy150 <- navy[navy$Product == 'Paseo' & navy$DiscountBand == 'Medium', ]
str(navy150)
## 'data.frame':    0 obs. of  16 variables:
##  $ Segment            : chr 
##  $ Country            : chr 
##  $ Product            : chr 
##  $ Discount.Band      : chr 
##  $ Units.Sold         : num 
##  $ Manufacturing.Price: num 
##  $ Sale.Price         : num 
##  $ Gross.Sales        : num 
##  $ Discounts          : num 
##  $ Sales              : num 
##  $ COGS               : num 
##  $ Profit             : num 
##  $ Date               : num 
##  $ Month.Number       : num 
##  $ Month.Name         : chr 
##  $ Year               : chr
navy200 <- navy[navy$Country == 'Germany', ]
str(navy200)
## 'data.frame':    179 obs. of  16 variables:
##  $ Segment            : chr  "Government" "Midmarket" "Government" "Midmarket" ...
##  $ Country            : chr  "Germany" "Germany" "Germany" "Germany" ...
##  $ Product            : chr  "Carretera" "Carretera" "Carretera" "Montana" ...
##  $ Discount.Band      : chr  "None" "None" "None" "None" ...
##  $ Units.Sold         : num  1321 888 1513 921 1545 ...
##  $ Manufacturing.Price: num  3 3 3 5 5 5 10 10 10 120 ...
##  $ Sale.Price         : num  20 15 350 15 12 7 350 12 350 12 ...
##  $ Gross.Sales        : num  26420 13320 529550 13815 18540 ...
##  $ Discounts          : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Sales              : num  26420 13320 529550 13815 18540 ...
##  $ COGS               : num  13210 8880 393380 9210 4635 ...
##  $ Profit             : num  13210 4440 136170 4605 13905 ...
##  $ Date               : num  41640 41791 41974 41699 41791 ...
##  $ Month.Number       : num  1 6 12 3 6 9 6 7 12 3 ...
##  $ Month.Name         : chr  "January" "June" "December" "March" ...
##  $ Year               : chr  "2014" "2014" "2014" "2014" ...
navy200 <- navy[navy$Product == 'Paseo' | navy$Product == 'Velo',]
str(navy200)
## 'data.frame':    432 obs. of  16 variables:
##  $ Segment            : chr  "Government" "Midmarket" "Channel Partners" "Government" ...
##  $ Country            : chr  "Canada" "Mexico" "Canada" "Germany" ...
##  $ Product            : chr  "Paseo" "Paseo" "Paseo" "Paseo" ...
##  $ Discount.Band      : chr  "None" "None" "None" "None" ...
##  $ Units.Sold         : num  292 974 2518 1006 367 ...
##  $ Manufacturing.Price: num  10 10 10 10 10 10 10 10 10 10 ...
##  $ Sale.Price         : num  20 15 12 350 12 7 15 300 15 7 ...
##  $ Gross.Sales        : num  5840 14610 30216 352100 4404 ...
##  $ Discounts          : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Sales              : num  5840 14610 30216 352100 4404 ...
##  $ COGS               : num  2920 9740 7554 261560 1101 ...
##  $ Profit             : num  2920 4870 22662 90540 3303 ...
##  $ Date               : num  41671 41671 41791 41791 41821 ...
##  $ Month.Number       : num  2 2 6 6 7 8 9 9 9 10 ...
##  $ Month.Name         : chr  "February" "February" "June" "June" ...
##  $ Year               : chr  "2014" "2014" "2014" "2014" ...
library(dplyr)

navy300 <- filter(navy, Product=='Paseo') %>% select(Country,Date,)
str(navy300)
## 'data.frame':    278 obs. of  2 variables:
##  $ Country: chr  "Canada" "Mexico" "Canada" "Germany" ...
##  $ Date   : num  41671 41671 41791 41791 41821 ...

2.6 . Tạo dữ liệu mới


Từ object cũ navy ta tạo thành object mới **navyx*, với các biến mới như sau:

  • pVND: lợi nhuận tính bằng VND
  • tPro: đánh giá số lượng sản phẩm bán ra
navyx <- mutate(navy, pVND= Profit*24.550)
str(navyx)
## 'data.frame':    1006 obs. of  17 variables:
##  $ Segment            : chr  "Government" "Government" "Midmarket" "Midmarket" ...
##  $ Country            : chr  "Canada" "Germany" "France" "Germany" ...
##  $ Product            : chr  "Carretera" "Carretera" "Carretera" "Carretera" ...
##  $ Discount.Band      : chr  "None" "None" "None" "None" ...
##  $ Units.Sold         : num  1618 1321 2178 888 2470 ...
##  $ Manufacturing.Price: num  3 3 3 3 3 3 5 5 5 5 ...
##  $ Sale.Price         : num  20 20 15 15 15 350 15 12 20 12 ...
##  $ Gross.Sales        : num  32370 26420 32670 13320 37050 ...
##  $ Discounts          : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Sales              : num  32370 26420 32670 13320 37050 ...
##  $ COGS               : num  16185 13210 21780 8880 24700 ...
##  $ Profit             : num  16185 13210 10890 4440 12350 ...
##  $ Date               : num  41640 41640 41791 41791 41791 ...
##  $ Month.Number       : num  1 1 6 6 6 12 3 6 6 6 ...
##  $ Month.Name         : chr  "January" "January" "June" "June" ...
##  $ Year               : chr  "2014" "2014" "2014" "2014" ...
##  $ pVND               : num  397342 324306 267350 109002 303192 ...
navyx$tPro <- case_when(navy$Product< 1000 ~ 'bán ra thấp' , navy$Product == 1000 ~ 'bán ra trung bình' , navy$Product > 1000 ~ ' bán ra cao') 
str(navyx)
## 'data.frame':    1006 obs. of  18 variables:
##  $ Segment            : chr  "Government" "Government" "Midmarket" "Midmarket" ...
##  $ Country            : chr  "Canada" "Germany" "France" "Germany" ...
##  $ Product            : chr  "Carretera" "Carretera" "Carretera" "Carretera" ...
##  $ Discount.Band      : chr  "None" "None" "None" "None" ...
##  $ Units.Sold         : num  1618 1321 2178 888 2470 ...
##  $ Manufacturing.Price: num  3 3 3 3 3 3 5 5 5 5 ...
##  $ Sale.Price         : num  20 20 15 15 15 350 15 12 20 12 ...
##  $ Gross.Sales        : num  32370 26420 32670 13320 37050 ...
##  $ Discounts          : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Sales              : num  32370 26420 32670 13320 37050 ...
##  $ COGS               : num  16185 13210 21780 8880 24700 ...
##  $ Profit             : num  16185 13210 10890 4440 12350 ...
##  $ Date               : num  41640 41640 41791 41791 41791 ...
##  $ Month.Number       : num  1 1 6 6 6 12 3 6 6 6 ...
##  $ Month.Name         : chr  "January" "January" "June" "June" ...
##  $ Year               : chr  "2014" "2014" "2014" "2014" ...
##  $ pVND               : num  397342 324306 267350 109002 303192 ...
##  $ tPro               : chr  " bán ra cao" " bán ra cao" " bán ra cao" " bán ra cao" ...

```

LS0tCnRpdGxlOiAiTkhJ4buGTSBW4bukIDIiCmF1dGhvcjogIkzDqiBOZ+G7jWMgVMaw4budbmcgVnkiCmRhdGU6ICJgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVIOiVNOiVTLCAlZCAtICVtIC0gJVknKWAiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgY29kZV9kb3dubG9hZDogdHJ1ZQogICAgY29kZV9mb2xkaW5nOiBoaWRlCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcwogICAgdGhlbWU6ICJkZWZhdWx0IgogICAgdG9jX2RlcHRoOiAyCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIHRvYzogdHJ1ZQogIHdvcmRfZG9jdW1lbnQ6CiAgICB0b2M6IHRydWUKICAgIHRvY19kZXB0aDogJzInCiAgcGRmX2RvY3VtZW50OiAKICAgIGxhdGV4X2VuZ2luZTogeGVsYXRleAotLS0KLS0tCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQpgYGAKCiMgKiouIE5ISeG7hk0gVuG7pCAyLjEqKgoqKioKIyMgKiouIFTDs20gVOG6r3QqKgpOaGnhu4dtIHbhu6UgMi4xIHRoYW8gdMOhYyB0csOqbiBkYXRhc2V0cyAiKipid3RfY29fZGlldV9jaGluaC54bHN4KioiIGzDoCBkYXRhc2V0cyB0aOG7kW5nIGvDqiBuaOG7r25nIHRodeG7mWMgdMOtbmggdHJvbmcgcXXDoSB0csOsbmggbWFuZyB0aGFpIGPhu6dhIHBo4bulIG7hu68gZ2lhaSDEkW/huqFuIDE5MjUtMjAwNC4KCiMjICoqLiBNw7QgdOG6oyBjxqEgYuG6o24qKiAKQ8OhYyB0aMO0bmcgc+G7kSB04burIGRhdGFzZXRzIGPDsyA2NDAgcXVhbiBzw6F0IHbDoCA5IGJp4bq/biBuaMawIHNhdToKCi0gKippZDoqKsKgS2h1wqB24buxY8KgKGPDs8KgOMKga2h1wqB24buxYykuCi0gKip5ZWFyOioqIE7Eg20gbOG6pXkgc+G7kSBsaeG7h3UuCi0gKipid3Q6KiogVHLhu41uZyBsxrDhu6NuZyBsw7pjIHNpbmggdMOtbmggYuG6sW5nIG91bmNlcywgMSBvdW5jZXM9MjguMzQ5NSBncmFtKS4KLSAqKmdlc3RhdGlvbjoqKiBUaOG7nWkgZ2lhbiBtYW5nIHRoYWkodMOtbmggYuG6sW5nIG5nw6B5KS4KLSAqKnBhcml0eToqKiBT4buRIGzhuqduIHNpbmggKGPDsyBoYWkgZ2nDoSB0cuG7iywgMT1zaW5oIGzhuqduIMSR4bqndSwgMD1raMO0bmcgcGjhuqNpIGzhuqduIMSR4bqndSkuCi0gKiphZ2U6KiogVHXhu5VpIGPhu6dhIG3hurkuCi0gKipoZWlnaHQ6KiogQ2hp4buBdSBjYW8gY+G7p2EgbeG6uSAodMOtbmggYuG6sW5nIGluY2hlcywgMSBpbmNoPTIuNTRjbSkuCi0gKip3ZWlnaHQ6KiogQ8OibiBu4bq3bmcgY+G7p2EgYsOgIG3hurkga2hpIG1hbmcgdGhhaSAodMOtbmggYuG6sW5nIHBvdW5kcywgMSBwb3VuZD0wLjQ1MzU5MmtnKS4KLSAqKnNtb2tlOioqIEjDunQgdGh14buRYyBsw7pjIG1hbmcgdGhhaSAoMT1jw7MsIDA9a2jDtG5nKS4KCktow7RuZyBjw7MgZOG7ryBsaeG7h3UgdHLhu5FuZwoKKioqCiMjICoqLiDEkOG7jWMgZOG7ryBsaeG7h3UgdOG7qyBmaWxlIEV4Y2VsKioKKioqCgpgYGB7cn0KbGlicmFyeShvcGVueGxzeCkKdnkxIDwtIHJlYWQueGxzeCgiL1VzZXJzL3h1eWVuY2hpL0xpYnJhcnkvQ29udGFpbmVycy9jb20ubWljcm9zb2Z0LkV4Y2VsL0RhdGEvRG93bmxvYWRzL1IgQ29kZS9id3RfY29fZGlldV9jaGluaC54bHN4IikgI8SR4buNYyBk4buvIGxp4buHdSB04burIGV4Y2VsIHbDoCBnw6FuIHbDoG8gb2JqZWN0IHZ5MQp0YWJsZSA8LSBrbml0cjo6a2FibGUodnkxLGZvcm1hdD0ibWFya2Rvd24iKQp0YWJsZSAKaXMuZGF0YS5mcmFtZSh2eTEpICNraeG7g20gdHJhICJ2eTEiIGPDsyBwaOG6o2kgbMOgIGRhdGEgZnJhbWUga2jDtG5nLCBu4bq/dSDEkcO6bmcgdGjDrCB0cnVlIHbDoCBuZ8aw4bujYyBs4bqhaQpgYGAKCiMjICoqLiBUaMO0bmcgdGluIHThu5VuZyBxdWFuKioKKioqCgpgYGB7cn0KbGVuZ3RoKHZ5MSkgI2NobyByYSBz4buRIGJp4bq/biBj4bunYSAidnkxIgoKYGBgCgpgYGB7cn0KbmFtZXModnkxKSAjY2hvIHJhIHTDqm4gY8OhYyBiaeG6v24gY+G7p2EgInZ5MSIKYGBgCgoKCmBgYHtyfQpkaW0odnkxKSAjY2hvIHJhIHPhu5EgcXVhbiBzw6F0IHbDoCBz4buRIGJp4bq/biBj4bunYSAidnkxIgpgYGAKCmBgYHtyfQpzdW0oaXMubmEodnkxKSkgI2NobyByYSB04buVbmcgc+G7kSBvYmplY3QgY+G7p2EgInZ5MSIKYGBgCgpgYGB7cn0KbGlicmFyeShza2ltcikgCnNraW0odnkxKQoKCmBgYAoKCioqTcO0IHThuqMqKgoKLSBuX21pc3Npbmc6IHPhu5Egw7QgZOG7ryBsaeG7h3UgdHLhu5FuZwotIGNvbXBsZXRlX3JhdGU6IHThu7cgbOG7hyDDtCBjw7MgZOG7ryBsaeG7h3UKLSBtZWFuOiB0cnVuZyBiw6xuaAotIHNkOgnEkeG7mSBs4buHY2ggY2h14bqpbgotIHAwOglnacOhIHRy4buLIG1pbgotIHAyNTogcGjDom4gduG7iyB0aOG7qSBuaOG6pXQKLSBwNTA6IHBow6JuIHbhu4sgdGjhu6kgaGFpKHRydW5nIHbhu4spCQotIHA3NTogcGjDom4gduG7iyB0aOG7qSBiYQotIHAxMDA6CWdpw6EgdHLhu4sgbWF4Ci0gaGlzdDogYmnhu4N1IMSR4buTIEhpc3RvZ3JhbQoKCgoKCgoKCgoKCgoKCmBgYHtyfQpoZWFkKHZ5MSwyOCkgI2zhuqV5IDI4IGTDsm5nIMSR4bqndSB04burICJ2eTEiCmBgYAoKYGBgCmBgYAoKYGBge3J9CnRhaWwodnkxLDI4KSAjbOG6pXkgMjggZMOybmcgY3Xhu5FpIHThu6sgInZ5MSIKYGBgCgoKCgpgYGB7cn0KaXMubmEodnkxKSAjIHTDrG0gw7Qga2jDtG5nIGPDsyBk4buvIGxp4buHdSB0cm9uZyAidnkxIiwgbuG6v3UgIkZhbHNlIiBsw6AgY8OzIGThu68gbGnhu4d1IHbDoCBuZ8aw4bujYyBs4bqhaQpgYGAKCgpgYGB7cn0Kc3VtKGlzLm5hKHZ5MSkpICMgY2hvIGJp4bq/dCB04buVbmcgc+G7kSDDtCB0cuG7kW5nIHRyb25nICJ2eTEnCmBgYAoKCmBgYHtyfQp3aGljaChpcy5uYSh2eTEpKSAjIGNobyBiaeG6v3QgduG7iyB0csOtIMO0IHRy4buRbmcgdHJvbmcgInZ5MSIKYGBgCgoKIyMgKiouIFjhu60gbMO9IGThu68gbGnhu4d1IGLhu4sgdHLDuW5nIGzhuq9wKioKKioqCgpgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCnZ5IDwtIHVuaXF1ZSh2eTEpICNs4bqleSBsxrDhu6NuZyBiaeG6v24gY+G7p2EgInZ5MSIKc3RyKHZ5KQpgYGAKCgpgYGB7cn0Kdnl5IDwtIGRpc3RpbmN0KHZ5MSkgI0xv4bqhaSBi4buPIHRydW5nIGzhuq9wIHRyb25nICJ2eTEiCnN0cih2eXkpCmBgYAoKIyMgKiouIFLDunQgdHLDrWNoIGThu68gbGnhu4d1KioKKioqCgpN4bulYyDEkcOtY2ggY+G7p2Egdmnhu4djIHLDunQgdHLDrWNoIGThu68gbGnhu4d1IGzDoCDEkeG7gyB0aHUgxJHGsOG7o2Mgbmjhu69uZyB0csaw4budbmcgdGjDtG5nIHRpbiBj4bqnbiB0aGnhur90IG5o4bqxbSBwaOG7pWMgduG7pSBjaG8gY8OhYyBt4bulYyB0w6FjIHbhu6UgcGjDom4gdMOtY2ggaG/hurdjIGzGsHUgdHLhu68uCgoqKioKCgoKCmBgYHtyfQpuYW1lcyh2eTEpIDwtIGMoImkiLCAieSIsImIiLCJnIiwicCIsImEiLCJoIiwidyIsInMiKQpuYW1lcyh2eTEpCmBgYAoKCmBgYHtyfQp2eTIgPC0gdnkxWzUsM10gI2fDoW4gInZ5MiIgbMOgIGdpw6EgdHLhu4sgcXVhbiBzw6F0IDUsIGJp4bq/biAzCnN0cih2eTIpCgpgYGAKCgpgYGB7cn0KdnkzIDwtIHZ5MVsxOjUsNF0gIyBs4bqleSBnacOhIHRy4buLIDUgaMOgbmcgxJHhuqd1IHRpw6puIGJp4bq/biAiZyIKc3RyKHZ5MykKYGBgCgpgYGB7cn0Kdnk0IDwtIHZ5MVtjKDEsMiwzLDQpLCBjKDMsNCldICMgbOG6pXkgZ2nDoSB0cuG7iyBjw6FjIHF1YW4gc8OhdCAxLDIsMyw0IGPhu6dhIGJp4bq/biAiYiIgdsOgICJnIgpzdHIodnk0KQpgYGAKICAKICAKYGBge3J9CnZ5NSA8LSB2eTFbdnkxJHcgPj0xMDAgJiB2eTEkdyA8PTEwOCxdICNM4bqleSBnacOhIHRy4buLIG5o4buvbmcgcXVhbiBzw6F0IGPDsyBnacOhIHRy4buLIOG7nyBiaeG6v24gInciIGzhu5tuIGjGoW4gYuG6sW5nIDEwMCB2w6AgYsOpIGjGoW4gYuG6sW5nIDEwOApzdHIodnkxKQpgYGAKICAKICAKYGBge3J9CnZ5NiA8LSB2eTFbdnkxJHcgPjEzMCxdICMgbOG6pXkgZ2nDoSB0cuG7iyBxdWFuIHPDoXQgY8OzIGdpw6EgdHLhu4sg4bufIGJp4bq/biAidyIgbOG7m24gaMahbiAxMzAKc3RyKHZ5NikKYGBgCiAgCiAgCmBgYHtyfQp2eTcgPC0gdnkxW3Z5MSRhID09IDMwIHwgdnkxJGEgPT0gNDAsXSAjbOG6pXkgZ2nDoSB0cuG7iyBuaOG7r25nIHF1YW4gc8OhdCDhu58gYmnhur9uICJhIiBi4bqxbmcgMzAgaG/hurdjIGLhurFuZyA0MApzdHIodnkxKQpgYGAKCgpgYGB7cn0Kdnk4IDwtIGZpbHRlcih2eTEsdnkxJGEgPj0gMjcgJiB2eTEkZyA+IDI5MCkgIyBs4bqleSBuaOG7r25nIHF1YW4gc8OhdCBjw7MgdHXhu5VpIGPhu6dhIG3hurkgbOG7m24gaMahbiBob+G6t2MgYuG6sW5nIDI3IHbDoCB0aOG7nWkgZ2lhbiBtYW5nIHRoYWkgbOG7m24gaMahbiAyOTAgbmfDoHkKc3RyKHZ5OCkKYGBgCgoKYGBge3J9CmxpYnJhcnkoZHBseXIpCgoKYGBgCgoKYGBge3J9CnZ5OSA8LSBzZWxlY3QodnkxLGEseSxzKSAjY2jhu4kgbOG6pXkgbmjhu69uZyBiaeG6v24gdHXhu5VpIGPhu6dhIG3hurksIG7Eg20gbOG6pXkgc+G7kSBsaeG7h3UgdsOgIGjDunQgdGh14buRYyBsw7pjIG1hbmcgdGhhaSB0cm9uZyBvYmplY3QgInZ5MSIKc3RyKHZ5OSkKYGBgCgoKYGBge3J9Cgp2eTEwIDwtIGZpbHRlcih2eTEsYSA8IDI3ICYgdyA+IDE3MCkgJT4lIHNlbGVjdCAoaSxhLGgpICMgbOG6pXkgbmjhu69uZyBiaeG6v24ga2h1IHbhu7FjLCB0deG7lWksIGNoaeG7gXUgY2FvIHbhu5tpIMSRaeG7gXUga2nhu4duIHF1YW4gc8OhdCBjw7MgdHXhu5VpIGLDqSBoxqFuIDI3IHbDoCBjw6JuIG7hurduZyBs4bubbiBoxqFuIDE3MCBwb3VuZApzdHIodnkxMCkKYGBgCgoKIyMgKiouIFThuqFvIGThu68gbGnhu4d1IG3hu5tpIHThu6sgZOG7ryBsaeG7h3UgY8OzIHPhurVuKioKKioqCgogVOG6oW8gcmEgb2JqZWN0IG3hu5tpIGzDoCAiKip2eXgqKiIgdOG7qyBvYmplY3QgY8WpIGzDoCAiKip2eTEqKiIuIEPDsyB0aMOqbSBjw6FjIGJp4bq/biBt4bubaSBsw6A6CiAtICoqdG1nOioqIHRo4budaSBnaWFuIG1hbmcgdGhhaSB0w61uaCBi4bqxbmcgdGjDoW5nCiAtICoqZ3JhOioqIHRy4buNbmcgbMaw4bujbmcgbMO6YyBzaW5oIHTDrW5oIGLhurFuZyBncmFtCiAtICoqa2hhOioqIGto4bqjIG7Eg25nIG1hbmcgdGhhaSDhu58gbeG7qWMgMzAgdHXhu5VpICggdHLDqm4gMzAgdHXhu5VpIHbDoCBkxrDhu5tpIDMwIHR14buVaSkKIC0gKipkdWtpZW46KiogZOG7sSBraeG6v24gdGjhu51pIGdpYW4gc2luaCBlbSBiw6kKIApgYGB7cn0KCnZ5eCA8LSBtdXRhdGUodnkxLCB0bWc9IGcvMzApICU+JSBtdXRhdGUodnkxLCBncmE9IGIqMjguMzQ5NSkgI3Row6ptIGJp4bq/biB0aOG7nWkgZ2lhbiBtYW5nIHRoYWkgdMOtbmggYuG6sW5nIHRow6FuZyB2w6AgdHLhu41uZyBsxrDhu6NuZyBsw7pjIHNpbmggdMOtbmggYuG6sW5nIGdyYW0Kc3RyKHZ5eCkKCgpgYGAKCgpgYGB7cn0KCnZ5eCRraGEgPC0gaWZlbHNlKHZ5eCRhID4gMzAgLCd0aOG6pXAnLCAnY2FvJykgI3Row6ptIGJp4bq/biB4w6FjIMSR4buLbmgga2jhuqMgbsSDbmcgbWFuZyB0aGF5IHRyb25nIG5nb8OgaSAzMCB0deG7lWkKc3RyKHZ5eCkKYGBgCgoKYGBge3J9Cgp2eXgkZHVraWVuIDwtIGNhc2Vfd2hlbih2eXgkZzwgMjY2IH4gJ3Phu5ttIGjGoW4gZOG7sSBraeG6v24nICwgdnl4JGcgPCAyODAgfiAnZOG7sSBraeG6v24nICwgdnl4JGcgPiAyODAgfiAnIHRy4buFIGjGoW4gZOG7sSBraeG6v24nKSAjIHRow6ptIGJp4bq/biBk4buxIGtp4bq/biB0aOG7nWkgZ2lhbiBzaW5oCnN0cih2eXgpCgoKYGBgCiAgCiAgCiMjICoqLiBC4bqjbmcgdOG6p24gc+G7kSoqCioqKgoKCmBgYHtyfQp0YWJsZSh2eXgkZHVraWVuKSAjIHThuqduIHPhu5EgY+G7p2EgYmnhur9uIGThu7Ega2nhur9uIHRo4budaSBnaWFuIHNpbmgKYGBgCgoKYGBge3J9CnN0ZW0odnl4JHRtZykgIyBiaeG7g3UgxJHhu5MgbmjDoW5oIGPhu6dhIGJp4bq/biB0aOG7nWkgZ2lhbiBtYW5nIHRoYWkgdGhlbyB0aMOhbmcKYGBgCgoKIyAqKi4gTkhJ4buGTSBW4bukIDIuMioqCgojIyAqKi4gVMOzbSB04bqvdCoqCioqKgoKCk5oaeG7h20gduG7pSAyLjIgdGjhu7FjIGhp4buHbiB0aGFvIHTDoWMgdHLDqm4gZGF0YXNldHMgKipGaW5hbmNpYWwgU2FtcGxlIEV4Y2VsKiosIGzDoCAxIGRhdGFzZXQgdGjhu5FuZyBrw6ogdMOsbmggaMOsbmggdMOgaSBjaMOtbmggbuG7lWkgYuG6rXQgY+G7p2EgbeG7mXQgc+G7kSB0aOG7iyB0csaw4budbmcgdHLDqm4gdGjhur8gZ2nhu5tpCmdpYWkgxJFv4bqhbiAyMDEzLTIwMTQuCgojIyAqKi4gTcO0IHThuqMgY8ahIGLhuqNuKioKKioqCgpEYXRhc2V0cyBjw7MgMTAwNiBxdWFuIHPDoXQgdsOgIDE2IGJp4bq/biBuaMawIHNhdToKCgotICoqU2VnbWVudDoqKiB0aOG7iyB0csaw4budbmcKLSAqKkNvdW50cnk6KiogcXXhu5FjIGdpYQotICoqUHJvZHVjdDoqKiBz4bqjbiBwaOG6qW0gdMOgaSBjaMOtbmgKLSAqKkRpc2NvdW50IEJhbmQ6KiogxJHDoW5oIGdpw6EgbeG7qWMgxJHhu5kgcuG7p2kgcm8KLSAqKlVuaXRzIFNvbGQ6Kiogc+G7kSBsxrDhu6NuZyBz4bqjbiBwaOG6qW0gaG/hurdjIGThu4tjaCB24bulIMSRw6MgYsOhbiAKLSAqKk1hbnVmYWN0dXJpbmcgUHJpY2U6KiogY2hpIHBow60gc+G6o24geHXhuqV0IGPhu6dhIDEgc+G6o24gcGjhuqltIGThu4tjaCB24bulCSAtCi0gKipTYWxlIFByaWNlOioqIGdpw6EgYsOhbgotICoqR3Jvc3MgU2FsZXM6KiogdOG7lW5nIGRvYW5oIHRodSAKLSAqKkRpc2NvdW50czoqKiBjaGnhur90IGto4bqldQkgCi0gKipTYWxlczoqKiBkb2FuaCBz4buRIGLDoW4gaMOgbmcJCi0gKipDT0dTOioqIHPhu5EgdGnhu4FuIGNoaSB0cuG6oyBz4bqjbiB4deG6pXQgaG/hurdjIG11YSBow6BuZyBow7NhIGThu4tjaCB24bulIOG6o25oIGjGsOG7n25nIHRy4buxYyB0aeG6v3AgxJHhur9uIGhv4bqhdCDEkeG7mW5nIHThu5UgY2jhu6ljICggQ29zdCBvZiBnb29kcyBzb2xkKQotICoqUHJvZml0OioqIGzhu6NpIG5odeG6rW4JCi0gKipEYXRlOioqIG5nw6B5IGdpw6EgdHLhu4sgCi0gKipNb250aCBOdW1iZXI6Kiogc+G7kSB0aOG7qSB04buxIHRow6FuZyB0cm9uZyBuxINtCi0gKipNb250aCBOYW1lOioqIHTDqm4gdGjDoW5nIHRyb25nIG7Eg20JCi0gKipZZWFyOioqIG7Eg20gdGh1IHRo4bqtcCBz4buRIGxp4buHdQoKCgoKCmBgYHtyfQoKCmxpYnJhcnkob3Blbnhsc3gpCm5hdnkgPC0gcmVhZC54bHN4KCIvVXNlcnMveHV5ZW5jaGkvTGlicmFyeS9Db250YWluZXJzL2NvbS5taWNyb3NvZnQuRXhjZWwvRGF0YS9Eb3dubG9hZHMvUiBDb2RlL0ZpbmFuY2lhbCBTYW1wbGUueGxzeCIpICPEkOG7jWMgZOG7ryBsaeG7h3UgdOG7qyBmaWxlIGV4Y2VsCnRhYmxlIDwtIGtuaXRyOjprYWJsZShuYXZ5LGZvcm1hdD0ibWFya2Rvd24iKQp0YWJsZSAKCmBgYAoKCgpgYGB7cn0KbGlicmFyeShza2ltcikKc2tpbShuYXZ5KQpgYGAKCgojIyAqKi4gVGjhu5FuZyBrw6ogbcO0IHThuqMqKgoqKioKClRo4buxYyBoaeG7h24gZ8OhbiBvYmplY3QgKipuYXZ5KiogbMOgIGRhdGFzZXRzICoqRmluYW5jaWFsIFNhbXBsZSBFeGNlbCoqLCB0aOG7sWMgaGnhu4duIGPDoWMgbOG7h25oIHRyw6puIG9iamVjICoqbmF2eSoqLCB0YSBjw7MgxJHGsOG7o2Mgbmjhu69uZyB0aMO0bmcgdGluIHNhdToKCi0gKipuYXZ5KiogY8OzIDEwMDYgcXVhbiBzw6F0IHbDoCAxNiBiaeG6v24KLSBLaMO0bmcgY8OzIGThu68gbGnhu4d1IHRy4buRbmcKLSBuX21pc3Npbmc6IHPhu5Egw7QgZOG7ryBsaeG7h3UgdHLhu5FuZwotIGNvbXBsZXRlX3JhdGU6IHThu7cgbOG7hyDDtCBjw7MgZOG7ryBsaeG7h3UKLSBtZWFuOiB0cnVuZyBiw6xuaAotIHNkOgnEkeG7mSBs4buHY2ggY2h14bqpbgotIHAwOglnacOhIHRy4buLIG1pbgotIHAyNTogcGjDom4gduG7iyB0aOG7qSBuaOG6pXQKLSBwNTA6IHBow6JuIHbhu4sgdGjhu6kgaGFpKHRydW5nIHbhu4spCQotIHA3NTogcGjDom4gduG7iyB0aOG7qSBiYQotIHAxMDA6CWdpw6EgdHLhu4sgbWF4Ci0gaGlzdDogYmnhu4N1IMSR4buTIEhpc3RvZ3JhbQoKCgojIyAqKi4gWOG7rSBsw70gZOG7ryBsaeG7h3UgYuG7iyB0csO5bmcgbOG6r3AqKgoqKioKCgoKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpuYXZ5MSA8LSB1bmlxdWUobmF2eSkgI2zhuqV5IGzGsOG7o25nIGJp4bq/biB0cm9uZyAibmF2eSIKc3RyKG5hdnkxKQpgYGAKCgoKYGBge3J9Cm5hdnkyIDwtIGRpc3RpbmN0KG5hdnkpICNMb+G6oWkgYuG7jyB0cnVuZyBs4bqvcCB0cm9uZyAibmF2eSIKc3RyKG5hdnkyKQpgYGAKCgoKCgojIyAqKi4gUsO6dCB0csOtY2ggZOG7ryBsaeG7h3UqKgoqKioKCgpHaeG6oyBz4butIHnDqnUgY+G6p3UgbOG6pXkgbmjhu69uZyB0aMO0bmcgdGluIHRyb25nIGRhdGFzZXRzIMSRw6MgbG/huqFpIGLhu48gdHLDuW5nIGzhurdwICIqKm5hdnkyKioiIG5oxrAgc2F1OgotIGzhuqV5IDEwMCBxdWFuIHPDoXQgxJHhuqd1IHRpw6puIHRyb25nIGRhdGFzZXRzIAotIGzhuqV5IDUwIHF1YW4gc8OhdCBjdeG7kWkgdHJvbmcgZGF0YXN0ZXN0Ci0gY2jhu41uIG5o4buvbmcgcXVhbiBzw6F0IHF14buRYyBnaWEgKipHZXJtYW55KioKLSBjaOG7jW4gbmjhu69uZyBz4bqjbiBwaOG6qW0gKipQYXNlbyoqIGhv4bq3YyAqKlZlbG8qKgotIGNo4buNbiBuaOG7r25nIHPhuqNuIHBo4bqpbSAqKlBhc2VvKiogY8OzIHLhu6dpIHJvIHRydW5nIGLDrG5oCi0gY2jhu41uIGzDoG0gdmnhu4djIHbhu5tpIGJp4bq/biAqKkNvdW50cnkqKiwqKkRhdGUqKiBtw6AgKipQcm9kdWN0KiogbMOgICoqUGFzZW8qKgoKCmBgYHtyfQpuYXZ5MTAwIDwtIGhlYWQobmF2eSwxMDApCnN0cihuYXZ5MTAwKQpgYGAKCgpgYGB7cn0KbmF2eTUwIDwtIHRhaWwobmF2eSw1MCkKc3RyKG5hdnk1MCkKYGBgCgoKYGBge3J9Cm5hdnkxNTAgPC0gbmF2eVtuYXZ5JFByb2R1Y3QgPT0gJ1Bhc2VvJyAmIG5hdnkkRGlzY291bnRCYW5kID09ICdNZWRpdW0nLCBdCnN0cihuYXZ5MTUwKQogIAogIAogIApgYGAKCgoKYGBge3J9Cm5hdnkyMDAgPC0gbmF2eVtuYXZ5JENvdW50cnkgPT0gJ0dlcm1hbnknLCBdCnN0cihuYXZ5MjAwKQpgYGAKCgoKYGBge3J9Cm5hdnkyMDAgPC0gbmF2eVtuYXZ5JFByb2R1Y3QgPT0gJ1Bhc2VvJyB8IG5hdnkkUHJvZHVjdCA9PSAnVmVsbycsXQpzdHIobmF2eTIwMCkKYGBgCgoKCmBgYHtyfQpsaWJyYXJ5KGRwbHlyKQoKbmF2eTMwMCA8LSBmaWx0ZXIobmF2eSwgUHJvZHVjdD09J1Bhc2VvJykgJT4lIHNlbGVjdChDb3VudHJ5LERhdGUsKQpzdHIobmF2eTMwMCkKCmBgYAoKCiMjICoqLiBU4bqhbyBk4buvIGxp4buHdSBt4bubaSoqCioqKgoKVOG7qyBvYmplY3QgY8WpICoqbmF2eSoqIHRhIHThuqFvIHRow6BuaCBvYmplY3QgbeG7m2kgKipuYXZ5eCosIHbhu5tpIGPDoWMgYmnhur9uIG3hu5tpIG5oxrAgc2F1OgoKLSAqKnBWTkQ6KiogbOG7o2kgbmh14bqtbiB0w61uaCBi4bqxbmcgVk5ECi0gKip0UHJvOioqIMSRw6FuaCBnacOhIHPhu5EgbMaw4bujbmcgc+G6o24gcGjhuqltIGLDoW4gcmEKCgpgYGB7cn0KbmF2eXggPC0gbXV0YXRlKG5hdnksIHBWTkQ9IFByb2ZpdCoyNC41NTApCnN0cihuYXZ5eCkKYGBgCgoKYGBge3J9Cm5hdnl4JHRQcm8gPC0gY2FzZV93aGVuKG5hdnkkUHJvZHVjdDwgMTAwMCB+ICdiw6FuIHJhIHRo4bqlcCcgLCBuYXZ5JFByb2R1Y3QgPT0gMTAwMCB+ICdiw6FuIHJhIHRydW5nIGLDrG5oJyAsIG5hdnkkUHJvZHVjdCA+IDEwMDAgfiAnIGLDoW4gcmEgY2FvJykgCnN0cihuYXZ5eCkKCmBgYAoKCgoKYGBgCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo=