Nhiệm vụ 2.1 thao tác trên datasets “bwt_co_dieu_chinh.xlsx” là datasets thống kê những thuộc tính trong quá trình mang thai của phụ nữ giai đoạn 1925-2004.
Các thông số từ datasets có 640 quan sát và 9 biến như sau:
Không có dữ liệu trống
library(openxlsx)
vy1 <- read.xlsx("/Users/xuyenchi/Library/Containers/com.microsoft.Excel/Data/Downloads/R Code/bwt_co_dieu_chinh.xlsx") #đọc dữ liệu từ excel và gán vào object vy1
table <- knitr::kable(vy1,format="markdown")
table
id | year | bwt | gestation | parity | age | height | weight | smoke |
---|---|---|---|---|---|---|---|---|
1 | 1925 | 120 | 284 | 0 | 27 | 62 | 100 | 0 |
2 | 1925 | 112 | 267 | 1 | 22 | 62 | 138 | 0 |
3 | 1925 | 119 | 286 | 0 | 26 | 64 | 123 | 1 |
4 | 1925 | 124 | 287 | 0 | 27 | 62 | 105 | 1 |
5 | 1925 | 105 | 276 | 0 | 22 | 67 | 130 | 0 |
6 | 1925 | 120 | 289 | 1 | 31 | 59 | 102 | 0 |
7 | 1925 | 82 | 274 | 0 | 31 | 64 | 101 | 1 |
8 | 1925 | 111 | 278 | 0 | 29 | 65 | 145 | 1 |
1 | 1926 | 113 | 282 | 0 | 33 | 64 | 135 | 0 |
2 | 1926 | 134 | 297 | 0 | 27 | 67 | 170 | 1 |
3 | 1926 | 97 | 279 | 0 | 29 | 68 | 178 | 1 |
4 | 1926 | 125 | 292 | 0 | 22 | 65 | 122 | 0 |
5 | 1926 | 93 | 246 | 0 | 37 | 65 | 130 | 0 |
6 | 1926 | 146 | 280 | 0 | 23 | 61 | 145 | 0 |
7 | 1926 | 100 | 274 | 0 | 24 | 63 | 113 | 0 |
8 | 1926 | 103 | 250 | 0 | 40 | 59 | 140 | 0 |
1 | 1927 | 128 | 279 | 0 | 28 | 64 | 115 | 1 |
2 | 1927 | 145 | 308 | 0 | 35 | 64 | 110 | 1 |
3 | 1927 | 99 | 252 | 0 | 21 | 64 | 120 | 0 |
4 | 1927 | 110 | 262 | 0 | 25 | 66 | 140 | 0 |
5 | 1927 | 122 | 281 | 0 | 42 | 63 | 103 | 1 |
6 | 1927 | 112 | 283 | 1 | 21 | 62 | 102 | 1 |
7 | 1927 | 114 | 271 | 0 | 32 | 61 | 130 | 0 |
8 | 1927 | 114 | 276 | 0 | 26 | 62 | 127 | 0 |
1 | 1928 | 108 | 282 | 0 | 23 | 67 | 125 | 1 |
2 | 1928 | 116 | 295 | 0 | 32 | 65 | 120 | 0 |
3 | 1928 | 115 | 264 | 1 | 23 | 67 | 134 | 1 |
4 | 1928 | 125 | 279 | 0 | 23 | 63 | 104 | 1 |
5 | 1928 | 133 | 293 | 0 | 23 | 64 | 110 | 1 |
6 | 1928 | 132 | 278 | 0 | 20 | 64 | 150 | 1 |
7 | 1928 | 97 | 269 | 0 | 20 | 65 | 137 | 1 |
8 | 1928 | 75 | 247 | 0 | 36 | 64 | 120 | 1 |
1 | 1929 | 136 | 286 | 0 | 25 | 62 | 93 | 0 |
2 | 1929 | 126 | 278 | 0 | 26 | 64 | 150 | 1 |
3 | 1929 | 139 | 284 | 0 | 37 | 61 | 121 | 0 |
4 | 1929 | 138 | 294 | 0 | 40 | 64 | 125 | 0 |
5 | 1929 | 130 | 296 | 1 | 22 | 66 | 117 | 1 |
6 | 1929 | 146 | 263 | 0 | 39 | 53 | 110 | 1 |
7 | 1929 | 126 | 298 | 0 | 24 | 61 | 112 | 0 |
8 | 1929 | 169 | 296 | 0 | 33 | 67 | 185 | 0 |
1 | 1930 | 138 | 244 | 0 | 33 | 62 | 178 | 0 |
2 | 1930 | 111 | 285 | 0 | 29 | 65 | 130 | 0 |
3 | 1930 | 144 | 304 | 1 | 27 | 58 | 102 | 1 |
4 | 1930 | 142 | 284 | 0 | 39 | 66 | 132 | 0 |
5 | 1930 | 104 | 307 | 0 | 24 | 59 | 122 | 0 |
6 | 1930 | 122 | 275 | 0 | 30 | 68 | 140 | 0 |
7 | 1930 | 122 | 275 | 1 | 20 | 65 | 127 | 0 |
8 | 1930 | 94 | 271 | 0 | 36 | 61 | 130 | 1 |
1 | 1931 | 132 | 245 | 0 | 23 | 65 | 140 | 0 |
2 | 1931 | 126 | 282 | 0 | 33 | 62 | 117 | 0 |
3 | 1931 | 99 | 270 | 0 | 22 | 63 | 115 | 1 |
4 | 1931 | 115 | 278 | 0 | 23 | 60 | 102 | 1 |
5 | 1931 | 106 | 278 | 0 | 31 | 65 | 110 | 1 |
6 | 1931 | 128 | 292 | 0 | 32 | 66 | 130 | 0 |
7 | 1931 | 152 | 295 | 0 | 39 | 62 | 140 | 0 |
8 | 1931 | 150 | 287 | 0 | 36 | 62 | 135 | 0 |
1 | 1932 | 120 | 289 | 0 | 25 | 62 | 125 | 0 |
2 | 1932 | 109 | 291 | 0 | 39 | 64 | 107 | 0 |
3 | 1932 | 105 | 280 | 1 | 22 | 63 | 116 | 0 |
4 | 1932 | 102 | 280 | 0 | 38 | 67 | 140 | 0 |
5 | 1932 | 120 | 281 | 0 | 33 | 63 | 113 | 0 |
6 | 1932 | 119 | 277 | 0 | 24 | 63 | 120 | 1 |
7 | 1932 | 116 | 274 | 0 | 21 | 62 | 110 | 1 |
8 | 1932 | 144 | 248 | 0 | 30 | 70 | 145 | 0 |
1 | 1933 | 143 | 299 | 0 | 30 | 66 | 136 | 1 |
2 | 1933 | 136 | 291 | 0 | 41 | 66 | 191 | 0 |
3 | 1933 | 89 | 275 | 0 | 34 | 66 | 170 | 0 |
4 | 1933 | 140 | 294 | 0 | 25 | 61 | 103 | 0 |
5 | 1933 | 118 | 276 | 1 | 18 | 63 | 128 | 0 |
6 | 1933 | 135 | 278 | 0 | 27 | 66 | 148 | 0 |
7 | 1933 | 132 | 302 | 0 | 36 | 63 | 145 | 1 |
8 | 1933 | 144 | 291 | 0 | 28 | 67 | 130 | 0 |
1 | 1934 | 140 | 351 | 0 | 27 | 68 | 120 | 0 |
2 | 1934 | 119 | 286 | 0 | 22 | 63 | 185 | 1 |
3 | 1934 | 129 | 270 | 0 | 43 | 67 | 160 | 0 |
4 | 1934 | 133 | 276 | 1 | 22 | 63 | 119 | 0 |
5 | 1934 | 140 | 290 | 1 | 19 | 67 | 132 | 1 |
6 | 1934 | 129 | 235 | 0 | 24 | 66 | 135 | 0 |
7 | 1934 | 84 | 260 | 1 | 37 | 66 | 140 | 0 |
8 | 1934 | 143 | 313 | 0 | 20 | 68 | 150 | 0 |
1 | 1935 | 144 | 282 | 0 | 32 | 64 | 124 | 1 |
2 | 1935 | 103 | 267 | 1 | 21 | 66 | 150 | 1 |
3 | 1935 | 119 | 270 | 1 | 20 | 64 | 109 | 0 |
4 | 1935 | 127 | 290 | 0 | 35 | 66 | 165 | 0 |
5 | 1935 | 114 | 268 | 0 | 22 | 64 | 104 | 0 |
6 | 1935 | 116 | 293 | 1 | 28 | 62 | 108 | 0 |
7 | 1935 | 119 | 277 | 1 | 18 | 61 | 89 | 1 |
8 | 1935 | 145 | 304 | 1 | 25 | 63 | 109 | 1 |
1 | 1936 | 141 | 279 | 0 | 23 | 63 | 128 | 1 |
2 | 1936 | 124 | 284 | 1 | 17 | 62 | 112 | 0 |
3 | 1936 | 114 | 291 | 0 | 35 | 60 | 112 | 0 |
4 | 1936 | 104 | 274 | 1 | 20 | 62 | 115 | 1 |
5 | 1936 | 116 | 280 | 0 | 40 | 62 | 159 | 0 |
6 | 1936 | 100 | 275 | 0 | 27 | 64 | 111 | 1 |
7 | 1936 | 106 | 312 | 0 | 24 | 62 | 135 | 1 |
8 | 1936 | 121 | 285 | 0 | 34 | 64 | 110 | 0 |
1 | 1937 | 110 | 281 | 0 | 36 | 61 | 99 | 1 |
2 | 1937 | 155 | 286 | 0 | 31 | 66 | 127 | 0 |
3 | 1937 | 106 | 289 | 0 | 28 | 67 | 120 | 1 |
4 | 1937 | 119 | 275 | 0 | 42 | 67 | 156 | 1 |
5 | 1937 | 129 | 284 | 0 | 24 | 64 | 115 | 0 |
6 | 1937 | 138 | 257 | 0 | 38 | 67 | 138 | 0 |
7 | 1937 | 139 | 291 | 0 | 24 | 65 | 160 | 0 |
8 | 1937 | 105 | 256 | 0 | 31 | 66 | 142 | 0 |
1 | 1938 | 114 | 273 | 0 | 30 | 63 | 154 | 0 |
2 | 1938 | 122 | 282 | 1 | 21 | 66 | 110 | 0 |
3 | 1938 | 122 | 292 | 1 | 34 | 65 | 133 | 0 |
4 | 1938 | 152 | 301 | 0 | 29 | 65 | 150 | 0 |
5 | 1938 | 120 | 286 | 0 | 22 | 62 | 115 | 1 |
6 | 1938 | 123 | 282 | 0 | 22 | 65 | 130 | 0 |
7 | 1938 | 103 | 273 | 0 | 36 | 65 | 158 | 1 |
8 | 1938 | 134 | 286 | 0 | 25 | 64 | 125 | 0 |
1 | 1939 | 115 | 285 | 0 | 38 | 63 | 130 | 0 |
2 | 1939 | 113 | 285 | 0 | 26 | 66 | 140 | 0 |
3 | 1939 | 136 | 261 | 0 | 24 | 65 | 110 | 0 |
4 | 1939 | 123 | 284 | 1 | 20 | 65 | 120 | 1 |
5 | 1939 | 127 | 281 | 0 | 24 | 63 | 112 | 1 |
6 | 1939 | 113 | 288 | 1 | 21 | 61 | 120 | 0 |
7 | 1939 | 112 | 299 | 0 | 24 | 67 | 145 | 1 |
8 | 1939 | 129 | 294 | 1 | 21 | 65 | 132 | 0 |
1 | 1940 | 92 | 255 | 0 | 25 | 65 | 125 | 1 |
2 | 1940 | 122 | 273 | 0 | 26 | 66 | 210 | 0 |
3 | 1940 | 121 | 286 | 1 | 22 | 69 | 130 | 1 |
4 | 1940 | 143 | 273 | 0 | 19 | 66 | 135 | 0 |
5 | 1940 | 71 | 234 | 0 | 32 | 64 | 110 | 1 |
6 | 1940 | 129 | 280 | 1 | 24 | 65 | 140 | 1 |
7 | 1940 | 96 | 276 | 0 | 33 | 64 | 127 | 1 |
8 | 1940 | 114 | 276 | 0 | 24 | 63 | 110 | 0 |
1 | 1941 | 115 | 261 | 0 | 33 | 60 | 125 | 1 |
2 | 1941 | 126 | 293 | 1 | 27 | 62 | 111 | 0 |
3 | 1941 | 112 | 282 | 0 | 26 | 65 | 122 | 0 |
4 | 1941 | 131 | 308 | 0 | 40 | 65 | 160 | 0 |
5 | 1941 | 88 | 274 | 0 | 30 | 66 | 130 | 0 |
6 | 1941 | 122 | 280 | 0 | 24 | 67 | 127 | 1 |
7 | 1941 | 102 | 281 | 1 | 19 | 67 | 135 | 1 |
8 | 1941 | 97 | 265 | 0 | 30 | 61 | 110 | 0 |
1 | 1942 | 144 | 261 | 0 | 33 | 68 | 170 | 0 |
2 | 1942 | 116 | 277 | 0 | 41 | 64 | 124 | 1 |
3 | 1942 | 112 | 266 | 0 | 26 | 64 | 122 | 0 |
4 | 1942 | 141 | 319 | 1 | 20 | 67 | 140 | 1 |
5 | 1942 | 122 | 286 | 0 | 23 | 64 | 145 | 0 |
6 | 1942 | 132 | 281 | 1 | 21 | 67 | 140 | 0 |
7 | 1942 | 120 | 300 | 0 | 34 | 63 | 150 | 1 |
8 | 1942 | 160 | 292 | 0 | 28 | 64 | 120 | 0 |
1 | 1943 | 119 | 288 | 0 | 43 | 66 | 142 | 1 |
2 | 1943 | 102 | 294 | 0 | 21 | 65 | 130 | 1 |
3 | 1943 | 123 | 314 | 0 | 22 | 61 | 121 | 1 |
4 | 1943 | 129 | 277 | 0 | 30 | 66 | 142 | 1 |
5 | 1943 | 106 | 302 | 1 | 19 | 66 | 147 | 0 |
6 | 1943 | 120 | 269 | 1 | 40 | 63 | 130 | 0 |
7 | 1943 | 102 | 338 | 0 | 19 | 64 | 170 | 0 |
8 | 1943 | 65 | 237 | 0 | 31 | 67 | 130 | 0 |
1 | 1944 | 105 | 270 | 0 | 22 | 56 | 93 | 0 |
2 | 1944 | 110 | 181 | 0 | 27 | 64 | 133 | 0 |
3 | 1944 | 139 | 286 | 0 | 33 | 65 | 125 | 1 |
4 | 1944 | 113 | 282 | 1 | 36 | 59 | 140 | 0 |
5 | 1944 | 135 | 285 | 0 | 30 | 66 | 130 | 0 |
6 | 1944 | 114 | 283 | 1 | 20 | 65 | 115 | 0 |
7 | 1944 | 97 | 255 | 1 | 22 | 63 | 107 | 1 |
8 | 1944 | 145 | 288 | 0 | 28 | 64 | 116 | 0 |
1 | 1945 | 115 | 274 | 0 | 27 | 67 | 175 | 1 |
2 | 1945 | 133 | 285 | 1 | 30 | 64 | 160 | 0 |
3 | 1945 | 125 | 290 | 0 | 36 | 59 | 105 | 0 |
4 | 1945 | 119 | 292 | 0 | 33 | 62 | 118 | 1 |
5 | 1945 | 107 | 290 | 0 | 26 | 63 | 112 | 0 |
6 | 1945 | 130 | 280 | 0 | 29 | 66 | 135 | 0 |
7 | 1945 | 113 | 285 | 0 | 22 | 70 | 145 | 0 |
8 | 1945 | 95 | 273 | 0 | 23 | 60 | 90 | 0 |
1 | 1946 | 137 | 287 | 0 | 25 | 66 | 145 | 0 |
2 | 1946 | 125 | 283 | 0 | 29 | 65 | 125 | 0 |
3 | 1946 | 105 | 295 | 1 | 20 | 64 | 112 | 1 |
4 | 1946 | 109 | 295 | 1 | 23 | 63 | 103 | 1 |
5 | 1946 | 129 | 294 | 0 | 32 | 62 | 170 | 1 |
6 | 1946 | 117 | 286 | 0 | 32 | 66 | 127 | 1 |
7 | 1946 | 130 | 297 | 0 | 32 | 58 | 130 | 0 |
8 | 1946 | 139 | 293 | 1 | 21 | 69 | 130 | 0 |
1 | 1947 | 122 | 276 | 0 | 30 | 68 | 182 | 0 |
2 | 1947 | 164 | 286 | 1 | 32 | 66 | 143 | 0 |
3 | 1947 | 130 | 276 | 0 | 41 | 68 | 130 | 0 |
4 | 1947 | 104 | 280 | 1 | 27 | 68 | 146 | 1 |
5 | 1947 | 126 | 274 | 0 | 39 | 62 | 122 | 0 |
6 | 1947 | 142 | 285 | 0 | 33 | 63 | 124 | 0 |
7 | 1947 | 97 | 260 | 1 | 25 | 63 | 115 | 1 |
8 | 1947 | 123 | 288 | 0 | 27 | 63 | 125 | 0 |
1 | 1948 | 131 | 294 | 0 | 23 | 65 | 122 | 0 |
2 | 1948 | 133 | 297 | 0 | 36 | 61 | 125 | 0 |
3 | 1948 | 146 | 294 | 0 | 22 | 66 | 145 | 1 |
4 | 1948 | 131 | 282 | 1 | 21 | 66 | 126 | 0 |
5 | 1948 | 116 | 293 | 1 | 26 | 64 | 125 | 0 |
6 | 1948 | 144 | 273 | 0 | 27 | 62 | 118 | 1 |
7 | 1948 | 116 | 273 | 0 | 31 | 61 | 120 | 0 |
8 | 1948 | 109 | 283 | 0 | 23 | 65 | 112 | 1 |
1 | 1949 | 103 | 261 | 0 | 27 | 65 | 112 | 1 |
2 | 1949 | 124 | 293 | 1 | 19 | 65 | 150 | 0 |
3 | 1949 | 133 | 290 | 0 | 21 | 64 | 145 | 0 |
4 | 1949 | 110 | 293 | 1 | 28 | 64 | 135 | 1 |
5 | 1949 | 124 | 294 | 0 | 26 | 62 | 122 | 0 |
6 | 1949 | 127 | 262 | 1 | 32 | 64 | 125 | 0 |
7 | 1949 | 114 | 266 | 0 | 29 | 64 | 113 | 0 |
8 | 1949 | 110 | 268 | 0 | 34 | 64 | 127 | 0 |
1 | 1950 | 146 | 280 | 0 | 26 | 58 | 106 | 0 |
2 | 1950 | 122 | 306 | 1 | 22 | 62 | 100 | 0 |
3 | 1950 | 147 | 296 | 1 | 19 | 67 | 124 | 0 |
4 | 1950 | 148 | 279 | 0 | 27 | 71 | 189 | 0 |
5 | 1950 | 123 | 281 | 0 | 23 | 68 | 136 | 0 |
6 | 1950 | 115 | 270 | 0 | 25 | 67 | 165 | 1 |
7 | 1950 | 127 | 242 | 0 | 17 | 61 | 135 | 1 |
8 | 1950 | 122 | 296 | 1 | 24 | 65 | 132 | 0 |
1 | 1951 | 114 | 266 | 0 | 20 | 65 | 175 | 1 |
2 | 1951 | 121 | 271 | 1 | 34 | 63 | 129 | 1 |
3 | 1951 | 109 | 269 | 0 | 23 | 63 | 113 | 0 |
4 | 1951 | 137 | 283 | 1 | 20 | 65 | 157 | 0 |
5 | 1951 | 145 | 315 | 0 | 39 | 67 | 143 | 1 |
6 | 1951 | 85 | 258 | 0 | 41 | 67 | 137 | 0 |
7 | 1951 | 87 | 247 | 1 | 18 | 66 | 125 | 1 |
8 | 1951 | 115 | 307 | 0 | 34 | 65 | 128 | 1 |
1 | 1952 | 125 | 292 | 0 | 32 | 65 | 125 | 0 |
2 | 1952 | 100 | 272 | 0 | 30 | 64 | 150 | 1 |
3 | 1952 | 122 | 286 | 0 | 23 | 64 | 120 | 1 |
4 | 1952 | 117 | 283 | 0 | 27 | 63 | 108 | 0 |
5 | 1952 | 102 | 278 | 0 | 27 | 67 | 135 | 1 |
6 | 1952 | 99 | 274 | 0 | 28 | 66 | 118 | 1 |
7 | 1952 | 141 | 281 | 0 | 29 | 54 | 156 | 1 |
8 | 1952 | 108 | 279 | 1 | 19 | 64 | 115 | 0 |
1 | 1953 | 114 | 274 | 0 | 28 | 66 | 132 | 1 |
2 | 1953 | 90 | 266 | 1 | 26 | 67 | 135 | 0 |
3 | 1953 | 135 | 260 | 0 | 43 | 65 | 135 | 0 |
4 | 1953 | 115 | 302 | 1 | 22 | 67 | 135 | 0 |
5 | 1953 | 129 | 293 | 0 | 30 | 65 | 130 | 1 |
6 | 1953 | 123 | 323 | 1 | 17 | 64 | 140 | 0 |
7 | 1953 | 144 | 283 | 1 | 25 | 66 | 140 | 0 |
8 | 1953 | 120 | 287 | 0 | 23 | 67 | 116 | 1 |
1 | 1954 | 122 | 270 | 0 | 26 | 61 | 105 | 0 |
2 | 1954 | 128 | 272 | 1 | 18 | 67 | 109 | 0 |
3 | 1954 | 117 | 272 | 0 | 32 | 66 | 118 | 0 |
4 | 1954 | 98 | 280 | 0 | 35 | 64 | 122 | 1 |
5 | 1954 | 98 | 276 | 1 | 22 | 61 | 121 | 0 |
6 | 1954 | 112 | 281 | 1 | 23 | 61 | 150 | 0 |
7 | 1954 | 116 | 273 | 0 | 33 | 66 | 130 | 1 |
8 | 1954 | 131 | 269 | 0 | 36 | 68 | 145 | 0 |
1 | 1955 | 93 | 278 | 0 | 34 | 61 | 146 | 0 |
2 | 1955 | 86 | 276 | 1 | 23 | 65 | 125 | 1 |
3 | 1955 | 138 | 284 | 0 | 30 | 66 | 133 | 1 |
4 | 1955 | 136 | 303 | 1 | 20 | 68 | 148 | 1 |
5 | 1955 | 110 | 272 | 0 | 28 | 60 | 108 | 0 |
6 | 1955 | 68 | 223 | 0 | 32 | 66 | 149 | 1 |
7 | 1955 | 75 | 265 | 0 | 21 | 65 | 103 | 1 |
8 | 1955 | 136 | 283 | 1 | 24 | 63 | 119 | 0 |
1 | 1956 | 130 | 268 | 0 | 30 | 66 | 123 | 0 |
2 | 1956 | 123 | 282 | 0 | 30 | 63 | 118 | 0 |
3 | 1956 | 120 | 283 | 0 | 28 | 64 | 122 | 1 |
4 | 1956 | 121 | 276 | 1 | 23 | 71 | 152 | 1 |
5 | 1956 | 135 | 282 | 0 | 24 | 67 | 128 | 1 |
6 | 1956 | 102 | 283 | 1 | 19 | 65 | 127 | 1 |
7 | 1956 | 138 | 286 | 1 | 28 | 68 | 120 | 0 |
8 | 1956 | 125 | 290 | 0 | 32 | 63 | 135 | 0 |
1 | 1957 | 119 | 275 | 0 | 23 | 60 | 105 | 0 |
2 | 1957 | 87 | 275 | 0 | 28 | 63 | 110 | 1 |
3 | 1957 | 119 | 273 | 0 | 35 | 65 | 125 | 1 |
4 | 1957 | 132 | 285 | 1 | 25 | 63 | 140 | 0 |
5 | 1957 | 101 | 278 | 1 | 20 | 62 | 105 | 0 |
6 | 1957 | 109 | 273 | 0 | 37 | 65 | 138 | 1 |
7 | 1957 | 99 | 271 | 0 | 39 | 69 | 151 | 0 |
8 | 1957 | 96 | 285 | 1 | 20 | 66 | 117 | 1 |
1 | 1958 | 113 | 281 | 0 | 24 | 65 | 120 | 0 |
2 | 1958 | 128 | 291 | 1 | 27 | 63 | 132 | 0 |
3 | 1958 | 118 | 278 | 1 | 19 | 62 | 126 | 0 |
4 | 1958 | 91 | 264 | 0 | 36 | 60 | 100 | 1 |
5 | 1958 | 96 | 266 | 0 | 26 | 65 | 125 | 0 |
6 | 1958 | 102 | 267 | 1 | 25 | 60 | 93 | 1 |
7 | 1958 | 118 | 293 | 0 | 21 | 63 | 103 | 0 |
8 | 1958 | 102 | 282 | 1 | 29 | 65 | 125 | 1 |
1 | 1959 | 134 | 283 | 0 | 22 | 67 | 130 | 0 |
2 | 1959 | 120 | 288 | 0 | 28 | 63 | 125 | 0 |
3 | 1959 | 105 | 330 | 0 | 23 | 64 | 112 | 1 |
4 | 1959 | 119 | 294 | 0 | 34 | 59 | 105 | 0 |
5 | 1959 | 104 | 276 | 1 | 18 | 60 | 109 | 1 |
6 | 1959 | 99 | 275 | 0 | 23 | 61 | 125 | 1 |
7 | 1959 | 97 | 266 | 0 | 24 | 62 | 109 | 0 |
8 | 1959 | 102 | 288 | 1 | 18 | 65 | 117 | 0 |
1 | 1960 | 107 | 279 | 0 | 24 | 63 | 115 | 0 |
2 | 1960 | 125 | 301 | 1 | 35 | 68 | 181 | 0 |
3 | 1960 | 113 | 306 | 1 | 21 | 65 | 137 | 0 |
4 | 1960 | 85 | 273 | 0 | 26 | 60 | 105 | 1 |
5 | 1960 | 100 | 249 | 0 | 24 | 67 | 100 | 0 |
6 | 1960 | 78 | 256 | 1 | 29 | 65 | 123 | 0 |
7 | 1960 | 146 | 319 | 0 | 28 | 66 | 145 | 0 |
8 | 1960 | 112 | 277 | 1 | 22 | 67 | 120 | 0 |
1 | 1961 | 134 | 288 | 0 | 23 | 63 | 92 | 1 |
2 | 1961 | 118 | 265 | 0 | 27 | 61 | 123 | 0 |
3 | 1961 | 148 | 291 | 1 | 21 | 63 | 115 | 0 |
4 | 1961 | 106 | 271 | 1 | 26 | 61 | 110 | 1 |
5 | 1961 | 154 | 292 | 0 | 40 | 66 | 145 | 0 |
6 | 1961 | 128 | 284 | 1 | 19 | 66 | 111 | 1 |
7 | 1961 | 81 | 285 | 0 | 19 | 63 | 150 | 1 |
8 | 1961 | 135 | 272 | 0 | 30 | 65 | 130 | 0 |
1 | 1962 | 122 | 267 | 0 | 27 | 65 | 101 | 1 |
2 | 1962 | 116 | 284 | 1 | 24 | 66 | 117 | 0 |
3 | 1962 | 140 | 281 | 1 | 22 | 69 | 135 | 0 |
4 | 1962 | 132 | 284 | 0 | 29 | 64 | 122 | 0 |
5 | 1962 | 127 | 293 | 0 | 31 | 67 | 137 | 0 |
6 | 1962 | 107 | 303 | 1 | 25 | 67 | 133 | 0 |
7 | 1962 | 110 | 321 | 0 | 28 | 66 | 180 | 0 |
8 | 1962 | 91 | 266 | 0 | 23 | 60 | 120 | 1 |
1 | 1963 | 129 | 293 | 0 | 30 | 61 | 160 | 0 |
2 | 1963 | 131 | 262 | 0 | 22 | 67 | 135 | 0 |
3 | 1963 | 134 | 287 | 1 | 33 | 67 | 131 | 0 |
4 | 1963 | 80 | 266 | 1 | 25 | 62 | 125 | 0 |
5 | 1963 | 126 | 288 | 0 | 31 | 62 | 150 | 0 |
6 | 1963 | 136 | 295 | 0 | 23 | 64 | 147 | 0 |
7 | 1963 | 135 | 284 | 1 | 19 | 60 | 95 | 0 |
8 | 1963 | 129 | 276 | 0 | 31 | 63 | 125 | 0 |
1 | 1964 | 110 | 278 | 0 | 23 | 63 | 177 | 0 |
2 | 1964 | 151 | 286 | 1 | 22 | 66 | 130 | 0 |
3 | 1964 | 120 | 280 | 0 | 31 | 61 | 111 | 0 |
4 | 1964 | 109 | 286 | 0 | 24 | 64 | 125 | 1 |
5 | 1964 | 126 | 282 | 1 | 23 | 66 | 115 | 1 |
6 | 1964 | 101 | 278 | 0 | 27 | 61 | 99 | 1 |
7 | 1964 | 114 | 290 | 1 | 21 | 65 | 120 | 1 |
8 | 1964 | 155 | 290 | 0 | 26 | 66 | 129 | 1 |
1 | 1965 | 111 | 270 | 0 | 27 | 61 | 119 | 0 |
2 | 1965 | 88 | 273 | 0 | 20 | 66 | 110 | 1 |
3 | 1965 | 123 | 296 | 1 | 26 | 64 | 110 | 1 |
4 | 1965 | 111 | 306 | 0 | 27 | 61 | 102 | 0 |
5 | 1965 | 127 | 279 | 0 | 26 | 67 | 155 | 1 |
6 | 1965 | 100 | 275 | 1 | 25 | 64 | 125 | 0 |
7 | 1965 | 124 | 288 | 1 | 21 | 64 | 116 | 1 |
8 | 1965 | 109 | 274 | 0 | 33 | 69 | 144 | 1 |
1 | 1966 | 87 | 248 | 0 | 37 | 65 | 130 | 1 |
2 | 1966 | 137 | 284 | 0 | 30 | 67 | 110 | 0 |
3 | 1966 | 102 | 275 | 0 | 43 | 64 | 160 | 0 |
4 | 1966 | 143 | 292 | 1 | 21 | 65 | 125 | 0 |
5 | 1966 | 98 | 275 | 0 | 25 | 65 | 112 | 1 |
6 | 1966 | 109 | 272 | 0 | 41 | 66 | 154 | 1 |
7 | 1966 | 115 | 262 | 1 | 23 | 64 | 136 | 1 |
8 | 1966 | 80 | 262 | 1 | 31 | 61 | 100 | 1 |
1 | 1967 | 143 | 274 | 0 | 27 | 63 | 110 | 1 |
2 | 1967 | 127 | 289 | 0 | 23 | 67 | 140 | 0 |
3 | 1967 | 55 | 204 | 0 | 35 | 65 | 140 | 0 |
4 | 1967 | 136 | 290 | 0 | 26 | 66 | 135 | 0 |
5 | 1967 | 127 | 288 | 1 | 21 | 66 | 130 | 0 |
6 | 1967 | 117 | 281 | 1 | 21 | 70 | 141 | 1 |
7 | 1967 | 143 | 281 | 0 | 28 | 65 | 135 | 1 |
8 | 1967 | 125 | 273 | 0 | 30 | 64 | 145 | 0 |
1 | 1968 | 155 | 294 | 0 | 32 | 66 | 150 | 0 |
2 | 1968 | 96 | 278 | 1 | 18 | 60 | 120 | 1 |
3 | 1968 | 103 | 276 | 1 | 19 | 63 | 149 | 1 |
4 | 1968 | 110 | 285 | 1 | 19 | 64 | 130 | 0 |
5 | 1968 | 129 | 299 | 0 | 22 | 68 | 145 | 0 |
6 | 1968 | 88 | 252 | 1 | 21 | 60 | 115 | 1 |
7 | 1968 | 113 | 287 | 1 | 29 | 70 | 145 | 1 |
8 | 1968 | 94 | 284 | 0 | 24 | 63 | 104 | 1 |
1 | 1969 | 110 | 272 | 0 | 25 | 60 | 90 | 0 |
2 | 1969 | 129 | 281 | 0 | 31 | 67 | 155 | 0 |
3 | 1969 | 123 | 283 | 0 | 21 | 65 | 110 | 0 |
4 | 1969 | 98 | 257 | 0 | 29 | 66 | 130 | 1 |
5 | 1969 | 131 | 292 | 1 | 22 | 64 | 124 | 1 |
6 | 1969 | 95 | 270 | 0 | 35 | 65 | 135 | 1 |
7 | 1969 | 109 | 244 | 1 | 21 | 63 | 102 | 1 |
8 | 1969 | 148 | 281 | 0 | 27 | 63 | 110 | 1 |
1 | 1970 | 122 | 275 | 0 | 26 | 66 | 147 | 0 |
2 | 1970 | 128 | 288 | 1 | 26 | 65 | 114 | 0 |
3 | 1970 | 105 | 270 | 1 | 27 | 65 | 134 | 1 |
4 | 1970 | 108 | 305 | 1 | 24 | 65 | 112 | 0 |
5 | 1970 | 132 | 289 | 1 | 19 | 66 | 145 | 0 |
6 | 1970 | 127 | 291 | 1 | 24 | 66 | 135 | 1 |
7 | 1970 | 103 | 278 | 0 | 30 | 60 | 87 | 1 |
8 | 1970 | 73 | 277 | 0 | 29 | 65 | 145 | 0 |
1 | 1971 | 145 | 291 | 0 | 26 | 63 | 119 | 1 |
2 | 1971 | 85 | 255 | 0 | 24 | 68 | 159 | 0 |
3 | 1971 | 138 | 289 | 0 | 33 | 65 | 155 | 0 |
4 | 1971 | 101 | 295 | 0 | 18 | 62 | 145 | 1 |
5 | 1971 | 127 | 280 | 0 | 27 | 62 | 118 | 0 |
6 | 1971 | 107 | 293 | 0 | 20 | 65 | 155 | 1 |
7 | 1971 | 118 | 276 | 0 | 34 | 64 | 116 | 0 |
8 | 1971 | 123 | 267 | 1 | 19 | 66 | 132 | 1 |
1 | 1972 | 115 | 258 | 0 | 26 | 62 | 130 | 0 |
2 | 1972 | 111 | 281 | 1 | 27 | 64 | 112 | 0 |
3 | 1972 | 128 | 281 | 0 | 28 | 63 | 150 | 0 |
4 | 1972 | 71 | 281 | 0 | 32 | 60 | 117 | 1 |
5 | 1972 | 99 | 313 | 1 | 34 | 59 | 100 | 1 |
6 | 1972 | 126 | 262 | 0 | 37 | 66 | 135 | 1 |
7 | 1972 | 127 | 290 | 0 | 27 | 65 | 121 | 0 |
8 | 1972 | 65 | 232 | 0 | 24 | 66 | 125 | 1 |
1 | 1973 | 108 | 283 | 0 | 31 | 65 | 148 | 1 |
2 | 1973 | 124 | 275 | 0 | 28 | 61 | 116 | 0 |
3 | 1973 | 139 | 285 | 0 | 30 | 65 | 129 | 1 |
4 | 1973 | 124 | 292 | 0 | 29 | 68 | 176 | 1 |
5 | 1973 | 115 | 290 | 0 | 30 | 64 | 140 | 1 |
6 | 1973 | 98 | 278 | 0 | 27 | 63 | 110 | 1 |
7 | 1973 | 132 | 270 | 0 | 27 | 65 | 126 | 0 |
8 | 1973 | 118 | 279 | 1 | 21 | 64 | 108 | 0 |
1 | 1974 | 102 | 282 | 0 | 28 | 61 | 110 | 0 |
2 | 1974 | 112 | 292 | 1 | 28 | 62 | 110 | 1 |
3 | 1974 | 104 | 288 | 1 | 27 | 61 | 122 | 1 |
4 | 1974 | 106 | 276 | 0 | 30 | 66 | 130 | 0 |
5 | 1974 | 145 | 290 | 1 | 24 | 67 | 125 | 0 |
6 | 1974 | 96 | 241 | 0 | 23 | 64 | 130 | 1 |
7 | 1974 | 113 | 275 | 1 | 27 | 60 | 100 | 0 |
8 | 1974 | 102 | 283 | 0 | 39 | 60 | 119 | 0 |
1 | 1975 | 143 | 286 | 0 | 31 | 64 | 126 | 0 |
2 | 1975 | 115 | 281 | 0 | 28 | 61 | 128 | 1 |
3 | 1975 | 159 | 296 | 1 | 27 | 64 | 112 | 0 |
4 | 1975 | 101 | 278 | 0 | 25 | 62 | 112 | 1 |
5 | 1975 | 102 | 249 | 1 | 23 | 67 | 134 | 1 |
6 | 1975 | 104 | 282 | 0 | 24 | 63 | 144 | 0 |
7 | 1975 | 128 | 265 | 0 | 24 | 67 | 120 | 0 |
8 | 1975 | 120 | 280 | 0 | 24 | 61 | 118 | 0 |
1 | 1976 | 146 | 267 | 0 | 30 | 67 | 132 | 0 |
2 | 1976 | 72 | 271 | 0 | 39 | 61 | 136 | 0 |
3 | 1976 | 118 | 276 | 0 | 29 | 62 | 130 | 1 |
4 | 1976 | 100 | 277 | 0 | 31 | 62 | 100 | 1 |
5 | 1976 | 136 | 299 | 0 | 29 | 64 | 115 | 0 |
6 | 1976 | 133 | 273 | 1 | 33 | 63 | 135 | 0 |
7 | 1976 | 130 | 291 | 0 | 30 | 65 | 150 | 1 |
8 | 1976 | 108 | 270 | 1 | 21 | 65 | 130 | 1 |
1 | 1977 | 124 | 275 | 0 | 22 | 60 | 130 | 0 |
2 | 1977 | 122 | 281 | 1 | 24 | 65 | 137 | 1 |
3 | 1977 | 99 | 285 | 0 | 25 | 69 | 128 | 1 |
4 | 1977 | 104 | 269 | 0 | 35 | 63 | 110 | 1 |
5 | 1977 | 121 | 282 | 0 | 22 | 66 | 133 | 0 |
6 | 1977 | 93 | 267 | 0 | 25 | 63 | 135 | 1 |
7 | 1977 | 125 | 281 | 1 | 21 | 65 | 110 | 0 |
8 | 1977 | 122 | 280 | 1 | 45 | 62 | 128 | 0 |
1 | 1978 | 124 | 278 | 0 | 26 | 70 | 145 | 1 |
2 | 1978 | 116 | 291 | 0 | 26 | 66 | 153 | 0 |
3 | 1978 | 144 | 281 | 0 | 20 | 63 | 120 | 0 |
4 | 1978 | 117 | 270 | 0 | 24 | 67 | 135 | 1 |
5 | 1978 | 120 | 286 | 0 | 25 | 62 | 105 | 0 |
6 | 1978 | 101 | 280 | 1 | 24 | 65 | 123 | 1 |
7 | 1978 | 117 | 297 | 0 | 38 | 65 | 129 | 0 |
8 | 1978 | 103 | 268 | 0 | 32 | 62 | 97 | 1 |
1 | 1979 | 145 | 257 | 0 | 33 | 65 | 140 | 0 |
2 | 1979 | 127 | 272 | 0 | 20 | 64 | 130 | 1 |
3 | 1979 | 121 | 270 | 0 | 25 | 62 | 108 | 1 |
4 | 1979 | 117 | 267 | 0 | 29 | 65 | 120 | 1 |
5 | 1979 | 118 | 261 | 0 | 26 | 60 | 104 | 0 |
6 | 1979 | 118 | 277 | 0 | 21 | 64 | 155 | 0 |
7 | 1979 | 141 | 277 | 0 | 38 | 66 | 162 | 0 |
8 | 1979 | 105 | 312 | 0 | 41 | 61 | 115 | 1 |
1 | 1980 | 106 | 273 | 0 | 28 | 60 | 116 | 0 |
2 | 1980 | 90 | 266 | 0 | 23 | 61 | 99 | 1 |
3 | 1980 | 117 | 265 | 1 | 24 | 66 | 98 | 0 |
4 | 1980 | 149 | 279 | 0 | 25 | 67 | 135 | 0 |
5 | 1980 | 127 | 304 | 1 | 26 | 62 | 105 | 0 |
6 | 1980 | 130 | 289 | 0 | 21 | 61 | 130 | 1 |
7 | 1980 | 130 | 270 | 1 | 19 | 66 | 130 | 0 |
8 | 1980 | 126 | 273 | 1 | 25 | 68 | 135 | 0 |
1 | 1981 | 75 | 232 | 0 | 33 | 61 | 110 | 0 |
2 | 1981 | 99 | 273 | 1 | 27 | 59 | 115 | 0 |
3 | 1981 | 119 | 293 | 1 | 23 | 65 | 127 | 0 |
4 | 1981 | 135 | 284 | 0 | 25 | 66 | 123 | 0 |
5 | 1981 | 132 | 281 | 1 | 24 | 63 | 117 | 0 |
6 | 1981 | 125 | 288 | 0 | 22 | 63 | 128 | 1 |
7 | 1981 | 139 | 299 | 1 | 20 | 67 | 112 | 0 |
8 | 1981 | 145 | 316 | 0 | 22 | 67 | 142 | 0 |
1 | 1982 | 107 | 273 | 0 | 24 | 61 | 96 | 0 |
2 | 1982 | 144 | 307 | 1 | 26 | 66 | 125 | 0 |
3 | 1982 | 105 | 281 | 1 | 19 | 61 | 130 | 0 |
4 | 1982 | 110 | 283 | 1 | 21 | 66 | 129 | 0 |
5 | 1982 | 102 | 258 | 1 | 22 | 65 | 135 | 0 |
6 | 1982 | 140 | 291 | 1 | 19 | 65 | 122 | 0 |
7 | 1982 | 130 | 283 | 0 | 32 | 65 | 118 | 0 |
8 | 1982 | 139 | 293 | 0 | 34 | 66 | 131 | 0 |
1 | 1983 | 124 | 288 | 0 | 22 | 67 | 118 | 0 |
2 | 1983 | 138 | 280 | 1 | 30 | 65 | 175 | 0 |
3 | 1983 | 125 | 283 | 0 | 37 | 63 | 145 | 1 |
4 | 1983 | 121 | 276 | 0 | 31 | 67 | 130 | 0 |
5 | 1983 | 143 | 279 | 0 | 39 | 65 | 129 | 1 |
6 | 1983 | 115 | 290 | 1 | 19 | 65 | 118 | 0 |
7 | 1983 | 113 | 289 | 1 | 26 | 59 | 91 | 0 |
8 | 1983 | 124 | 290 | 0 | 26 | 65 | 165 | 0 |
1 | 1984 | 122 | 280 | 0 | 23 | 65 | 125 | 1 |
2 | 1984 | 58 | 245 | 0 | 34 | 64 | 156 | 1 |
3 | 1984 | 119 | 259 | 0 | 37 | 62 | 130 | 0 |
4 | 1984 | 142 | 285 | 1 | 24 | 66 | 136 | 0 |
5 | 1984 | 118 | 277 | 0 | 25 | 62 | 120 | 0 |
6 | 1984 | 130 | 293 | 0 | 26 | 63 | 123 | 0 |
7 | 1984 | 77 | 238 | 1 | 23 | 63 | 103 | 1 |
8 | 1984 | 121 | 282 | 0 | 30 | 65 | 122 | 0 |
1 | 1985 | 101 | 245 | 0 | 23 | 63 | 130 | 1 |
2 | 1985 | 109 | 265 | 1 | 24 | 63 | 107 | 1 |
3 | 1985 | 101 | 273 | 0 | 39 | 60 | 113 | 0 |
4 | 1985 | 104 | 260 | 0 | 33 | 64 | 145 | 0 |
5 | 1985 | 102 | 286 | 1 | 22 | 64 | 140 | 0 |
6 | 1985 | 114 | 277 | 1 | 31 | 64 | 125 | 0 |
7 | 1985 | 62 | 228 | 0 | 24 | 61 | 107 | 0 |
8 | 1985 | 126 | 299 | 1 | 21 | 60 | 114 | 0 |
1 | 1986 | 128 | 283 | 0 | 28 | 63 | 125 | 1 |
2 | 1986 | 110 | 277 | 1 | 19 | 62 | 160 | 0 |
3 | 1986 | 105 | 277 | 1 | 25 | 64 | 156 | 0 |
4 | 1986 | 138 | 296 | 0 | 34 | 66 | 120 | 0 |
5 | 1986 | 163 | 280 | 0 | 35 | 69 | 139 | 0 |
6 | 1986 | 105 | 278 | 0 | 21 | 64 | 120 | 0 |
7 | 1986 | 93 | 245 | 0 | 33 | 61 | 100 | 1 |
8 | 1986 | 119 | 286 | 1 | 33 | 67 | 137 | 0 |
1 | 1987 | 104 | 282 | 0 | 36 | 65 | 115 | 1 |
2 | 1987 | 129 | 278 | 0 | 27 | 63 | 128 | 0 |
3 | 1987 | 110 | 281 | 0 | 27 | 60 | 110 | 0 |
4 | 1987 | 112 | 278 | 1 | 21 | 63 | 120 | 0 |
5 | 1987 | 132 | 294 | 0 | 32 | 64 | 116 | 0 |
6 | 1987 | 101 | 289 | 1 | 31 | 60 | 125 | 0 |
7 | 1987 | 109 | 275 | 1 | 37 | 63 | 112 | 1 |
8 | 1987 | 114 | 277 | 1 | 19 | 63 | 107 | 0 |
1 | 1988 | 97 | 246 | 0 | 37 | 63 | 150 | 0 |
2 | 1988 | 150 | 284 | 0 | 40 | 67 | 130 | 0 |
3 | 1988 | 100 | 270 | 1 | 21 | 65 | 132 | 1 |
4 | 1988 | 117 | 293 | 0 | 39 | 60 | 120 | 1 |
5 | 1988 | 116 | 276 | 0 | 33 | 61 | 180 | 0 |
6 | 1988 | 132 | 286 | 0 | 26 | 67 | 122 | 1 |
7 | 1988 | 145 | 283 | 0 | 27 | 65 | 125 | 1 |
8 | 1988 | 118 | 272 | 0 | 23 | 64 | 113 | 0 |
1 | 1989 | 137 | 274 | 0 | 26 | 69 | 137 | 1 |
2 | 1989 | 128 | 279 | 0 | 27 | 66 | 135 | 0 |
3 | 1989 | 98 | 284 | 0 | 29 | 68 | 140 | 0 |
4 | 1989 | 109 | 282 | 0 | 25 | 62 | 106 | 1 |
5 | 1989 | 138 | 288 | 1 | 19 | 66 | 124 | 0 |
6 | 1989 | 112 | 252 | 0 | 37 | 64 | 162 | 0 |
7 | 1989 | 92 | 224 | 0 | 19 | 63 | 134 | 1 |
8 | 1989 | 127 | 295 | 0 | 36 | 65 | 145 | 0 |
1 | 1990 | 103 | 273 | 0 | 31 | 63 | 170 | 1 |
2 | 1990 | 142 | 284 | 1 | 31 | 66 | 137 | 1 |
3 | 1990 | 127 | 276 | 0 | 37 | 64 | 159 | 0 |
4 | 1990 | 131 | 266 | 1 | 28 | 67 | 135 | 0 |
5 | 1990 | 139 | 279 | 0 | 20 | 64 | 143 | 0 |
6 | 1990 | 69 | 232 | 0 | 31 | 59 | 103 | 1 |
7 | 1990 | 120 | 281 | 0 | 26 | 61 | 115 | 0 |
8 | 1990 | 117 | 290 | 1 | 22 | 67 | 110 | 0 |
1 | 1991 | 142 | 276 | 0 | 38 | 63 | 170 | 0 |
2 | 1991 | 115 | 268 | 1 | 31 | 64 | 125 | 0 |
3 | 1991 | 117 | 324 | 0 | 22 | 62 | 164 | 1 |
4 | 1991 | 120 | 273 | 0 | 29 | 64 | 130 | 1 |
5 | 1991 | 132 | 298 | 1 | 23 | 61 | 137 | 0 |
6 | 1991 | 114 | 264 | 0 | 26 | 63 | 110 | 1 |
7 | 1991 | 135 | 284 | 0 | 39 | 67 | 141 | 0 |
8 | 1991 | 137 | 277 | 0 | 41 | 65 | 126 | 0 |
1 | 1992 | 130 | 289 | 0 | 27 | 66 | 130 | 0 |
2 | 1992 | 108 | 283 | 0 | 35 | 62 | 108 | 0 |
3 | 1992 | 122 | 278 | 0 | 37 | 68 | 114 | 0 |
4 | 1992 | 116 | 270 | 0 | 29 | 63 | 132 | 0 |
5 | 1992 | 87 | 282 | 0 | 27 | 63 | 104 | 1 |
6 | 1992 | 123 | 267 | 0 | 29 | 63 | 111 | 1 |
7 | 1992 | 113 | 287 | 0 | 36 | 63 | 118 | 0 |
8 | 1992 | 133 | 292 | 0 | 29 | 65 | 135 | 0 |
1 | 1993 | 156 | 292 | 0 | 26 | 63 | 118 | 0 |
2 | 1993 | 139 | 281 | 0 | 27 | 63 | 137 | 0 |
3 | 1993 | 122 | 273 | 1 | 23 | 64 | 130 | 1 |
4 | 1993 | 140 | 290 | 0 | 23 | 65 | 110 | 0 |
5 | 1993 | 131 | 297 | 0 | 30 | 67 | 132 | 0 |
6 | 1993 | 129 | 284 | 1 | 20 | 66 | 130 | 1 |
7 | 1993 | 126 | 251 | 1 | 28 | 64 | 123 | 0 |
8 | 1993 | 100 | 264 | 0 | 28 | 60 | 111 | 1 |
1 | 1994 | 133 | 284 | 0 | 25 | 66 | 125 | 1 |
2 | 1994 | 115 | 275 | 0 | 25 | 61 | 155 | 1 |
3 | 1994 | 118 | 281 | 1 | 36 | 66 | 140 | 1 |
4 | 1994 | 103 | 273 | 1 | 22 | 64 | 110 | 1 |
5 | 1994 | 130 | 282 | 0 | 26 | 67 | 147 | 1 |
6 | 1994 | 114 | 283 | 1 | 15 | 64 | 117 | 1 |
7 | 1994 | 143 | 270 | 1 | 27 | 70 | 148 | 0 |
8 | 1994 | 107 | 273 | 1 | 26 | 65 | 135 | 0 |
1 | 1995 | 120 | 274 | 0 | 24 | 62 | 120 | 0 |
2 | 1995 | 136 | 288 | 0 | 23 | 62 | 217 | 0 |
3 | 1995 | 137 | 303 | 1 | 23 | 66 | 127 | 1 |
4 | 1995 | 120 | 279 | 1 | 23 | 67 | 135 | 0 |
5 | 1995 | 123 | 290 | 0 | 28 | 66 | 107 | 1 |
6 | 1995 | 115 | 290 | 0 | 31 | 62 | 95 | 0 |
7 | 1995 | 128 | 282 | 1 | 25 | 64 | 125 | 0 |
8 | 1995 | 115 | 276 | 1 | 20 | 62 | 105 | 1 |
1 | 1996 | 91 | 270 | 0 | 24 | 60 | 149 | 1 |
2 | 1996 | 163 | 289 | 1 | 25 | 64 | 126 | 1 |
3 | 1996 | 120 | 275 | 0 | 32 | 63 | 115 | 1 |
4 | 1996 | 139 | 260 | 1 | 32 | 64 | 127 | 0 |
5 | 1996 | 115 | 276 | 1 | 18 | 63 | 110 | 0 |
6 | 1996 | 98 | 272 | 1 | 35 | 64 | 129 | 0 |
7 | 1996 | 98 | 262 | 0 | 22 | 67 | 120 | 0 |
8 | 1996 | 91 | 292 | 1 | 26 | 61 | 113 | 1 |
1 | 1997 | 127 | 274 | 0 | 21 | 62 | 110 | 0 |
2 | 1997 | 131 | 285 | 0 | 26 | 64 | 130 | 0 |
3 | 1997 | 143 | 285 | 0 | 27 | 68 | 185 | 0 |
4 | 1997 | 123 | 254 | 0 | 26 | 62 | 130 | 1 |
5 | 1997 | 116 | 272 | 0 | 27 | 64 | 130 | 1 |
6 | 1997 | 128 | 283 | 0 | 27 | 67 | 126 | 0 |
7 | 1997 | 110 | 306 | 1 | 32 | 61 | 122 | 0 |
8 | 1997 | 112 | 287 | 0 | 27 | 64 | 110 | 1 |
1 | 1998 | 153 | 286 | 0 | 26 | 63 | 107 | 1 |
2 | 1998 | 77 | 238 | 0 | 38 | 67 | 135 | 1 |
3 | 1998 | 108 | 270 | 0 | 29 | 67 | 124 | 1 |
4 | 1998 | 104 | 280 | 1 | 23 | 64 | 107 | 1 |
5 | 1998 | 119 | 286 | 1 | 20 | 67 | 130 | 0 |
6 | 1998 | 119 | 271 | 0 | 28 | 64 | 175 | 1 |
7 | 1998 | 162 | 284 | 0 | 27 | 64 | 126 | 0 |
8 | 1998 | 125 | 289 | 1 | 31 | 61 | 120 | 0 |
1 | 1999 | 121 | 276 | 0 | 39 | 63 | 130 | 0 |
2 | 1999 | 124 | 283 | 1 | 33 | 67 | 156 | 1 |
3 | 1999 | 131 | 284 | 1 | 19 | 61 | 114 | 1 |
4 | 1999 | 111 | 270 | 0 | 22 | 59 | 103 | 0 |
5 | 1999 | 125 | 279 | 1 | 19 | 67 | 135 | 0 |
6 | 1999 | 154 | 288 | 0 | 25 | 65 | 147 | 0 |
7 | 1999 | 116 | 292 | 1 | 20 | 65 | 118 | 0 |
8 | 1999 | 157 | 291 | 0 | 33 | 65 | 121 | 0 |
1 | 2000 | 120 | 277 | 0 | 27 | 63 | 126 | 0 |
2 | 2000 | 104 | 270 | 1 | 26 | 62 | 115 | 0 |
3 | 2000 | 110 | 277 | 0 | 36 | 61 | 116 | 0 |
4 | 2000 | 122 | 277 | 0 | 32 | 63 | 157 | 1 |
5 | 2000 | 144 | 282 | 0 | 33 | 66 | 155 | 1 |
6 | 2000 | 127 | 247 | 1 | 21 | 63 | 140 | 0 |
7 | 2000 | 128 | 284 | 0 | 23 | 62 | 110 | 0 |
8 | 2000 | 108 | 256 | 1 | 26 | 67 | 130 | 0 |
1 | 2001 | 99 | 272 | 0 | 27 | 62 | 103 | 1 |
2 | 2001 | 102 | 267 | 1 | 24 | 61 | 109 | 1 |
3 | 2001 | 105 | 276 | 0 | 20 | 62 | 112 | 1 |
4 | 2001 | 116 | 271 | 1 | 30 | 67 | 144 | 1 |
5 | 2001 | 123 | 269 | 0 | 26 | 67 | 132 | 0 |
6 | 2001 | 131 | 263 | 0 | 29 | 64 | 180 | 1 |
7 | 2001 | 111 | 275 | 1 | 18 | 61 | 108 | 1 |
8 | 2001 | 130 | 279 | 0 | 31 | 62 | 122 | 0 |
1 | 2002 | 149 | 293 | 0 | 35 | 65 | 116 | 0 |
2 | 2002 | 94 | 268 | 0 | 30 | 62 | 105 | 1 |
3 | 2002 | 125 | 255 | 0 | 23 | 63 | 133 | 0 |
4 | 2002 | 129 | 277 | 0 | 27 | 68 | 130 | 1 |
5 | 2002 | 120 | 276 | 0 | 23 | 66 | 114 | 0 |
6 | 2002 | 129 | 288 | 0 | 28 | 59 | 102 | 0 |
7 | 2002 | 137 | 280 | 0 | 34 | 60 | 107 | 0 |
8 | 2002 | 135 | 289 | 0 | 25 | 64 | 127 | 0 |
1 | 2003 | 129 | 280 | 0 | 23 | 64 | 104 | 0 |
2 | 2003 | 158 | 295 | 1 | 37 | 70 | 137 | 0 |
3 | 2003 | 78 | 258 | 1 | 24 | 66 | 115 | 1 |
4 | 2003 | 133 | 292 | 0 | 30 | 65 | 112 | 1 |
5 | 2003 | 140 | 251 | 0 | 28 | 63 | 210 | 0 |
6 | 2003 | 114 | 286 | 1 | 22 | 64 | 116 | 1 |
7 | 2003 | 100 | 264 | 0 | 29 | 64 | 120 | 1 |
8 | 2003 | 123 | 277 | 0 | 24 | 66 | 122 | 0 |
1 | 2004 | 139 | 292 | 0 | 25 | 68 | 135 | 0 |
2 | 2004 | 112 | 275 | 1 | 21 | 68 | 143 | 1 |
3 | 2004 | 114 | 289 | 0 | 36 | 60 | 115 | 0 |
4 | 2004 | 110 | 277 | 0 | 25 | 61 | 130 | 0 |
5 | 2004 | 120 | 271 | 1 | 17 | 64 | 142 | 1 |
6 | 2004 | 110 | 280 | 0 | 29 | 62 | 110 | 1 |
7 | 2004 | 160 | 271 | 0 | 32 | 67 | 215 | 0 |
8 | 2004 | 100 | 281 | 0 | 24 | 61 | 115 | 0 |
is.data.frame(vy1) #kiểm tra "vy1" có phải là data frame không, nếu đúng thì true và ngược lại
## [1] TRUE
length(vy1) #cho ra số biến của "vy1"
## [1] 9
names(vy1) #cho ra tên các biến của "vy1"
## [1] "id" "year" "bwt" "gestation" "parity" "age"
## [7] "height" "weight" "smoke"
dim(vy1) #cho ra số quan sát và số biến của "vy1"
## [1] 640 9
sum(is.na(vy1)) #cho ra tổng số object của "vy1"
## [1] 0
library(skimr)
skim(vy1)
Name | vy1 |
Number of rows | 640 |
Number of columns | 9 |
_______________________ | |
Column type frequency: | |
numeric | 9 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
id | 0 | 1 | 4.50 | 2.29 | 1 | 2.75 | 4.5 | 6.25 | 8 | ▇▃▇▃▇ |
year | 0 | 1 | 1964.50 | 23.11 | 1925 | 1944.75 | 1964.5 | 1984.25 | 2004 | ▇▇▇▇▇ |
bwt | 0 | 1 | 118.89 | 18.14 | 55 | 107.75 | 120.0 | 131.00 | 169 | ▁▂▇▆▁ |
gestation | 0 | 1 | 279.33 | 15.80 | 181 | 273.00 | 280.0 | 288.00 | 351 | ▁▁▇▅▁ |
parity | 0 | 1 | 0.31 | 0.46 | 0 | 0.00 | 0.0 | 1.00 | 1 | ▇▁▁▁▃ |
age | 0 | 1 | 27.28 | 5.86 | 15 | 23.00 | 26.0 | 31.00 | 45 | ▃▇▅▂▁ |
height | 0 | 1 | 64.10 | 2.50 | 53 | 62.00 | 64.0 | 66.00 | 71 | ▁▁▅▇▁ |
weight | 0 | 1 | 128.22 | 19.49 | 87 | 115.00 | 126.0 | 137.00 | 217 | ▃▇▃▁▁ |
smoke | 0 | 1 | 0.40 | 0.49 | 0 | 0.00 | 0.0 | 1.00 | 1 | ▇▁▁▁▆ |
Mô tả
head(vy1,28) #lấy 28 dòng đầu từ "vy1"
## id year bwt gestation parity age height weight smoke
## 1 1 1925 120 284 0 27 62 100 0
## 2 2 1925 112 267 1 22 62 138 0
## 3 3 1925 119 286 0 26 64 123 1
## 4 4 1925 124 287 0 27 62 105 1
## 5 5 1925 105 276 0 22 67 130 0
## 6 6 1925 120 289 1 31 59 102 0
## 7 7 1925 82 274 0 31 64 101 1
## 8 8 1925 111 278 0 29 65 145 1
## 9 1 1926 113 282 0 33 64 135 0
## 10 2 1926 134 297 0 27 67 170 1
## 11 3 1926 97 279 0 29 68 178 1
## 12 4 1926 125 292 0 22 65 122 0
## 13 5 1926 93 246 0 37 65 130 0
## 14 6 1926 146 280 0 23 61 145 0
## 15 7 1926 100 274 0 24 63 113 0
## 16 8 1926 103 250 0 40 59 140 0
## 17 1 1927 128 279 0 28 64 115 1
## 18 2 1927 145 308 0 35 64 110 1
## 19 3 1927 99 252 0 21 64 120 0
## 20 4 1927 110 262 0 25 66 140 0
## 21 5 1927 122 281 0 42 63 103 1
## 22 6 1927 112 283 1 21 62 102 1
## 23 7 1927 114 271 0 32 61 130 0
## 24 8 1927 114 276 0 26 62 127 0
## 25 1 1928 108 282 0 23 67 125 1
## 26 2 1928 116 295 0 32 65 120 0
## 27 3 1928 115 264 1 23 67 134 1
## 28 4 1928 125 279 0 23 63 104 1
tail(vy1,28) #lấy 28 dòng cuối từ "vy1"
## id year bwt gestation parity age height weight smoke
## 613 5 2001 123 269 0 26 67 132 0
## 614 6 2001 131 263 0 29 64 180 1
## 615 7 2001 111 275 1 18 61 108 1
## 616 8 2001 130 279 0 31 62 122 0
## 617 1 2002 149 293 0 35 65 116 0
## 618 2 2002 94 268 0 30 62 105 1
## 619 3 2002 125 255 0 23 63 133 0
## 620 4 2002 129 277 0 27 68 130 1
## 621 5 2002 120 276 0 23 66 114 0
## 622 6 2002 129 288 0 28 59 102 0
## 623 7 2002 137 280 0 34 60 107 0
## 624 8 2002 135 289 0 25 64 127 0
## 625 1 2003 129 280 0 23 64 104 0
## 626 2 2003 158 295 1 37 70 137 0
## 627 3 2003 78 258 1 24 66 115 1
## 628 4 2003 133 292 0 30 65 112 1
## 629 5 2003 140 251 0 28 63 210 0
## 630 6 2003 114 286 1 22 64 116 1
## 631 7 2003 100 264 0 29 64 120 1
## 632 8 2003 123 277 0 24 66 122 0
## 633 1 2004 139 292 0 25 68 135 0
## 634 2 2004 112 275 1 21 68 143 1
## 635 3 2004 114 289 0 36 60 115 0
## 636 4 2004 110 277 0 25 61 130 0
## 637 5 2004 120 271 1 17 64 142 1
## 638 6 2004 110 280 0 29 62 110 1
## 639 7 2004 160 271 0 32 67 215 0
## 640 8 2004 100 281 0 24 61 115 0
is.na(vy1) # tìm ô không có dữ liệu trong "vy1", nếu "False" là có dữ liệu và ngược lại
## id year bwt gestation parity age height weight smoke
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 14 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 16 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 17 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 18 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 19 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 20 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 27 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 28 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 29 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 30 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 31 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 32 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 38 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 40 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 42 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 43 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 44 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 51 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 52 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 53 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 54 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 55 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 56 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 57 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 58 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 59 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 60 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 61 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 62 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 63 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 64 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 65 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 66 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 67 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 68 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 69 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 70 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 71 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 72 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 73 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 74 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 75 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 76 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 77 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 78 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 79 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 80 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 81 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 82 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 83 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 84 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 85 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 86 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 87 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 88 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 89 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 90 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 91 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 92 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 93 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 94 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 95 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 96 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 97 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 98 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 99 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 100 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 101 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 102 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 103 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 104 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 105 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 106 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 107 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 108 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 109 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 110 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 111 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 112 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 113 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 114 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 115 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 116 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 117 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 118 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 119 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 120 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 121 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 122 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 123 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 124 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 125 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 126 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 127 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 128 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 129 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 130 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 131 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 132 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 133 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 134 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 135 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 136 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 137 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 138 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 139 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 140 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 141 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 142 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 143 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 144 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 145 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 146 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 147 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 148 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 149 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 150 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 151 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 152 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 153 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 154 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 155 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 156 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 157 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 158 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 159 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 160 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 161 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 162 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 163 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 164 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 165 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 166 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 167 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 168 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 169 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 170 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 171 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 172 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 173 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 174 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 175 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 176 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 177 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 178 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 179 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 180 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 181 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 182 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 183 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 184 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 185 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 186 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 187 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 188 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 189 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 190 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 191 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 192 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 193 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 194 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 195 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 196 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 197 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 198 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 199 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 200 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 201 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 202 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 203 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 204 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 205 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 206 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 207 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 208 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 209 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 210 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 211 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 212 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 213 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 214 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 215 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 216 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 217 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 218 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 219 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 220 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 221 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 222 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 223 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 224 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 225 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 226 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 227 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 228 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 229 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 230 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 231 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 232 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 233 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 234 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 235 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 236 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 237 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 238 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 239 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 240 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 241 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 242 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 243 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 244 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 245 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 246 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 247 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 248 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 249 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 250 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 251 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 252 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 253 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 254 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 255 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 256 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 257 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 258 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 259 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 260 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 261 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 262 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 263 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 264 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 265 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 266 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 267 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 268 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 269 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 270 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 271 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 272 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 273 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 274 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 275 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 276 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 277 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 278 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 279 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 280 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 281 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 282 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 283 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 284 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 285 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 286 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 287 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 288 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 289 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 290 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 291 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 292 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 293 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 294 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 295 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 296 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 297 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 298 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 299 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 300 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 301 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 302 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 303 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 304 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 305 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 306 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 307 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 308 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 309 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 310 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 311 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 312 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 313 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 314 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 315 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 316 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 317 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 318 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 319 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 320 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 321 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 322 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 323 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 324 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 325 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 326 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 327 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 328 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 329 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 330 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 331 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 332 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 333 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 334 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 335 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 336 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 337 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 338 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 339 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 340 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 341 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 342 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 343 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 344 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 345 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 346 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 347 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 348 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 349 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 350 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 351 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 352 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 353 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 354 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 355 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 356 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 357 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 358 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 359 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 360 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 361 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 362 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 363 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 364 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 365 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 366 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 367 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 368 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 369 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 370 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 371 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 372 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 373 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 374 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 375 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 376 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 377 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 378 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 379 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 380 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 381 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 382 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 383 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 384 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 385 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 386 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 387 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 388 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 389 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 390 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 391 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 392 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 393 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 394 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 395 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 396 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 397 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 398 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 399 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 400 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 401 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 402 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 403 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 404 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 405 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 406 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 407 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 408 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 409 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 410 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 411 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 412 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 413 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 414 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 415 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 416 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 417 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 418 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 419 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 420 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 421 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 422 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 423 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 424 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 425 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 426 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 427 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 428 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 429 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 430 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 431 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 432 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 433 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 434 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 435 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 436 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 437 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 438 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 439 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 440 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 441 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 442 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 443 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 444 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 445 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 446 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 447 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 448 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 449 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 450 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 451 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 452 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 453 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 454 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 455 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 456 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 457 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 458 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 459 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 460 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 461 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 462 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 463 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 464 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 465 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 466 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 467 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 468 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 469 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 470 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 471 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 472 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 473 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 474 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 475 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 476 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 477 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 478 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 479 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 480 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 481 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 482 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 483 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 484 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 485 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 486 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 487 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 488 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 489 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 490 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 491 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 492 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 493 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 494 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 495 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 496 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 497 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 498 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 499 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 500 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 501 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 502 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 503 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 504 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 505 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 506 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 507 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 508 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 509 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 510 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 511 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 512 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 513 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 514 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 515 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 516 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 517 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 518 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 519 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 520 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 521 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 522 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 523 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 524 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 525 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 526 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 527 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 528 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 529 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 530 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 531 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 532 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 533 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 534 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 535 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 536 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 537 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 538 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 539 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 540 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 541 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 542 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 543 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 544 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 545 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 546 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 547 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 548 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 549 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 550 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 551 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 552 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 553 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 554 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 555 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 556 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 557 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 558 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 559 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 560 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 561 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 562 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 563 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 564 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 565 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 566 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 567 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 568 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 569 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 570 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 571 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 572 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 573 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 574 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 575 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 576 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 577 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 578 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 579 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 580 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 581 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 582 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 583 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 584 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 585 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 586 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 587 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 588 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 589 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 590 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 591 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 592 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 593 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 594 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 595 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 596 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 597 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 598 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 599 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 600 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 601 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 602 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 603 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 604 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 605 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 606 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 607 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 608 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 609 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 610 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 611 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 612 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 613 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 614 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 615 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 616 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 617 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 618 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 619 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 620 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 621 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 622 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 623 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 624 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 625 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 626 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 627 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 628 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 629 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 630 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 631 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 632 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 633 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 634 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 635 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 636 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 637 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 638 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 639 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 640 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
sum(is.na(vy1)) # cho biết tổng số ô trống trong "vy1'
## [1] 0
which(is.na(vy1)) # cho biết vị trí ô trống trong "vy1"
## integer(0)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
vy <- unique(vy1) #lấy lượng biến của "vy1"
str(vy)
## 'data.frame': 640 obs. of 9 variables:
## $ id : num 1 2 3 4 5 6 7 8 1 2 ...
## $ year : num 1925 1925 1925 1925 1925 ...
## $ bwt : num 120 112 119 124 105 120 82 111 113 134 ...
## $ gestation: num 284 267 286 287 276 289 274 278 282 297 ...
## $ parity : num 0 1 0 0 0 1 0 0 0 0 ...
## $ age : num 27 22 26 27 22 31 31 29 33 27 ...
## $ height : num 62 62 64 62 67 59 64 65 64 67 ...
## $ weight : num 100 138 123 105 130 102 101 145 135 170 ...
## $ smoke : num 0 0 1 1 0 0 1 1 0 1 ...
vyy <- distinct(vy1) #Loại bỏ trung lắp trong "vy1"
str(vyy)
## 'data.frame': 640 obs. of 9 variables:
## $ id : num 1 2 3 4 5 6 7 8 1 2 ...
## $ year : num 1925 1925 1925 1925 1925 ...
## $ bwt : num 120 112 119 124 105 120 82 111 113 134 ...
## $ gestation: num 284 267 286 287 276 289 274 278 282 297 ...
## $ parity : num 0 1 0 0 0 1 0 0 0 0 ...
## $ age : num 27 22 26 27 22 31 31 29 33 27 ...
## $ height : num 62 62 64 62 67 59 64 65 64 67 ...
## $ weight : num 100 138 123 105 130 102 101 145 135 170 ...
## $ smoke : num 0 0 1 1 0 0 1 1 0 1 ...
Mục đích của việc rút trích dữ liệu là để thu được những trường thông tin cần thiết nhằm phục vụ cho các mục tác vụ phân tích hoặc lưu trữ.
names(vy1) <- c("i", "y","b","g","p","a","h","w","s")
names(vy1)
## [1] "i" "y" "b" "g" "p" "a" "h" "w" "s"
vy2 <- vy1[5,3] #gán "vy2" là giá trị quan sát 5, biến 3
str(vy2)
## num 105
vy3 <- vy1[1:5,4] # lấy giá trị 5 hàng đầu tiên biến "g"
str(vy3)
## num [1:5] 284 267 286 287 276
vy4 <- vy1[c(1,2,3,4), c(3,4)] # lấy giá trị các quan sát 1,2,3,4 của biến "b" và "g"
str(vy4)
## 'data.frame': 4 obs. of 2 variables:
## $ b: num 120 112 119 124
## $ g: num 284 267 286 287
vy5 <- vy1[vy1$w >=100 & vy1$w <=108,] #Lấy giá trị những quan sát có giá trị ở biến "w" lớn hơn bằng 100 và bé hơn bằng 108
str(vy1)
## 'data.frame': 640 obs. of 9 variables:
## $ i: num 1 2 3 4 5 6 7 8 1 2 ...
## $ y: num 1925 1925 1925 1925 1925 ...
## $ b: num 120 112 119 124 105 120 82 111 113 134 ...
## $ g: num 284 267 286 287 276 289 274 278 282 297 ...
## $ p: num 0 1 0 0 0 1 0 0 0 0 ...
## $ a: num 27 22 26 27 22 31 31 29 33 27 ...
## $ h: num 62 62 64 62 67 59 64 65 64 67 ...
## $ w: num 100 138 123 105 130 102 101 145 135 170 ...
## $ s: num 0 0 1 1 0 0 1 1 0 1 ...
vy6 <- vy1[vy1$w >130,] # lấy giá trị quan sát có giá trị ở biến "w" lớn hơn 130
str(vy6)
## 'data.frame': 233 obs. of 9 variables:
## $ i: num 2 8 1 2 3 6 8 4 3 6 ...
## $ y: num 1925 1925 1926 1926 1926 ...
## $ b: num 112 111 113 134 97 146 103 110 115 132 ...
## $ g: num 267 278 282 297 279 280 250 262 264 278 ...
## $ p: num 1 0 0 0 0 0 0 0 1 0 ...
## $ a: num 22 29 33 27 29 23 40 25 23 20 ...
## $ h: num 62 65 64 67 68 61 59 66 67 64 ...
## $ w: num 138 145 135 170 178 145 140 140 134 150 ...
## $ s: num 0 1 0 1 1 0 0 0 1 1 ...
vy7 <- vy1[vy1$a == 30 | vy1$a == 40,] #lấy giá trị những quan sát ở biến "a" bằng 30 hoặc bằng 40
str(vy1)
## 'data.frame': 640 obs. of 9 variables:
## $ i: num 1 2 3 4 5 6 7 8 1 2 ...
## $ y: num 1925 1925 1925 1925 1925 ...
## $ b: num 120 112 119 124 105 120 82 111 113 134 ...
## $ g: num 284 267 286 287 276 289 274 278 282 297 ...
## $ p: num 0 1 0 0 0 1 0 0 0 0 ...
## $ a: num 27 22 26 27 22 31 31 29 33 27 ...
## $ h: num 62 62 64 62 67 59 64 65 64 67 ...
## $ w: num 100 138 123 105 130 102 101 145 135 170 ...
## $ s: num 0 0 1 1 0 0 1 1 0 1 ...
vy8 <- filter(vy1,vy1$a >= 27 & vy1$g > 290) # lấy những quan sát có tuổi của mẹ lớn hơn hoặc bằng 27 và thời gian mang thai lớn hơn 290 ngày
str(vy8)
## 'data.frame': 61 obs. of 9 variables:
## $ i: num 2 2 2 4 8 3 6 7 2 1 ...
## $ y: num 1926 1927 1928 1929 1929 ...
## $ b: num 134 145 116 138 169 144 128 152 109 143 ...
## $ g: num 297 308 295 294 296 304 292 295 291 299 ...
## $ p: num 0 0 0 0 0 1 0 0 0 0 ...
## $ a: num 27 35 32 40 33 27 32 39 39 30 ...
## $ h: num 67 64 65 64 67 58 66 62 64 66 ...
## $ w: num 170 110 120 125 185 102 130 140 107 136 ...
## $ s: num 1 1 0 0 0 1 0 0 0 1 ...
library(dplyr)
vy9 <- select(vy1,a,y,s) #chỉ lấy những biến tuổi của mẹ, năm lấy số liệu và hút thuốc lúc mang thai trong object "vy1"
str(vy9)
## 'data.frame': 640 obs. of 3 variables:
## $ a: num 27 22 26 27 22 31 31 29 33 27 ...
## $ y: num 1925 1925 1925 1925 1925 ...
## $ s: num 0 0 1 1 0 0 1 1 0 1 ...
vy10 <- filter(vy1,a < 27 & w > 170) %>% select (i,a,h) # lấy những biến khu vực, tuổi, chiều cao với điều kiện quan sát có tuổi bé hơn 27 và cân nặng lớn hơn 170 pound
str(vy10)
## 'data.frame': 5 obs. of 3 variables:
## $ i: num 2 2 1 1 2
## $ a: num 22 26 20 23 23
## $ h: num 63 66 65 63 62
Tạo ra object mới là “vyx” từ object cũ là “vy1”. Có thêm các biến mới là: - tmg: thời gian mang thai tính bằng tháng - gra: trọng lượng lúc sinh tính bằng gram - kha: khả năng mang thai ở mức 30 tuổi ( trên 30 tuổi và dưới 30 tuổi) - dukien: dự kiến thời gian sinh em bé
vyx <- mutate(vy1, tmg= g/30) %>% mutate(vy1, gra= b*28.3495) #thêm biến thời gian mang thai tính bằng tháng và trọng lượng lúc sinh tính bằng gram
str(vyx)
## 'data.frame': 640 obs. of 11 variables:
## $ i : num 1 2 3 4 5 6 7 8 1 2 ...
## $ y : num 1925 1925 1925 1925 1925 ...
## $ b : num 120 112 119 124 105 120 82 111 113 134 ...
## $ g : num 284 267 286 287 276 289 274 278 282 297 ...
## $ p : num 0 1 0 0 0 1 0 0 0 0 ...
## $ a : num 27 22 26 27 22 31 31 29 33 27 ...
## $ h : num 62 62 64 62 67 59 64 65 64 67 ...
## $ w : num 100 138 123 105 130 102 101 145 135 170 ...
## $ s : num 0 0 1 1 0 0 1 1 0 1 ...
## $ tmg: num 9.47 8.9 9.53 9.57 9.2 ...
## $ gra: num 3402 3175 3374 3515 2977 ...
vyx$kha <- ifelse(vyx$a > 30 ,'thấp', 'cao') #thêm biến xác định khả năng mang thay trong ngoài 30 tuổi
str(vyx)
## 'data.frame': 640 obs. of 12 variables:
## $ i : num 1 2 3 4 5 6 7 8 1 2 ...
## $ y : num 1925 1925 1925 1925 1925 ...
## $ b : num 120 112 119 124 105 120 82 111 113 134 ...
## $ g : num 284 267 286 287 276 289 274 278 282 297 ...
## $ p : num 0 1 0 0 0 1 0 0 0 0 ...
## $ a : num 27 22 26 27 22 31 31 29 33 27 ...
## $ h : num 62 62 64 62 67 59 64 65 64 67 ...
## $ w : num 100 138 123 105 130 102 101 145 135 170 ...
## $ s : num 0 0 1 1 0 0 1 1 0 1 ...
## $ tmg: num 9.47 8.9 9.53 9.57 9.2 ...
## $ gra: num 3402 3175 3374 3515 2977 ...
## $ kha: chr "cao" "cao" "cao" "cao" ...
vyx$dukien <- case_when(vyx$g< 266 ~ 'sớm hơn dự kiến' , vyx$g < 280 ~ 'dự kiến' , vyx$g > 280 ~ ' trễ hơn dự kiến') # thêm biến dự kiến thời gian sinh
str(vyx)
## 'data.frame': 640 obs. of 13 variables:
## $ i : num 1 2 3 4 5 6 7 8 1 2 ...
## $ y : num 1925 1925 1925 1925 1925 ...
## $ b : num 120 112 119 124 105 120 82 111 113 134 ...
## $ g : num 284 267 286 287 276 289 274 278 282 297 ...
## $ p : num 0 1 0 0 0 1 0 0 0 0 ...
## $ a : num 27 22 26 27 22 31 31 29 33 27 ...
## $ h : num 62 62 64 62 67 59 64 65 64 67 ...
## $ w : num 100 138 123 105 130 102 101 145 135 170 ...
## $ s : num 0 0 1 1 0 0 1 1 0 1 ...
## $ tmg : num 9.47 8.9 9.53 9.57 9.2 ...
## $ gra : num 3402 3175 3374 3515 2977 ...
## $ kha : chr "cao" "cao" "cao" "cao" ...
## $ dukien: chr " trễ hơn dự kiến" "dự kiến" " trễ hơn dự kiến" " trễ hơn dự kiến" ...
table(vyx$dukien) # tần số của biến dự kiến thời gian sinh
##
## trễ hơn dự kiến dự kiến sớm hơn dự kiến
## 319 217 82
stem(vyx$tmg) # biểu đồ nhánh của biến thời gian mang thai theo tháng
##
## The decimal point is at the |
##
## 6 | 0
## 6 | 8
## 7 | 4
## 7 | 5677788999
## 8 | 01112222222223333344444
## 8 | 55555555666666667777777777777777788888888888889999999999999999999999
## 9 | 00000000000000000000000000000000000001111111111111111111111111111111+208
## 9 | 55555555555555555555555555555555555555555555555555555555555555566666+121
## 10 | 00000000011111111122222222334444
## 10 | 55566788
## 11 | 03
## 11 | 7
Nhiệm vụ 2.2 thực hiện thao tác trên datasets Financial Sample Excel, là 1 dataset thống kê tình hình tài chính nổi bật của một số thị trường trên thế giới giai đoạn 2013-2014.
Datasets có 1006 quan sát và 16 biến như sau:
library(openxlsx)
navy <- read.xlsx("/Users/xuyenchi/Library/Containers/com.microsoft.Excel/Data/Downloads/R Code/Financial Sample.xlsx") #Đọc dữ liệu từ file excel
table <- knitr::kable(navy,format="markdown")
table
Segment | Country | Product | Discount.Band | Units.Sold | Manufacturing.Price | Sale.Price | Gross.Sales | Discounts | Sales | COGS | Profit | Date | Month.Number | Month.Name | Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Government | Canada | Carretera | None | 1618.5 | 3 | 20 | 32370.0 | 0.000 | 32370.000 | 16185.0 | 16185.000 | 41640 | 1 | January | 2014 |
Government | Germany | Carretera | None | 1321.0 | 3 | 20 | 26420.0 | 0.000 | 26420.000 | 13210.0 | 13210.000 | 41640 | 1 | January | 2014 |
Midmarket | France | Carretera | None | 2178.0 | 3 | 15 | 32670.0 | 0.000 | 32670.000 | 21780.0 | 10890.000 | 41791 | 6 | June | 2014 |
Midmarket | Germany | Carretera | None | 888.0 | 3 | 15 | 13320.0 | 0.000 | 13320.000 | 8880.0 | 4440.000 | 41791 | 6 | June | 2014 |
Midmarket | Mexico | Carretera | None | 2470.0 | 3 | 15 | 37050.0 | 0.000 | 37050.000 | 24700.0 | 12350.000 | 41791 | 6 | June | 2014 |
Government | Germany | Carretera | None | 1513.0 | 3 | 350 | 529550.0 | 0.000 | 529550.000 | 393380.0 | 136170.000 | 41974 | 12 | December | 2014 |
Midmarket | Germany | Montana | None | 921.0 | 5 | 15 | 13815.0 | 0.000 | 13815.000 | 9210.0 | 4605.000 | 41699 | 3 | March | 2014 |
Channel Partners | Canada | Montana | None | 2518.0 | 5 | 12 | 30216.0 | 0.000 | 30216.000 | 7554.0 | 22662.000 | 41791 | 6 | June | 2014 |
Government | France | Montana | None | 1899.0 | 5 | 20 | 37980.0 | 0.000 | 37980.000 | 18990.0 | 18990.000 | 41791 | 6 | June | 2014 |
Channel Partners | Germany | Montana | None | 1545.0 | 5 | 12 | 18540.0 | 0.000 | 18540.000 | 4635.0 | 13905.000 | 41791 | 6 | June | 2014 |
Midmarket | Mexico | Montana | None | 2470.0 | 5 | 15 | 37050.0 | 0.000 | 37050.000 | 24700.0 | 12350.000 | 41791 | 6 | June | 2014 |
Enterprise | Canada | Montana | None | 2665.5 | 5 | 125 | 333187.5 | 0.000 | 333187.500 | 319860.0 | 13327.500 | 41821 | 7 | July | 2014 |
Small Business | Mexico | Montana | None | 958.0 | 5 | 300 | 287400.0 | 0.000 | 287400.000 | 239500.0 | 47900.000 | 41852 | 8 | August | 2014 |
Government | Germany | Montana | None | 2146.0 | 5 | 7 | 15022.0 | 0.000 | 15022.000 | 10730.0 | 4292.000 | 41883 | 9 | September | 2014 |
Enterprise | Canada | Montana | None | 345.0 | 5 | 125 | 43125.0 | 0.000 | 43125.000 | 41400.0 | 1725.000 | 41548 | 10 | October | 2013 |
Midmarket | United States of America | Montana | None | 615.0 | 5 | 15 | 9225.0 | 0.000 | 9225.000 | 6150.0 | 3075.000 | 41974 | 12 | December | 2014 |
Government | Canada | Paseo | None | 292.0 | 10 | 20 | 5840.0 | 0.000 | 5840.000 | 2920.0 | 2920.000 | 41671 | 2 | February | 2014 |
Midmarket | Mexico | Paseo | None | 974.0 | 10 | 15 | 14610.0 | 0.000 | 14610.000 | 9740.0 | 4870.000 | 41671 | 2 | February | 2014 |
Channel Partners | Canada | Paseo | None | 2518.0 | 10 | 12 | 30216.0 | 0.000 | 30216.000 | 7554.0 | 22662.000 | 41791 | 6 | June | 2014 |
Government | Germany | Paseo | None | 1006.0 | 10 | 350 | 352100.0 | 0.000 | 352100.000 | 261560.0 | 90540.000 | 41791 | 6 | June | 2014 |
Channel Partners | Germany | Paseo | None | 367.0 | 10 | 12 | 4404.0 | 0.000 | 4404.000 | 1101.0 | 3303.000 | 41821 | 7 | July | 2014 |
Government | Mexico | Paseo | None | 883.0 | 10 | 7 | 6181.0 | 0.000 | 6181.000 | 4415.0 | 1766.000 | 41852 | 8 | August | 2014 |
Midmarket | France | Paseo | None | 549.0 | 10 | 15 | 8235.0 | 0.000 | 8235.000 | 5490.0 | 2745.000 | 41518 | 9 | September | 2013 |
Small Business | Mexico | Paseo | None | 788.0 | 10 | 300 | 236400.0 | 0.000 | 236400.000 | 197000.0 | 39400.000 | 41518 | 9 | September | 2013 |
Midmarket | Mexico | Paseo | None | 2472.0 | 10 | 15 | 37080.0 | 0.000 | 37080.000 | 24720.0 | 12360.000 | 41883 | 9 | September | 2014 |
Government | United States of America | Paseo | None | 1143.0 | 10 | 7 | 8001.0 | 0.000 | 8001.000 | 5715.0 | 2286.000 | 41913 | 10 | October | 2014 |
Government | Canada | Paseo | None | 1725.0 | 10 | 350 | 603750.0 | 0.000 | 603750.000 | 448500.0 | 155250.000 | 41579 | 11 | November | 2013 |
Channel Partners | United States of America | Paseo | None | 912.0 | 10 | 12 | 10944.0 | 0.000 | 10944.000 | 2736.0 | 8208.000 | 41579 | 11 | November | 2013 |
Midmarket | Canada | Paseo | None | 2152.0 | 10 | 15 | 32280.0 | 0.000 | 32280.000 | 21520.0 | 10760.000 | 41609 | 12 | December | 2013 |
Government | Canada | Paseo | None | 1817.0 | 10 | 20 | 36340.0 | 0.000 | 36340.000 | 18170.0 | 18170.000 | 41974 | 12 | December | 2014 |
Government | Germany | Paseo | None | 1513.0 | 10 | 350 | 529550.0 | 0.000 | 529550.000 | 393380.0 | 136170.000 | 41974 | 12 | December | 2014 |
Government | Mexico | Velo | None | 1493.0 | 120 | 7 | 10451.0 | 0.000 | 10451.000 | 7465.0 | 2986.000 | 41640 | 1 | January | 2014 |
Enterprise | France | Velo | None | 1804.0 | 120 | 125 | 225500.0 | 0.000 | 225500.000 | 216480.0 | 9020.000 | 41671 | 2 | February | 2014 |
Channel Partners | Germany | Velo | None | 2161.0 | 120 | 12 | 25932.0 | 0.000 | 25932.000 | 6483.0 | 19449.000 | 41699 | 3 | March | 2014 |
Government | Germany | Velo | None | 1006.0 | 120 | 350 | 352100.0 | 0.000 | 352100.000 | 261560.0 | 90540.000 | 41791 | 6 | June | 2014 |
Channel Partners | Germany | Velo | None | 1545.0 | 120 | 12 | 18540.0 | 0.000 | 18540.000 | 4635.0 | 13905.000 | 41791 | 6 | June | 2014 |
Enterprise | United States of America | Velo | None | 2821.0 | 120 | 125 | 352625.0 | 0.000 | 352625.000 | 338520.0 | 14105.000 | 41852 | 8 | August | 2014 |
Enterprise | Canada | Velo | None | 345.0 | 120 | 125 | 43125.0 | 0.000 | 43125.000 | 41400.0 | 1725.000 | 41548 | 10 | October | 2013 |
Small Business | Canada | VTT | None | 2001.0 | 250 | 300 | 600300.0 | 0.000 | 600300.000 | 500250.0 | 100050.000 | 41671 | 2 | February | 2014 |
Channel Partners | Germany | VTT | None | 2838.0 | 250 | 12 | 34056.0 | 0.000 | 34056.000 | 8514.0 | 25542.000 | 41730 | 4 | April | 2014 |
Midmarket | France | VTT | None | 2178.0 | 250 | 15 | 32670.0 | 0.000 | 32670.000 | 21780.0 | 10890.000 | 41791 | 6 | June | 2014 |
Midmarket | Germany | VTT | None | 888.0 | 250 | 15 | 13320.0 | 0.000 | 13320.000 | 8880.0 | 4440.000 | 41791 | 6 | June | 2014 |
Government | France | VTT | None | 1527.0 | 250 | 350 | 534450.0 | 0.000 | 534450.000 | 397020.0 | 137430.000 | 41518 | 9 | September | 2013 |
Small Business | France | VTT | None | 2151.0 | 250 | 300 | 645300.0 | 0.000 | 645300.000 | 537750.0 | 107550.000 | 41883 | 9 | September | 2014 |
Government | Canada | VTT | None | 1817.0 | 250 | 20 | 36340.0 | 0.000 | 36340.000 | 18170.0 | 18170.000 | 41974 | 12 | December | 2014 |
Government | France | Amarilla | None | 2750.0 | 260 | 350 | 962500.0 | 0.000 | 962500.000 | 715000.0 | 247500.000 | 41671 | 2 | February | 2014 |
Channel Partners | United States of America | Amarilla | None | 1953.0 | 260 | 12 | 23436.0 | 0.000 | 23436.000 | 5859.0 | 17577.000 | 41730 | 4 | April | 2014 |
Enterprise | Germany | Amarilla | None | 4219.5 | 260 | 125 | 527437.5 | 0.000 | 527437.500 | 506340.0 | 21097.500 | 41730 | 4 | April | 2014 |
Government | France | Amarilla | None | 1899.0 | 260 | 20 | 37980.0 | 0.000 | 37980.000 | 18990.0 | 18990.000 | 41791 | 6 | June | 2014 |
Government | Germany | Amarilla | None | 1686.0 | 260 | 7 | 11802.0 | 0.000 | 11802.000 | 8430.0 | 3372.000 | 41821 | 7 | July | 2014 |
Channel Partners | United States of America | Amarilla | None | 2141.0 | 260 | 12 | 25692.0 | 0.000 | 25692.000 | 6423.0 | 19269.000 | 41852 | 8 | August | 2014 |
Government | United States of America | Amarilla | None | 1143.0 | 260 | 7 | 8001.0 | 0.000 | 8001.000 | 5715.0 | 2286.000 | 41913 | 10 | October | 2014 |
Midmarket | United States of America | Amarilla | None | 615.0 | 260 | 15 | 9225.0 | 0.000 | 9225.000 | 6150.0 | 3075.000 | 41974 | 12 | December | 2014 |
Government | France | Paseo | Low | 3945.0 | 10 | 7 | 27615.0 | 276.150 | 27338.850 | 19725.0 | 7613.850 | 41640 | 1 | January | 2014 |
Midmarket | France | Paseo | Low | 2296.0 | 10 | 15 | 34440.0 | 344.400 | 34095.600 | 22960.0 | 11135.600 | 41671 | 2 | February | 2014 |
Government | France | Paseo | Low | 1030.0 | 10 | 7 | 7210.0 | 72.100 | 7137.900 | 5150.0 | 1987.900 | 41760 | 5 | May | 2014 |
Government | France | Velo | Low | 639.0 | 120 | 7 | 4473.0 | 44.730 | 4428.270 | 3195.0 | 1233.270 | 41944 | 11 | November | 2014 |
Government | Canada | VTT | Low | 1326.0 | 250 | 7 | 9282.0 | 92.820 | 9189.180 | 6630.0 | 2559.180 | 41699 | 3 | March | 2014 |
Channel Partners | United States of America | Carretera | Low | 1858.0 | 3 | 12 | 22296.0 | 222.960 | 22073.040 | 5574.0 | 16499.040 | 41671 | 2 | February | 2014 |
Government | Mexico | Carretera | Low | 1210.0 | 3 | 350 | 423500.0 | 4235.000 | 419265.000 | 314600.0 | 104665.000 | 41699 | 3 | March | 2014 |
Government | United States of America | Carretera | Low | 2529.0 | 3 | 7 | 17703.0 | 177.030 | 17525.970 | 12645.0 | 4880.970 | 41821 | 7 | July | 2014 |
Channel Partners | Canada | Carretera | Low | 1445.0 | 3 | 12 | 17340.0 | 173.400 | 17166.600 | 4335.0 | 12831.600 | 41883 | 9 | September | 2014 |
Enterprise | United States of America | Carretera | Low | 330.0 | 3 | 125 | 41250.0 | 412.500 | 40837.500 | 39600.0 | 1237.500 | 41518 | 9 | September | 2013 |
Channel Partners | France | Carretera | Low | 2671.0 | 3 | 12 | 32052.0 | 320.520 | 31731.480 | 8013.0 | 23718.480 | 41883 | 9 | September | 2014 |
Channel Partners | Germany | Carretera | Low | 766.0 | 3 | 12 | 9192.0 | 91.920 | 9100.080 | 2298.0 | 6802.080 | 41548 | 10 | October | 2013 |
Small Business | Mexico | Carretera | Low | 494.0 | 3 | 300 | 148200.0 | 1482.000 | 146718.000 | 123500.0 | 23218.000 | 41548 | 10 | October | 2013 |
Government | Mexico | Carretera | Low | 1397.0 | 3 | 350 | 488950.0 | 4889.500 | 484060.500 | 363220.0 | 120840.500 | 41913 | 10 | October | 2014 |
Government | France | Carretera | Low | 2155.0 | 3 | 350 | 754250.0 | 7542.500 | 746707.500 | 560300.0 | 186407.500 | 41974 | 12 | December | 2014 |
Midmarket | Mexico | Montana | Low | 2214.0 | 5 | 15 | 33210.0 | 332.100 | 32877.900 | 22140.0 | 10737.900 | 41699 | 3 | March | 2014 |
Small Business | United States of America | Montana | Low | 2301.0 | 5 | 300 | 690300.0 | 6903.000 | 683397.000 | 575250.0 | 108147.000 | 41730 | 4 | April | 2014 |
Government | France | Montana | Low | 1375.5 | 5 | 20 | 27510.0 | 275.100 | 27234.900 | 13755.0 | 13479.900 | 41821 | 7 | July | 2014 |
Government | Canada | Montana | Low | 1830.0 | 5 | 7 | 12810.0 | 128.100 | 12681.900 | 9150.0 | 3531.900 | 41852 | 8 | August | 2014 |
Small Business | United States of America | Montana | Low | 2498.0 | 5 | 300 | 749400.0 | 7494.000 | 741906.000 | 624500.0 | 117406.000 | 41518 | 9 | September | 2013 |
Enterprise | United States of America | Montana | Low | 663.0 | 5 | 125 | 82875.0 | 828.750 | 82046.250 | 79560.0 | 2486.250 | 41548 | 10 | October | 2013 |
Midmarket | United States of America | Paseo | Low | 1514.0 | 10 | 15 | 22710.0 | 227.100 | 22482.900 | 15140.0 | 7342.900 | 41671 | 2 | February | 2014 |
Government | United States of America | Paseo | Low | 4492.5 | 10 | 7 | 31447.5 | 314.475 | 31133.025 | 22462.5 | 8670.525 | 41730 | 4 | April | 2014 |
Enterprise | United States of America | Paseo | Low | 727.0 | 10 | 125 | 90875.0 | 908.750 | 89966.250 | 87240.0 | 2726.250 | 41791 | 6 | June | 2014 |
Enterprise | France | Paseo | Low | 787.0 | 10 | 125 | 98375.0 | 983.750 | 97391.250 | 94440.0 | 2951.250 | 41791 | 6 | June | 2014 |
Enterprise | Mexico | Paseo | Low | 1823.0 | 10 | 125 | 227875.0 | 2278.750 | 225596.250 | 218760.0 | 6836.250 | 41821 | 7 | July | 2014 |
Midmarket | Germany | Paseo | Low | 747.0 | 10 | 15 | 11205.0 | 112.050 | 11092.950 | 7470.0 | 3622.950 | 41883 | 9 | September | 2014 |
Channel Partners | Germany | Paseo | Low | 766.0 | 10 | 12 | 9192.0 | 91.920 | 9100.080 | 2298.0 | 6802.080 | 41548 | 10 | October | 2013 |
Small Business | United States of America | Paseo | Low | 2905.0 | 10 | 300 | 871500.0 | 8715.000 | 862785.000 | 726250.0 | 136535.000 | 41944 | 11 | November | 2014 |
Government | France | Paseo | Low | 2155.0 | 10 | 350 | 754250.0 | 7542.500 | 746707.500 | 560300.0 | 186407.500 | 41974 | 12 | December | 2014 |
Government | France | Velo | Low | 3864.0 | 120 | 20 | 77280.0 | 772.800 | 76507.200 | 38640.0 | 37867.200 | 41730 | 4 | April | 2014 |
Government | Mexico | Velo | Low | 362.0 | 120 | 7 | 2534.0 | 25.340 | 2508.660 | 1810.0 | 698.660 | 41760 | 5 | May | 2014 |
Enterprise | Canada | Velo | Low | 923.0 | 120 | 125 | 115375.0 | 1153.750 | 114221.250 | 110760.0 | 3461.250 | 41852 | 8 | August | 2014 |
Enterprise | United States of America | Velo | Low | 663.0 | 120 | 125 | 82875.0 | 828.750 | 82046.250 | 79560.0 | 2486.250 | 41548 | 10 | October | 2013 |
Government | Canada | Velo | Low | 2092.0 | 120 | 7 | 14644.0 | 146.440 | 14497.560 | 10460.0 | 4037.560 | 41579 | 11 | November | 2013 |
Government | Germany | VTT | Low | 263.0 | 250 | 7 | 1841.0 | 18.410 | 1822.590 | 1315.0 | 507.590 | 41699 | 3 | March | 2014 |
Government | Canada | VTT | Low | 943.5 | 250 | 350 | 330225.0 | 3302.250 | 326922.750 | 245310.0 | 81612.750 | 41730 | 4 | April | 2014 |
Enterprise | United States of America | VTT | Low | 727.0 | 250 | 125 | 90875.0 | 908.750 | 89966.250 | 87240.0 | 2726.250 | 41791 | 6 | June | 2014 |
Enterprise | France | VTT | Low | 787.0 | 250 | 125 | 98375.0 | 983.750 | 97391.250 | 94440.0 | 2951.250 | 41791 | 6 | June | 2014 |
Small Business | Germany | VTT | Low | 986.0 | 250 | 300 | 295800.0 | 2958.000 | 292842.000 | 246500.0 | 46342.000 | 41883 | 9 | September | 2014 |
Small Business | Mexico | VTT | Low | 494.0 | 250 | 300 | 148200.0 | 1482.000 | 146718.000 | 123500.0 | 23218.000 | 41548 | 10 | October | 2013 |
Government | Mexico | VTT | Low | 1397.0 | 250 | 350 | 488950.0 | 4889.500 | 484060.500 | 363220.0 | 120840.500 | 41913 | 10 | October | 2014 |
Enterprise | France | VTT | Low | 1744.0 | 250 | 125 | 218000.0 | 2180.000 | 215820.000 | 209280.0 | 6540.000 | 41944 | 11 | November | 2014 |
Channel Partners | United States of America | Amarilla | Low | 1989.0 | 260 | 12 | 23868.0 | 238.680 | 23629.320 | 5967.0 | 17662.320 | 41518 | 9 | September | 2013 |
Midmarket | France | Amarilla | Low | 321.0 | 260 | 15 | 4815.0 | 48.150 | 4766.850 | 3210.0 | 1556.850 | 41579 | 11 | November | 2013 |
Enterprise | Canada | Carretera | Low | 742.5 | 3 | 125 | 92812.5 | 1856.250 | 90956.250 | 89100.0 | 1856.250 | 41730 | 4 | April | 2014 |
Channel Partners | Canada | Carretera | Low | 1295.0 | 3 | 12 | 15540.0 | 310.800 | 15229.200 | 3885.0 | 11344.200 | 41913 | 10 | October | 2014 |
Small Business | Germany | Carretera | Low | 214.0 | 3 | 300 | 64200.0 | 1284.000 | 62916.000 | 53500.0 | 9416.000 | 41548 | 10 | October | 2013 |
Government | France | Carretera | Low | 2145.0 | 3 | 7 | 15015.0 | 300.300 | 14714.700 | 10725.0 | 3989.700 | 41579 | 11 | November | 2013 |
Government | Canada | Carretera | Low | 2852.0 | 3 | 350 | 998200.0 | 19964.000 | 978236.000 | 741520.0 | 236716.000 | 41974 | 12 | December | 2014 |
Channel Partners | United States of America | Montana | Low | 1142.0 | 5 | 12 | 13704.0 | 274.080 | 13429.920 | 3426.0 | 10003.920 | 41791 | 6 | June | 2014 |
Government | United States of America | Montana | Low | 1566.0 | 5 | 20 | 31320.0 | 626.400 | 30693.600 | 15660.0 | 15033.600 | 41913 | 10 | October | 2014 |
Channel Partners | Mexico | Montana | Low | 690.0 | 5 | 12 | 8280.0 | 165.600 | 8114.400 | 2070.0 | 6044.400 | 41944 | 11 | November | 2014 |
Enterprise | Mexico | Montana | Low | 1660.0 | 5 | 125 | 207500.0 | 4150.000 | 203350.000 | 199200.0 | 4150.000 | 41579 | 11 | November | 2013 |
Midmarket | Canada | Paseo | Low | 2363.0 | 10 | 15 | 35445.0 | 708.900 | 34736.100 | 23630.0 | 11106.100 | 41671 | 2 | February | 2014 |
Small Business | France | Paseo | Low | 918.0 | 10 | 300 | 275400.0 | 5508.000 | 269892.000 | 229500.0 | 40392.000 | 41760 | 5 | May | 2014 |
Small Business | Germany | Paseo | Low | 1728.0 | 10 | 300 | 518400.0 | 10368.000 | 508032.000 | 432000.0 | 76032.000 | 41760 | 5 | May | 2014 |
Channel Partners | United States of America | Paseo | Low | 1142.0 | 10 | 12 | 13704.0 | 274.080 | 13429.920 | 3426.0 | 10003.920 | 41791 | 6 | June | 2014 |
Enterprise | Mexico | Paseo | Low | 662.0 | 10 | 125 | 82750.0 | 1655.000 | 81095.000 | 79440.0 | 1655.000 | 41791 | 6 | June | 2014 |
Channel Partners | Canada | Paseo | Low | 1295.0 | 10 | 12 | 15540.0 | 310.800 | 15229.200 | 3885.0 | 11344.200 | 41913 | 10 | October | 2014 |
Enterprise | Germany | Paseo | Low | 809.0 | 10 | 125 | 101125.0 | 2022.500 | 99102.500 | 97080.0 | 2022.500 | 41548 | 10 | October | 2013 |
Enterprise | Mexico | Paseo | Low | 2145.0 | 10 | 125 | 268125.0 | 5362.500 | 262762.500 | 257400.0 | 5362.500 | 41548 | 10 | October | 2013 |
Channel Partners | France | Paseo | Low | 1785.0 | 10 | 12 | 21420.0 | 428.400 | 20991.600 | 5355.0 | 15636.600 | 41579 | 11 | November | 2013 |
Small Business | Canada | Paseo | Low | 1916.0 | 10 | 300 | 574800.0 | 11496.000 | 563304.000 | 479000.0 | 84304.000 | 41974 | 12 | December | 2014 |
Government | Canada | Paseo | Low | 2852.0 | 10 | 350 | 998200.0 | 19964.000 | 978236.000 | 741520.0 | 236716.000 | 41974 | 12 | December | 2014 |
Enterprise | Canada | Paseo | Low | 2729.0 | 10 | 125 | 341125.0 | 6822.500 | 334302.500 | 327480.0 | 6822.500 | 41974 | 12 | December | 2014 |
Midmarket | United States of America | Paseo | Low | 1925.0 | 10 | 15 | 28875.0 | 577.500 | 28297.500 | 19250.0 | 9047.500 | 41609 | 12 | December | 2013 |
Government | United States of America | Paseo | Low | 2013.0 | 10 | 7 | 14091.0 | 281.820 | 13809.180 | 10065.0 | 3744.180 | 41609 | 12 | December | 2013 |
Channel Partners | France | Paseo | Low | 1055.0 | 10 | 12 | 12660.0 | 253.200 | 12406.800 | 3165.0 | 9241.800 | 41974 | 12 | December | 2014 |
Channel Partners | Mexico | Paseo | Low | 1084.0 | 10 | 12 | 13008.0 | 260.160 | 12747.840 | 3252.0 | 9495.840 | 41974 | 12 | December | 2014 |
Government | United States of America | Velo | Low | 1566.0 | 120 | 20 | 31320.0 | 626.400 | 30693.600 | 15660.0 | 15033.600 | 41913 | 10 | October | 2014 |
Government | Germany | Velo | Low | 2966.0 | 120 | 350 | 1038100.0 | 20762.000 | 1017338.000 | 771160.0 | 246178.000 | 41548 | 10 | October | 2013 |
Government | Germany | Velo | Low | 2877.0 | 120 | 350 | 1006950.0 | 20139.000 | 986811.000 | 748020.0 | 238791.000 | 41913 | 10 | October | 2014 |
Enterprise | Germany | Velo | Low | 809.0 | 120 | 125 | 101125.0 | 2022.500 | 99102.500 | 97080.0 | 2022.500 | 41548 | 10 | October | 2013 |
Enterprise | Mexico | Velo | Low | 2145.0 | 120 | 125 | 268125.0 | 5362.500 | 262762.500 | 257400.0 | 5362.500 | 41548 | 10 | October | 2013 |
Channel Partners | France | Velo | Low | 1055.0 | 120 | 12 | 12660.0 | 253.200 | 12406.800 | 3165.0 | 9241.800 | 41974 | 12 | December | 2014 |
Government | Mexico | Velo | Low | 544.0 | 120 | 20 | 10880.0 | 217.600 | 10662.400 | 5440.0 | 5222.400 | 41609 | 12 | December | 2013 |
Channel Partners | Mexico | Velo | Low | 1084.0 | 120 | 12 | 13008.0 | 260.160 | 12747.840 | 3252.0 | 9495.840 | 41974 | 12 | December | 2014 |
Enterprise | Mexico | VTT | Low | 662.0 | 250 | 125 | 82750.0 | 1655.000 | 81095.000 | 79440.0 | 1655.000 | 41791 | 6 | June | 2014 |
Small Business | Germany | VTT | Low | 214.0 | 250 | 300 | 64200.0 | 1284.000 | 62916.000 | 53500.0 | 9416.000 | 41548 | 10 | October | 2013 |
Government | Germany | VTT | Low | 2877.0 | 250 | 350 | 1006950.0 | 20139.000 | 986811.000 | 748020.0 | 238791.000 | 41913 | 10 | October | 2014 |
Enterprise | Canada | VTT | Low | 2729.0 | 250 | 125 | 341125.0 | 6822.500 | 334302.500 | 327480.0 | 6822.500 | 41974 | 12 | December | 2014 |
Government | United States of America | VTT | Low | 266.0 | 250 | 350 | 93100.0 | 1862.000 | 91238.000 | 69160.0 | 22078.000 | 41609 | 12 | December | 2013 |
Government | Mexico | VTT | Low | 1940.0 | 250 | 350 | 679000.0 | 13580.000 | 665420.000 | 504400.0 | 161020.000 | 41609 | 12 | December | 2013 |
Small Business | Germany | Amarilla | Low | 259.0 | 260 | 300 | 77700.0 | 1554.000 | 76146.000 | 64750.0 | 11396.000 | 41699 | 3 | March | 2014 |
Small Business | Mexico | Amarilla | Low | 1101.0 | 260 | 300 | 330300.0 | 6606.000 | 323694.000 | 275250.0 | 48444.000 | 41699 | 3 | March | 2014 |
Enterprise | Germany | Amarilla | Low | 2276.0 | 260 | 125 | 284500.0 | 5690.000 | 278810.000 | 273120.0 | 5690.000 | 41760 | 5 | May | 2014 |
Government | Germany | Amarilla | Low | 2966.0 | 260 | 350 | 1038100.0 | 20762.000 | 1017338.000 | 771160.0 | 246178.000 | 41548 | 10 | October | 2013 |
Government | United States of America | Amarilla | Low | 1236.0 | 260 | 20 | 24720.0 | 494.400 | 24225.600 | 12360.0 | 11865.600 | 41944 | 11 | November | 2014 |
Government | France | Amarilla | Low | 941.0 | 260 | 20 | 18820.0 | 376.400 | 18443.600 | 9410.0 | 9033.600 | 41944 | 11 | November | 2014 |
Small Business | Canada | Amarilla | Low | 1916.0 | 260 | 300 | 574800.0 | 11496.000 | 563304.000 | 479000.0 | 84304.000 | 41974 | 12 | December | 2014 |
Enterprise | France | Carretera | Low | 4243.5 | 3 | 125 | 530437.5 | 15913.125 | 514524.375 | 509220.0 | 5304.375 | 41730 | 4 | April | 2014 |
Government | Germany | Carretera | Low | 2580.0 | 3 | 20 | 51600.0 | 1548.000 | 50052.000 | 25800.0 | 24252.000 | 41730 | 4 | April | 2014 |
Small Business | Germany | Carretera | Low | 689.0 | 3 | 300 | 206700.0 | 6201.000 | 200499.000 | 172250.0 | 28249.000 | 41791 | 6 | June | 2014 |
Channel Partners | United States of America | Carretera | Low | 1947.0 | 3 | 12 | 23364.0 | 700.920 | 22663.080 | 5841.0 | 16822.080 | 41883 | 9 | September | 2014 |
Channel Partners | Canada | Carretera | Low | 908.0 | 3 | 12 | 10896.0 | 326.880 | 10569.120 | 2724.0 | 7845.120 | 41609 | 12 | December | 2013 |
Government | Germany | Montana | Low | 1958.0 | 5 | 7 | 13706.0 | 411.180 | 13294.820 | 9790.0 | 3504.820 | 41671 | 2 | February | 2014 |
Channel Partners | France | Montana | Low | 1901.0 | 5 | 12 | 22812.0 | 684.360 | 22127.640 | 5703.0 | 16424.640 | 41791 | 6 | June | 2014 |
Government | France | Montana | Low | 544.0 | 5 | 7 | 3808.0 | 114.240 | 3693.760 | 2720.0 | 973.760 | 41883 | 9 | September | 2014 |
Government | Germany | Montana | Low | 1797.0 | 5 | 350 | 628950.0 | 18868.500 | 610081.500 | 467220.0 | 142861.500 | 41518 | 9 | September | 2013 |
Enterprise | France | Montana | Low | 1287.0 | 5 | 125 | 160875.0 | 4826.250 | 156048.750 | 154440.0 | 1608.750 | 41974 | 12 | December | 2014 |
Enterprise | Germany | Montana | Low | 1706.0 | 5 | 125 | 213250.0 | 6397.500 | 206852.500 | 204720.0 | 2132.500 | 41974 | 12 | December | 2014 |
Small Business | France | Paseo | Low | 2434.5 | 10 | 300 | 730350.0 | 21910.500 | 708439.500 | 608625.0 | 99814.500 | 41640 | 1 | January | 2014 |
Enterprise | Canada | Paseo | Low | 1774.0 | 10 | 125 | 221750.0 | 6652.500 | 215097.500 | 212880.0 | 2217.500 | 41699 | 3 | March | 2014 |
Channel Partners | France | Paseo | Low | 1901.0 | 10 | 12 | 22812.0 | 684.360 | 22127.640 | 5703.0 | 16424.640 | 41791 | 6 | June | 2014 |
Small Business | Germany | Paseo | Low | 689.0 | 10 | 300 | 206700.0 | 6201.000 | 200499.000 | 172250.0 | 28249.000 | 41791 | 6 | June | 2014 |
Enterprise | Germany | Paseo | Low | 1570.0 | 10 | 125 | 196250.0 | 5887.500 | 190362.500 | 188400.0 | 1962.500 | 41791 | 6 | June | 2014 |
Channel Partners | United States of America | Paseo | Low | 1369.5 | 10 | 12 | 16434.0 | 493.020 | 15940.980 | 4108.5 | 11832.480 | 41821 | 7 | July | 2014 |
Enterprise | Canada | Paseo | Low | 2009.0 | 10 | 125 | 251125.0 | 7533.750 | 243591.250 | 241080.0 | 2511.250 | 41913 | 10 | October | 2014 |
Midmarket | Germany | Paseo | Low | 1945.0 | 10 | 15 | 29175.0 | 875.250 | 28299.750 | 19450.0 | 8849.750 | 41548 | 10 | October | 2013 |
Enterprise | France | Paseo | Low | 1287.0 | 10 | 125 | 160875.0 | 4826.250 | 156048.750 | 154440.0 | 1608.750 | 41974 | 12 | December | 2014 |
Enterprise | Germany | Paseo | Low | 1706.0 | 10 | 125 | 213250.0 | 6397.500 | 206852.500 | 204720.0 | 2132.500 | 41974 | 12 | December | 2014 |
Enterprise | Canada | Velo | Low | 2009.0 | 120 | 125 | 251125.0 | 7533.750 | 243591.250 | 241080.0 | 2511.250 | 41913 | 10 | October | 2014 |
Small Business | United States of America | VTT | Low | 2844.0 | 250 | 300 | 853200.0 | 25596.000 | 827604.000 | 711000.0 | 116604.000 | 41671 | 2 | February | 2014 |
Channel Partners | Mexico | VTT | Low | 1916.0 | 250 | 12 | 22992.0 | 689.760 | 22302.240 | 5748.0 | 16554.240 | 41730 | 4 | April | 2014 |
Enterprise | Germany | VTT | Low | 1570.0 | 250 | 125 | 196250.0 | 5887.500 | 190362.500 | 188400.0 | 1962.500 | 41791 | 6 | June | 2014 |
Small Business | Canada | VTT | Low | 1874.0 | 250 | 300 | 562200.0 | 16866.000 | 545334.000 | 468500.0 | 76834.000 | 41852 | 8 | August | 2014 |
Government | Mexico | VTT | Low | 1642.0 | 250 | 350 | 574700.0 | 17241.000 | 557459.000 | 426920.0 | 130539.000 | 41852 | 8 | August | 2014 |
Midmarket | Germany | VTT | Low | 1945.0 | 250 | 15 | 29175.0 | 875.250 | 28299.750 | 19450.0 | 8849.750 | 41548 | 10 | October | 2013 |
Government | Canada | Carretera | Low | 831.0 | 3 | 20 | 16620.0 | 498.600 | 16121.400 | 8310.0 | 7811.400 | 41760 | 5 | May | 2014 |
Government | Mexico | Paseo | Low | 1760.0 | 10 | 7 | 12320.0 | 369.600 | 11950.400 | 8800.0 | 3150.400 | 41518 | 9 | September | 2013 |
Government | Canada | Velo | Low | 3850.5 | 120 | 20 | 77010.0 | 2310.300 | 74699.700 | 38505.0 | 36194.700 | 41730 | 4 | April | 2014 |
Channel Partners | Germany | VTT | Low | 2479.0 | 250 | 12 | 29748.0 | 892.440 | 28855.560 | 7437.0 | 21418.560 | 41640 | 1 | January | 2014 |
Midmarket | Mexico | Montana | Low | 2031.0 | 5 | 15 | 30465.0 | 1218.600 | 29246.400 | 20310.0 | 8936.400 | 41913 | 10 | October | 2014 |
Midmarket | Mexico | Paseo | Low | 2031.0 | 10 | 15 | 30465.0 | 1218.600 | 29246.400 | 20310.0 | 8936.400 | 41913 | 10 | October | 2014 |
Midmarket | France | Paseo | Low | 2261.0 | 10 | 15 | 33915.0 | 1356.600 | 32558.400 | 22610.0 | 9948.400 | 41609 | 12 | December | 2013 |
Government | United States of America | Velo | Low | 736.0 | 120 | 20 | 14720.0 | 588.800 | 14131.200 | 7360.0 | 6771.200 | 41518 | 9 | September | 2013 |
Government | Canada | Carretera | Low | 2851.0 | 3 | 7 | 19957.0 | 798.280 | 19158.720 | 14255.0 | 4903.720 | 41548 | 10 | October | 2013 |
Small Business | Germany | Carretera | Low | 2021.0 | 3 | 300 | 606300.0 | 24252.000 | 582048.000 | 505250.0 | 76798.000 | 41913 | 10 | October | 2014 |
Government | United States of America | Carretera | Low | 274.0 | 3 | 350 | 95900.0 | 3836.000 | 92064.000 | 71240.0 | 20824.000 | 41974 | 12 | December | 2014 |
Midmarket | Canada | Montana | Low | 1967.0 | 5 | 15 | 29505.0 | 1180.200 | 28324.800 | 19670.0 | 8654.800 | 41699 | 3 | March | 2014 |
Small Business | Germany | Montana | Low | 1859.0 | 5 | 300 | 557700.0 | 22308.000 | 535392.000 | 464750.0 | 70642.000 | 41852 | 8 | August | 2014 |
Government | Canada | Montana | Low | 2851.0 | 5 | 7 | 19957.0 | 798.280 | 19158.720 | 14255.0 | 4903.720 | 41548 | 10 | October | 2013 |
Small Business | Germany | Montana | Low | 2021.0 | 5 | 300 | 606300.0 | 24252.000 | 582048.000 | 505250.0 | 76798.000 | 41913 | 10 | October | 2014 |
Enterprise | Mexico | Montana | Low | 1138.0 | 5 | 125 | 142250.0 | 5690.000 | 136560.000 | 136560.0 | 0.000 | 41974 | 12 | December | 2014 |
Government | Canada | Paseo | Low | 4251.0 | 10 | 7 | 29757.0 | 1190.280 | 28566.720 | 21255.0 | 7311.720 | 41640 | 1 | January | 2014 |
Enterprise | Germany | Paseo | Low | 795.0 | 10 | 125 | 99375.0 | 3975.000 | 95400.000 | 95400.0 | 0.000 | 41699 | 3 | March | 2014 |
Small Business | Germany | Paseo | Low | 1414.5 | 10 | 300 | 424350.0 | 16974.000 | 407376.000 | 353625.0 | 53751.000 | 41730 | 4 | April | 2014 |
Small Business | United States of America | Paseo | Low | 2918.0 | 10 | 300 | 875400.0 | 35016.000 | 840384.000 | 729500.0 | 110884.000 | 41760 | 5 | May | 2014 |
Government | United States of America | Paseo | Low | 3450.0 | 10 | 350 | 1207500.0 | 48300.000 | 1159200.000 | 897000.0 | 262200.000 | 41821 | 7 | July | 2014 |
Enterprise | France | Paseo | Low | 2988.0 | 10 | 125 | 373500.0 | 14940.000 | 358560.000 | 358560.0 | 0.000 | 41821 | 7 | July | 2014 |
Midmarket | Canada | Paseo | Low | 218.0 | 10 | 15 | 3270.0 | 130.800 | 3139.200 | 2180.0 | 959.200 | 41883 | 9 | September | 2014 |
Government | Canada | Paseo | Low | 2074.0 | 10 | 20 | 41480.0 | 1659.200 | 39820.800 | 20740.0 | 19080.800 | 41883 | 9 | September | 2014 |
Government | United States of America | Paseo | Low | 1056.0 | 10 | 20 | 21120.0 | 844.800 | 20275.200 | 10560.0 | 9715.200 | 41883 | 9 | September | 2014 |
Midmarket | United States of America | Paseo | Low | 671.0 | 10 | 15 | 10065.0 | 402.600 | 9662.400 | 6710.0 | 2952.400 | 41548 | 10 | October | 2013 |
Midmarket | Mexico | Paseo | Low | 1514.0 | 10 | 15 | 22710.0 | 908.400 | 21801.600 | 15140.0 | 6661.600 | 41548 | 10 | October | 2013 |
Government | United States of America | Paseo | Low | 274.0 | 10 | 350 | 95900.0 | 3836.000 | 92064.000 | 71240.0 | 20824.000 | 41974 | 12 | December | 2014 |
Enterprise | Mexico | Paseo | Low | 1138.0 | 10 | 125 | 142250.0 | 5690.000 | 136560.000 | 136560.0 | 0.000 | 41974 | 12 | December | 2014 |
Channel Partners | United States of America | Velo | Low | 1465.0 | 120 | 12 | 17580.0 | 703.200 | 16876.800 | 4395.0 | 12481.800 | 41699 | 3 | March | 2014 |
Government | Canada | Velo | Low | 2646.0 | 120 | 20 | 52920.0 | 2116.800 | 50803.200 | 26460.0 | 24343.200 | 41518 | 9 | September | 2013 |
Government | France | Velo | Low | 2177.0 | 120 | 350 | 761950.0 | 30478.000 | 731472.000 | 566020.0 | 165452.000 | 41913 | 10 | October | 2014 |
Channel Partners | France | VTT | Low | 866.0 | 250 | 12 | 10392.0 | 415.680 | 9976.320 | 2598.0 | 7378.320 | 41760 | 5 | May | 2014 |
Government | United States of America | VTT | Low | 349.0 | 250 | 350 | 122150.0 | 4886.000 | 117264.000 | 90740.0 | 26524.000 | 41518 | 9 | September | 2013 |
Government | France | VTT | Low | 2177.0 | 250 | 350 | 761950.0 | 30478.000 | 731472.000 | 566020.0 | 165452.000 | 41913 | 10 | October | 2014 |
Midmarket | Mexico | VTT | Low | 1514.0 | 250 | 15 | 22710.0 | 908.400 | 21801.600 | 15140.0 | 6661.600 | 41548 | 10 | October | 2013 |
Government | Mexico | Amarilla | Low | 1865.0 | 260 | 350 | 652750.0 | 26110.000 | 626640.000 | 484900.0 | 141740.000 | 41671 | 2 | February | 2014 |
Enterprise | Mexico | Amarilla | Low | 1074.0 | 260 | 125 | 134250.0 | 5370.000 | 128880.000 | 128880.0 | 0.000 | 41730 | 4 | April | 2014 |
Government | Germany | Amarilla | Low | 1907.0 | 260 | 350 | 667450.0 | 26698.000 | 640752.000 | 495820.0 | 144932.000 | 41883 | 9 | September | 2014 |
Midmarket | United States of America | Amarilla | Low | 671.0 | 260 | 15 | 10065.0 | 402.600 | 9662.400 | 6710.0 | 2952.400 | 41548 | 10 | October | 2013 |
Government | Canada | Amarilla | Low | 1778.0 | 260 | 350 | 622300.0 | 24892.000 | 597408.000 | 462280.0 | 135128.000 | 41609 | 12 | December | 2013 |
Government | Germany | Montana | Medium | 1159.0 | 5 | 7 | 8113.0 | 405.650 | 7707.350 | 5795.0 | 1912.350 | 41548 | 10 | October | 2013 |
Government | Germany | Paseo | Medium | 1372.0 | 10 | 7 | 9604.0 | 480.200 | 9123.800 | 6860.0 | 2263.800 | 41640 | 1 | January | 2014 |
Government | Canada | Paseo | Medium | 2349.0 | 10 | 7 | 16443.0 | 822.150 | 15620.850 | 11745.0 | 3875.850 | 41518 | 9 | September | 2013 |
Government | Mexico | Paseo | Medium | 2689.0 | 10 | 7 | 18823.0 | 941.150 | 17881.850 | 13445.0 | 4436.850 | 41913 | 10 | October | 2014 |
Channel Partners | Canada | Paseo | Medium | 2431.0 | 10 | 12 | 29172.0 | 1458.600 | 27713.400 | 7293.0 | 20420.400 | 41974 | 12 | December | 2014 |
Channel Partners | Canada | Velo | Medium | 2431.0 | 120 | 12 | 29172.0 | 1458.600 | 27713.400 | 7293.0 | 20420.400 | 41974 | 12 | December | 2014 |
Government | Mexico | VTT | Medium | 2689.0 | 250 | 7 | 18823.0 | 941.150 | 17881.850 | 13445.0 | 4436.850 | 41913 | 10 | October | 2014 |
Government | Mexico | Amarilla | Medium | 1683.0 | 260 | 7 | 11781.0 | 589.050 | 11191.950 | 8415.0 | 2776.950 | 41821 | 7 | July | 2014 |
Channel Partners | Mexico | Amarilla | Medium | 1123.0 | 260 | 12 | 13476.0 | 673.800 | 12802.200 | 3369.0 | 9433.200 | 41852 | 8 | August | 2014 |
Government | Germany | Amarilla | Medium | 1159.0 | 260 | 7 | 8113.0 | 405.650 | 7707.350 | 5795.0 | 1912.350 | 41548 | 10 | October | 2013 |
Channel Partners | France | Carretera | Medium | 1865.0 | 3 | 12 | 22380.0 | 1119.000 | 21261.000 | 5595.0 | 15666.000 | 41671 | 2 | February | 2014 |
Channel Partners | Germany | Carretera | Medium | 1116.0 | 3 | 12 | 13392.0 | 669.600 | 12722.400 | 3348.0 | 9374.400 | 41671 | 2 | February | 2014 |
Government | France | Carretera | Medium | 1563.0 | 3 | 20 | 31260.0 | 1563.000 | 29697.000 | 15630.0 | 14067.000 | 41760 | 5 | May | 2014 |
Small Business | United States of America | Carretera | Medium | 991.0 | 3 | 300 | 297300.0 | 14865.000 | 282435.000 | 247750.0 | 34685.000 | 41791 | 6 | June | 2014 |
Government | Germany | Carretera | Medium | 1016.0 | 3 | 7 | 7112.0 | 355.600 | 6756.400 | 5080.0 | 1676.400 | 41579 | 11 | November | 2013 |
Midmarket | Mexico | Carretera | Medium | 2791.0 | 3 | 15 | 41865.0 | 2093.250 | 39771.750 | 27910.0 | 11861.750 | 41944 | 11 | November | 2014 |
Government | United States of America | Carretera | Medium | 570.0 | 3 | 7 | 3990.0 | 199.500 | 3790.500 | 2850.0 | 940.500 | 41974 | 12 | December | 2014 |
Government | France | Carretera | Medium | 2487.0 | 3 | 7 | 17409.0 | 870.450 | 16538.550 | 12435.0 | 4103.550 | 41974 | 12 | December | 2014 |
Government | France | Montana | Medium | 1384.5 | 5 | 350 | 484575.0 | 24228.750 | 460346.250 | 359970.0 | 100376.250 | 41640 | 1 | January | 2014 |
Enterprise | United States of America | Montana | Medium | 3627.0 | 5 | 125 | 453375.0 | 22668.750 | 430706.250 | 435240.0 | -4533.750 | 41821 | 7 | July | 2014 |
Government | Mexico | Montana | Medium | 720.0 | 5 | 350 | 252000.0 | 12600.000 | 239400.000 | 187200.0 | 52200.000 | 41518 | 9 | September | 2013 |
Channel Partners | Germany | Montana | Medium | 2342.0 | 5 | 12 | 28104.0 | 1405.200 | 26698.800 | 7026.0 | 19672.800 | 41944 | 11 | November | 2014 |
Small Business | Mexico | Montana | Medium | 1100.0 | 5 | 300 | 330000.0 | 16500.000 | 313500.000 | 275000.0 | 38500.000 | 41609 | 12 | December | 2013 |
Government | France | Paseo | Medium | 1303.0 | 10 | 20 | 26060.0 | 1303.000 | 24757.000 | 13030.0 | 11727.000 | 41671 | 2 | February | 2014 |
Enterprise | United States of America | Paseo | Medium | 2992.0 | 10 | 125 | 374000.0 | 18700.000 | 355300.000 | 359040.0 | -3740.000 | 41699 | 3 | March | 2014 |
Enterprise | France | Paseo | Medium | 2385.0 | 10 | 125 | 298125.0 | 14906.250 | 283218.750 | 286200.0 | -2981.250 | 41699 | 3 | March | 2014 |
Small Business | Mexico | Paseo | Medium | 1607.0 | 10 | 300 | 482100.0 | 24105.000 | 457995.000 | 401750.0 | 56245.000 | 41730 | 4 | April | 2014 |
Government | United States of America | Paseo | Medium | 2327.0 | 10 | 7 | 16289.0 | 814.450 | 15474.550 | 11635.0 | 3839.550 | 41760 | 5 | May | 2014 |
Small Business | United States of America | Paseo | Medium | 991.0 | 10 | 300 | 297300.0 | 14865.000 | 282435.000 | 247750.0 | 34685.000 | 41791 | 6 | June | 2014 |
Government | United States of America | Paseo | Medium | 602.0 | 10 | 350 | 210700.0 | 10535.000 | 200165.000 | 156520.0 | 43645.000 | 41791 | 6 | June | 2014 |
Midmarket | France | Paseo | Medium | 2620.0 | 10 | 15 | 39300.0 | 1965.000 | 37335.000 | 26200.0 | 11135.000 | 41883 | 9 | September | 2014 |
Government | Canada | Paseo | Medium | 1228.0 | 10 | 350 | 429800.0 | 21490.000 | 408310.000 | 319280.0 | 89030.000 | 41548 | 10 | October | 2013 |
Government | Canada | Paseo | Medium | 1389.0 | 10 | 20 | 27780.0 | 1389.000 | 26391.000 | 13890.0 | 12501.000 | 41548 | 10 | October | 2013 |
Enterprise | United States of America | Paseo | Medium | 861.0 | 10 | 125 | 107625.0 | 5381.250 | 102243.750 | 103320.0 | -1076.250 | 41913 | 10 | October | 2014 |
Enterprise | France | Paseo | Medium | 704.0 | 10 | 125 | 88000.0 | 4400.000 | 83600.000 | 84480.0 | -880.000 | 41548 | 10 | October | 2013 |
Government | Canada | Paseo | Medium | 1802.0 | 10 | 20 | 36040.0 | 1802.000 | 34238.000 | 18020.0 | 16218.000 | 41609 | 12 | December | 2013 |
Government | United States of America | Paseo | Medium | 2663.0 | 10 | 20 | 53260.0 | 2663.000 | 50597.000 | 26630.0 | 23967.000 | 41974 | 12 | December | 2014 |
Government | France | Paseo | Medium | 2136.0 | 10 | 7 | 14952.0 | 747.600 | 14204.400 | 10680.0 | 3524.400 | 41609 | 12 | December | 2013 |
Midmarket | Germany | Paseo | Medium | 2116.0 | 10 | 15 | 31740.0 | 1587.000 | 30153.000 | 21160.0 | 8993.000 | 41609 | 12 | December | 2013 |
Midmarket | United States of America | Velo | Medium | 555.0 | 120 | 15 | 8325.0 | 416.250 | 7908.750 | 5550.0 | 2358.750 | 41640 | 1 | January | 2014 |
Midmarket | Mexico | Velo | Medium | 2861.0 | 120 | 15 | 42915.0 | 2145.750 | 40769.250 | 28610.0 | 12159.250 | 41640 | 1 | January | 2014 |
Enterprise | Germany | Velo | Medium | 807.0 | 120 | 125 | 100875.0 | 5043.750 | 95831.250 | 96840.0 | -1008.750 | 41671 | 2 | February | 2014 |
Government | United States of America | Velo | Medium | 602.0 | 120 | 350 | 210700.0 | 10535.000 | 200165.000 | 156520.0 | 43645.000 | 41791 | 6 | June | 2014 |
Government | United States of America | Velo | Medium | 2832.0 | 120 | 20 | 56640.0 | 2832.000 | 53808.000 | 28320.0 | 25488.000 | 41852 | 8 | August | 2014 |
Government | France | Velo | Medium | 1579.0 | 120 | 20 | 31580.0 | 1579.000 | 30001.000 | 15790.0 | 14211.000 | 41852 | 8 | August | 2014 |
Enterprise | United States of America | Velo | Medium | 861.0 | 120 | 125 | 107625.0 | 5381.250 | 102243.750 | 103320.0 | -1076.250 | 41913 | 10 | October | 2014 |
Enterprise | France | Velo | Medium | 704.0 | 120 | 125 | 88000.0 | 4400.000 | 83600.000 | 84480.0 | -880.000 | 41548 | 10 | October | 2013 |
Government | France | Velo | Medium | 1033.0 | 120 | 20 | 20660.0 | 1033.000 | 19627.000 | 10330.0 | 9297.000 | 41609 | 12 | December | 2013 |
Small Business | Germany | Velo | Medium | 1250.0 | 120 | 300 | 375000.0 | 18750.000 | 356250.000 | 312500.0 | 43750.000 | 41974 | 12 | December | 2014 |
Government | Canada | VTT | Medium | 1389.0 | 250 | 20 | 27780.0 | 1389.000 | 26391.000 | 13890.0 | 12501.000 | 41548 | 10 | October | 2013 |
Government | United States of America | VTT | Medium | 1265.0 | 250 | 20 | 25300.0 | 1265.000 | 24035.000 | 12650.0 | 11385.000 | 41579 | 11 | November | 2013 |
Government | Germany | VTT | Medium | 2297.0 | 250 | 20 | 45940.0 | 2297.000 | 43643.000 | 22970.0 | 20673.000 | 41579 | 11 | November | 2013 |
Government | United States of America | VTT | Medium | 2663.0 | 250 | 20 | 53260.0 | 2663.000 | 50597.000 | 26630.0 | 23967.000 | 41974 | 12 | December | 2014 |
Government | United States of America | VTT | Medium | 570.0 | 250 | 7 | 3990.0 | 199.500 | 3790.500 | 2850.0 | 940.500 | 41974 | 12 | December | 2014 |
Government | France | VTT | Medium | 2487.0 | 250 | 7 | 17409.0 | 870.450 | 16538.550 | 12435.0 | 4103.550 | 41974 | 12 | December | 2014 |
Government | Germany | Amarilla | Medium | 1350.0 | 260 | 350 | 472500.0 | 23625.000 | 448875.000 | 351000.0 | 97875.000 | 41671 | 2 | February | 2014 |
Government | Canada | Amarilla | Medium | 552.0 | 260 | 350 | 193200.0 | 9660.000 | 183540.000 | 143520.0 | 40020.000 | 41852 | 8 | August | 2014 |
Government | Canada | Amarilla | Medium | 1228.0 | 260 | 350 | 429800.0 | 21490.000 | 408310.000 | 319280.0 | 89030.000 | 41548 | 10 | October | 2013 |
Small Business | Germany | Amarilla | Medium | 1250.0 | 260 | 300 | 375000.0 | 18750.000 | 356250.000 | 312500.0 | 43750.000 | 41974 | 12 | December | 2014 |
Midmarket | France | Paseo | Medium | 3801.0 | 10 | 15 | 57015.0 | 3420.900 | 53594.100 | 38010.0 | 15584.100 | 41730 | 4 | April | 2014 |
Government | United States of America | Carretera | Medium | 1117.5 | 3 | 20 | 22350.0 | 1341.000 | 21009.000 | 11175.0 | 9834.000 | 41640 | 1 | January | 2014 |
Midmarket | Canada | Carretera | Medium | 2844.0 | 3 | 15 | 42660.0 | 2559.600 | 40100.400 | 28440.0 | 11660.400 | 41791 | 6 | June | 2014 |
Channel Partners | Mexico | Carretera | Medium | 562.0 | 3 | 12 | 6744.0 | 404.640 | 6339.360 | 1686.0 | 4653.360 | 41883 | 9 | September | 2014 |
Channel Partners | Canada | Carretera | Medium | 2299.0 | 3 | 12 | 27588.0 | 1655.280 | 25932.720 | 6897.0 | 19035.720 | 41548 | 10 | October | 2013 |
Midmarket | United States of America | Carretera | Medium | 2030.0 | 3 | 15 | 30450.0 | 1827.000 | 28623.000 | 20300.0 | 8323.000 | 41944 | 11 | November | 2014 |
Government | United States of America | Carretera | Medium | 263.0 | 3 | 7 | 1841.0 | 110.460 | 1730.540 | 1315.0 | 415.540 | 41579 | 11 | November | 2013 |
Enterprise | Germany | Carretera | Medium | 887.0 | 3 | 125 | 110875.0 | 6652.500 | 104222.500 | 106440.0 | -2217.500 | 41609 | 12 | December | 2013 |
Government | Mexico | Montana | Medium | 980.0 | 5 | 350 | 343000.0 | 20580.000 | 322420.000 | 254800.0 | 67620.000 | 41730 | 4 | April | 2014 |
Government | Germany | Montana | Medium | 1460.0 | 5 | 350 | 511000.0 | 30660.000 | 480340.000 | 379600.0 | 100740.000 | 41760 | 5 | May | 2014 |
Government | France | Montana | Medium | 1403.0 | 5 | 7 | 9821.0 | 589.260 | 9231.740 | 7015.0 | 2216.740 | 41548 | 10 | October | 2013 |
Channel Partners | United States of America | Montana | Medium | 2723.0 | 5 | 12 | 32676.0 | 1960.560 | 30715.440 | 8169.0 | 22546.440 | 41944 | 11 | November | 2014 |
Government | France | Paseo | Medium | 1496.0 | 10 | 350 | 523600.0 | 31416.000 | 492184.000 | 388960.0 | 103224.000 | 41791 | 6 | June | 2014 |
Channel Partners | Canada | Paseo | Medium | 2299.0 | 10 | 12 | 27588.0 | 1655.280 | 25932.720 | 6897.0 | 19035.720 | 41548 | 10 | October | 2013 |
Government | United States of America | Paseo | Medium | 727.0 | 10 | 350 | 254450.0 | 15267.000 | 239183.000 | 189020.0 | 50163.000 | 41548 | 10 | October | 2013 |
Enterprise | Canada | Velo | Medium | 952.0 | 120 | 125 | 119000.0 | 7140.000 | 111860.000 | 114240.0 | -2380.000 | 41671 | 2 | February | 2014 |
Enterprise | United States of America | Velo | Medium | 2755.0 | 120 | 125 | 344375.0 | 20662.500 | 323712.500 | 330600.0 | -6887.500 | 41671 | 2 | February | 2014 |
Midmarket | Germany | Velo | Medium | 1530.0 | 120 | 15 | 22950.0 | 1377.000 | 21573.000 | 15300.0 | 6273.000 | 41760 | 5 | May | 2014 |
Government | France | Velo | Medium | 1496.0 | 120 | 350 | 523600.0 | 31416.000 | 492184.000 | 388960.0 | 103224.000 | 41791 | 6 | June | 2014 |
Government | Mexico | Velo | Medium | 1498.0 | 120 | 7 | 10486.0 | 629.160 | 9856.840 | 7490.0 | 2366.840 | 41791 | 6 | June | 2014 |
Small Business | France | Velo | Medium | 1221.0 | 120 | 300 | 366300.0 | 21978.000 | 344322.000 | 305250.0 | 39072.000 | 41548 | 10 | October | 2013 |
Government | France | Velo | Medium | 2076.0 | 120 | 350 | 726600.0 | 43596.000 | 683004.000 | 539760.0 | 143244.000 | 41548 | 10 | October | 2013 |
Midmarket | Canada | VTT | Medium | 2844.0 | 250 | 15 | 42660.0 | 2559.600 | 40100.400 | 28440.0 | 11660.400 | 41791 | 6 | June | 2014 |
Government | Mexico | VTT | Medium | 1498.0 | 250 | 7 | 10486.0 | 629.160 | 9856.840 | 7490.0 | 2366.840 | 41791 | 6 | June | 2014 |
Small Business | France | VTT | Medium | 1221.0 | 250 | 300 | 366300.0 | 21978.000 | 344322.000 | 305250.0 | 39072.000 | 41548 | 10 | October | 2013 |
Government | Mexico | VTT | Medium | 1123.0 | 250 | 20 | 22460.0 | 1347.600 | 21112.400 | 11230.0 | 9882.400 | 41579 | 11 | November | 2013 |
Small Business | Canada | VTT | Medium | 2436.0 | 250 | 300 | 730800.0 | 43848.000 | 686952.000 | 609000.0 | 77952.000 | 41609 | 12 | December | 2013 |
Enterprise | France | Amarilla | Medium | 1987.5 | 260 | 125 | 248437.5 | 14906.250 | 233531.250 | 238500.0 | -4968.750 | 41640 | 1 | January | 2014 |
Government | Mexico | Amarilla | Medium | 1679.0 | 260 | 350 | 587650.0 | 35259.000 | 552391.000 | 436540.0 | 115851.000 | 41883 | 9 | September | 2014 |
Government | United States of America | Amarilla | Medium | 727.0 | 260 | 350 | 254450.0 | 15267.000 | 239183.000 | 189020.0 | 50163.000 | 41548 | 10 | October | 2013 |
Government | France | Amarilla | Medium | 1403.0 | 260 | 7 | 9821.0 | 589.260 | 9231.740 | 7015.0 | 2216.740 | 41548 | 10 | October | 2013 |
Government | France | Amarilla | Medium | 2076.0 | 260 | 350 | 726600.0 | 43596.000 | 683004.000 | 539760.0 | 143244.000 | 41548 | 10 | October | 2013 |
Government | France | Montana | Medium | 1757.0 | 5 | 20 | 35140.0 | 2108.400 | 33031.600 | 17570.0 | 15461.600 | 41548 | 10 | October | 2013 |
Midmarket | United States of America | Paseo | Medium | 2198.0 | 10 | 15 | 32970.0 | 1978.200 | 30991.800 | 21980.0 | 9011.800 | 41852 | 8 | August | 2014 |
Midmarket | Germany | Paseo | Medium | 1743.0 | 10 | 15 | 26145.0 | 1568.700 | 24576.300 | 17430.0 | 7146.300 | 41852 | 8 | August | 2014 |
Midmarket | United States of America | Paseo | Medium | 1153.0 | 10 | 15 | 17295.0 | 1037.700 | 16257.300 | 11530.0 | 4727.300 | 41913 | 10 | October | 2014 |
Government | France | Paseo | Medium | 1757.0 | 10 | 20 | 35140.0 | 2108.400 | 33031.600 | 17570.0 | 15461.600 | 41548 | 10 | October | 2013 |
Government | Germany | Velo | Medium | 1001.0 | 120 | 20 | 20020.0 | 1201.200 | 18818.800 | 10010.0 | 8808.800 | 41852 | 8 | August | 2014 |
Government | Mexico | Velo | Medium | 1333.0 | 120 | 7 | 9331.0 | 559.860 | 8771.140 | 6665.0 | 2106.140 | 41944 | 11 | November | 2014 |
Midmarket | United States of America | VTT | Medium | 1153.0 | 250 | 15 | 17295.0 | 1037.700 | 16257.300 | 11530.0 | 4727.300 | 41913 | 10 | October | 2014 |
Channel Partners | Mexico | Carretera | Medium | 727.0 | 3 | 12 | 8724.0 | 610.680 | 8113.320 | 2181.0 | 5932.320 | 41671 | 2 | February | 2014 |
Channel Partners | Canada | Carretera | Medium | 1884.0 | 3 | 12 | 22608.0 | 1582.560 | 21025.440 | 5652.0 | 15373.440 | 41852 | 8 | August | 2014 |
Government | Mexico | Carretera | Medium | 1834.0 | 3 | 20 | 36680.0 | 2567.600 | 34112.400 | 18340.0 | 15772.400 | 41518 | 9 | September | 2013 |
Channel Partners | Mexico | Montana | Medium | 2340.0 | 5 | 12 | 28080.0 | 1965.600 | 26114.400 | 7020.0 | 19094.400 | 41640 | 1 | January | 2014 |
Channel Partners | France | Montana | Medium | 2342.0 | 5 | 12 | 28104.0 | 1967.280 | 26136.720 | 7026.0 | 19110.720 | 41944 | 11 | November | 2014 |
Government | France | Paseo | Medium | 1031.0 | 10 | 7 | 7217.0 | 505.190 | 6711.810 | 5155.0 | 1556.810 | 41518 | 9 | September | 2013 |
Midmarket | Canada | Velo | Medium | 1262.0 | 120 | 15 | 18930.0 | 1325.100 | 17604.900 | 12620.0 | 4984.900 | 41760 | 5 | May | 2014 |
Government | Canada | Velo | Medium | 1135.0 | 120 | 7 | 7945.0 | 556.150 | 7388.850 | 5675.0 | 1713.850 | 41791 | 6 | June | 2014 |
Government | United States of America | Velo | Medium | 547.0 | 120 | 7 | 3829.0 | 268.030 | 3560.970 | 2735.0 | 825.970 | 41944 | 11 | November | 2014 |
Government | Canada | Velo | Medium | 1582.0 | 120 | 7 | 11074.0 | 775.180 | 10298.820 | 7910.0 | 2388.820 | 41974 | 12 | December | 2014 |
Channel Partners | France | VTT | Medium | 1738.5 | 250 | 12 | 20862.0 | 1460.340 | 19401.660 | 5215.5 | 14186.160 | 41730 | 4 | April | 2014 |
Channel Partners | Germany | VTT | Medium | 2215.0 | 250 | 12 | 26580.0 | 1860.600 | 24719.400 | 6645.0 | 18074.400 | 41518 | 9 | September | 2013 |
Government | Canada | VTT | Medium | 1582.0 | 250 | 7 | 11074.0 | 775.180 | 10298.820 | 7910.0 | 2388.820 | 41974 | 12 | December | 2014 |
Government | Canada | Amarilla | Medium | 1135.0 | 260 | 7 | 7945.0 | 556.150 | 7388.850 | 5675.0 | 1713.850 | 41791 | 6 | June | 2014 |
Government | United States of America | Carretera | Medium | 1761.0 | 3 | 350 | 616350.0 | 43144.500 | 573205.500 | 457860.0 | 115345.500 | 41699 | 3 | March | 2014 |
Small Business | France | Carretera | Medium | 448.0 | 3 | 300 | 134400.0 | 9408.000 | 124992.000 | 112000.0 | 12992.000 | 41791 | 6 | June | 2014 |
Small Business | France | Carretera | Medium | 2181.0 | 3 | 300 | 654300.0 | 45801.000 | 608499.000 | 545250.0 | 63249.000 | 41913 | 10 | October | 2014 |
Government | France | Montana | Medium | 1976.0 | 5 | 20 | 39520.0 | 2766.400 | 36753.600 | 19760.0 | 16993.600 | 41913 | 10 | October | 2014 |
Small Business | France | Montana | Medium | 2181.0 | 5 | 300 | 654300.0 | 45801.000 | 608499.000 | 545250.0 | 63249.000 | 41913 | 10 | October | 2014 |
Enterprise | Germany | Montana | Medium | 2500.0 | 5 | 125 | 312500.0 | 21875.000 | 290625.000 | 300000.0 | -9375.000 | 41579 | 11 | November | 2013 |
Small Business | Canada | Paseo | Medium | 1702.0 | 10 | 300 | 510600.0 | 35742.000 | 474858.000 | 425500.0 | 49358.000 | 41760 | 5 | May | 2014 |
Small Business | France | Paseo | Medium | 448.0 | 10 | 300 | 134400.0 | 9408.000 | 124992.000 | 112000.0 | 12992.000 | 41791 | 6 | June | 2014 |
Enterprise | Germany | Paseo | Medium | 3513.0 | 10 | 125 | 439125.0 | 30738.750 | 408386.250 | 421560.0 | -13173.750 | 41821 | 7 | July | 2014 |
Midmarket | France | Paseo | Medium | 2101.0 | 10 | 15 | 31515.0 | 2206.050 | 29308.950 | 21010.0 | 8298.950 | 41852 | 8 | August | 2014 |
Midmarket | United States of America | Paseo | Medium | 2931.0 | 10 | 15 | 43965.0 | 3077.550 | 40887.450 | 29310.0 | 11577.450 | 41518 | 9 | September | 2013 |
Government | France | Paseo | Medium | 1535.0 | 10 | 20 | 30700.0 | 2149.000 | 28551.000 | 15350.0 | 13201.000 | 41883 | 9 | September | 2014 |
Small Business | Germany | Paseo | Medium | 1123.0 | 10 | 300 | 336900.0 | 23583.000 | 313317.000 | 280750.0 | 32567.000 | 41518 | 9 | September | 2013 |
Small Business | Canada | Paseo | Medium | 1404.0 | 10 | 300 | 421200.0 | 29484.000 | 391716.000 | 351000.0 | 40716.000 | 41579 | 11 | November | 2013 |
Channel Partners | Mexico | Paseo | Medium | 2763.0 | 10 | 12 | 33156.0 | 2320.920 | 30835.080 | 8289.0 | 22546.080 | 41579 | 11 | November | 2013 |
Government | Germany | Paseo | Medium | 2125.0 | 10 | 7 | 14875.0 | 1041.250 | 13833.750 | 10625.0 | 3208.750 | 41609 | 12 | December | 2013 |
Small Business | France | Velo | Medium | 1659.0 | 120 | 300 | 497700.0 | 34839.000 | 462861.000 | 414750.0 | 48111.000 | 41821 | 7 | July | 2014 |
Government | Mexico | Velo | Medium | 609.0 | 120 | 20 | 12180.0 | 852.600 | 11327.400 | 6090.0 | 5237.400 | 41852 | 8 | August | 2014 |
Enterprise | Germany | Velo | Medium | 2087.0 | 120 | 125 | 260875.0 | 18261.250 | 242613.750 | 250440.0 | -7826.250 | 41883 | 9 | September | 2014 |
Government | France | Velo | Medium | 1976.0 | 120 | 20 | 39520.0 | 2766.400 | 36753.600 | 19760.0 | 16993.600 | 41913 | 10 | October | 2014 |
Government | United States of America | Velo | Medium | 1421.0 | 120 | 20 | 28420.0 | 1989.400 | 26430.600 | 14210.0 | 12220.600 | 41609 | 12 | December | 2013 |
Small Business | United States of America | Velo | Medium | 1372.0 | 120 | 300 | 411600.0 | 28812.000 | 382788.000 | 343000.0 | 39788.000 | 41974 | 12 | December | 2014 |
Government | Germany | Velo | Medium | 588.0 | 120 | 20 | 11760.0 | 823.200 | 10936.800 | 5880.0 | 5056.800 | 41609 | 12 | December | 2013 |
Channel Partners | Canada | VTT | Medium | 3244.5 | 250 | 12 | 38934.0 | 2725.380 | 36208.620 | 9733.5 | 26475.120 | 41640 | 1 | January | 2014 |
Small Business | France | VTT | Medium | 959.0 | 250 | 300 | 287700.0 | 20139.000 | 267561.000 | 239750.0 | 27811.000 | 41671 | 2 | February | 2014 |
Small Business | Mexico | VTT | Medium | 2747.0 | 250 | 300 | 824100.0 | 57687.000 | 766413.000 | 686750.0 | 79663.000 | 41671 | 2 | February | 2014 |
Enterprise | Canada | Amarilla | Medium | 1645.0 | 260 | 125 | 205625.0 | 14393.750 | 191231.250 | 197400.0 | -6168.750 | 41760 | 5 | May | 2014 |
Government | France | Amarilla | Medium | 2876.0 | 260 | 350 | 1006600.0 | 70462.000 | 936138.000 | 747760.0 | 188378.000 | 41883 | 9 | September | 2014 |
Enterprise | Germany | Amarilla | Medium | 994.0 | 260 | 125 | 124250.0 | 8697.500 | 115552.500 | 119280.0 | -3727.500 | 41518 | 9 | September | 2013 |
Government | Canada | Amarilla | Medium | 1118.0 | 260 | 20 | 22360.0 | 1565.200 | 20794.800 | 11180.0 | 9614.800 | 41944 | 11 | November | 2014 |
Small Business | United States of America | Amarilla | Medium | 1372.0 | 260 | 300 | 411600.0 | 28812.000 | 382788.000 | 343000.0 | 39788.000 | 41974 | 12 | December | 2014 |
Government | Canada | Montana | Medium | 488.0 | 5 | 7 | 3416.0 | 273.280 | 3142.720 | 2440.0 | 702.720 | 41671 | 2 | February | 2014 |
Government | United States of America | Montana | Medium | 1282.0 | 5 | 20 | 25640.0 | 2051.200 | 23588.800 | 12820.0 | 10768.800 | 41791 | 6 | June | 2014 |
Government | Canada | Paseo | Medium | 257.0 | 10 | 7 | 1799.0 | 143.920 | 1655.080 | 1285.0 | 370.080 | 41760 | 5 | May | 2014 |
Government | United States of America | Amarilla | Medium | 1282.0 | 260 | 20 | 25640.0 | 2051.200 | 23588.800 | 12820.0 | 10768.800 | 41791 | 6 | June | 2014 |
Enterprise | Mexico | Carretera | Medium | 1540.0 | 3 | 125 | 192500.0 | 15400.000 | 177100.000 | 184800.0 | -7700.000 | 41852 | 8 | August | 2014 |
Midmarket | France | Carretera | Medium | 490.0 | 3 | 15 | 7350.0 | 588.000 | 6762.000 | 4900.0 | 1862.000 | 41944 | 11 | November | 2014 |
Government | Mexico | Carretera | Medium | 1362.0 | 3 | 350 | 476700.0 | 38136.000 | 438564.000 | 354120.0 | 84444.000 | 41974 | 12 | December | 2014 |
Midmarket | France | Montana | Medium | 2501.0 | 5 | 15 | 37515.0 | 3001.200 | 34513.800 | 25010.0 | 9503.800 | 41699 | 3 | March | 2014 |
Government | Canada | Montana | Medium | 708.0 | 5 | 20 | 14160.0 | 1132.800 | 13027.200 | 7080.0 | 5947.200 | 41791 | 6 | June | 2014 |
Government | Germany | Montana | Medium | 645.0 | 5 | 20 | 12900.0 | 1032.000 | 11868.000 | 6450.0 | 5418.000 | 41821 | 7 | July | 2014 |
Small Business | France | Montana | Medium | 1562.0 | 5 | 300 | 468600.0 | 37488.000 | 431112.000 | 390500.0 | 40612.000 | 41852 | 8 | August | 2014 |
Small Business | Canada | Montana | Medium | 1283.0 | 5 | 300 | 384900.0 | 30792.000 | 354108.000 | 320750.0 | 33358.000 | 41518 | 9 | September | 2013 |
Midmarket | Germany | Montana | Medium | 711.0 | 5 | 15 | 10665.0 | 853.200 | 9811.800 | 7110.0 | 2701.800 | 41974 | 12 | December | 2014 |
Enterprise | Mexico | Paseo | Medium | 1114.0 | 10 | 125 | 139250.0 | 11140.000 | 128110.000 | 133680.0 | -5570.000 | 41699 | 3 | March | 2014 |
Government | Germany | Paseo | Medium | 1259.0 | 10 | 7 | 8813.0 | 705.040 | 8107.960 | 6295.0 | 1812.960 | 41730 | 4 | April | 2014 |
Government | Germany | Paseo | Medium | 1095.0 | 10 | 7 | 7665.0 | 613.200 | 7051.800 | 5475.0 | 1576.800 | 41760 | 5 | May | 2014 |
Government | Germany | Paseo | Medium | 1366.0 | 10 | 20 | 27320.0 | 2185.600 | 25134.400 | 13660.0 | 11474.400 | 41791 | 6 | June | 2014 |
Small Business | Mexico | Paseo | Medium | 2460.0 | 10 | 300 | 738000.0 | 59040.000 | 678960.000 | 615000.0 | 63960.000 | 41791 | 6 | June | 2014 |
Government | United States of America | Paseo | Medium | 678.0 | 10 | 7 | 4746.0 | 379.680 | 4366.320 | 3390.0 | 976.320 | 41852 | 8 | August | 2014 |
Government | Germany | Paseo | Medium | 1598.0 | 10 | 7 | 11186.0 | 894.880 | 10291.120 | 7990.0 | 2301.120 | 41852 | 8 | August | 2014 |
Government | Germany | Paseo | Medium | 2409.0 | 10 | 7 | 16863.0 | 1349.040 | 15513.960 | 12045.0 | 3468.960 | 41518 | 9 | September | 2013 |
Government | Germany | Paseo | Medium | 1934.0 | 10 | 20 | 38680.0 | 3094.400 | 35585.600 | 19340.0 | 16245.600 | 41883 | 9 | September | 2014 |
Government | Mexico | Paseo | Medium | 2993.0 | 10 | 20 | 59860.0 | 4788.800 | 55071.200 | 29930.0 | 25141.200 | 41883 | 9 | September | 2014 |
Government | Germany | Paseo | Medium | 2146.0 | 10 | 350 | 751100.0 | 60088.000 | 691012.000 | 557960.0 | 133052.000 | 41579 | 11 | November | 2013 |
Government | Mexico | Paseo | Medium | 1946.0 | 10 | 7 | 13622.0 | 1089.760 | 12532.240 | 9730.0 | 2802.240 | 41609 | 12 | December | 2013 |
Government | Mexico | Paseo | Medium | 1362.0 | 10 | 350 | 476700.0 | 38136.000 | 438564.000 | 354120.0 | 84444.000 | 41974 | 12 | December | 2014 |
Channel Partners | Canada | Velo | Medium | 598.0 | 120 | 12 | 7176.0 | 574.080 | 6601.920 | 1794.0 | 4807.920 | 41699 | 3 | March | 2014 |
Government | United States of America | Velo | Medium | 2907.0 | 120 | 7 | 20349.0 | 1627.920 | 18721.080 | 14535.0 | 4186.080 | 41791 | 6 | June | 2014 |
Government | Germany | Velo | Medium | 2338.0 | 120 | 7 | 16366.0 | 1309.280 | 15056.720 | 11690.0 | 3366.720 | 41791 | 6 | June | 2014 |
Small Business | France | Velo | Medium | 386.0 | 120 | 300 | 115800.0 | 9264.000 | 106536.000 | 96500.0 | 10036.000 | 41579 | 11 | November | 2013 |
Small Business | Mexico | Velo | Medium | 635.0 | 120 | 300 | 190500.0 | 15240.000 | 175260.000 | 158750.0 | 16510.000 | 41974 | 12 | December | 2014 |
Government | France | VTT | Medium | 574.5 | 250 | 350 | 201075.0 | 16086.000 | 184989.000 | 149370.0 | 35619.000 | 41730 | 4 | April | 2014 |
Government | Germany | VTT | Medium | 2338.0 | 250 | 7 | 16366.0 | 1309.280 | 15056.720 | 11690.0 | 3366.720 | 41791 | 6 | June | 2014 |
Government | France | VTT | Medium | 381.0 | 250 | 350 | 133350.0 | 10668.000 | 122682.000 | 99060.0 | 23622.000 | 41852 | 8 | August | 2014 |
Government | Germany | VTT | Medium | 422.0 | 250 | 350 | 147700.0 | 11816.000 | 135884.000 | 109720.0 | 26164.000 | 41852 | 8 | August | 2014 |
Small Business | Canada | VTT | Medium | 2134.0 | 250 | 300 | 640200.0 | 51216.000 | 588984.000 | 533500.0 | 55484.000 | 41883 | 9 | September | 2014 |
Small Business | United States of America | VTT | Medium | 808.0 | 250 | 300 | 242400.0 | 19392.000 | 223008.000 | 202000.0 | 21008.000 | 41609 | 12 | December | 2013 |
Government | Canada | Amarilla | Medium | 708.0 | 260 | 20 | 14160.0 | 1132.800 | 13027.200 | 7080.0 | 5947.200 | 41791 | 6 | June | 2014 |
Government | United States of America | Amarilla | Medium | 2907.0 | 260 | 7 | 20349.0 | 1627.920 | 18721.080 | 14535.0 | 4186.080 | 41791 | 6 | June | 2014 |
Government | Germany | Amarilla | Medium | 1366.0 | 260 | 20 | 27320.0 | 2185.600 | 25134.400 | 13660.0 | 11474.400 | 41791 | 6 | June | 2014 |
Small Business | Mexico | Amarilla | Medium | 2460.0 | 260 | 300 | 738000.0 | 59040.000 | 678960.000 | 615000.0 | 63960.000 | 41791 | 6 | June | 2014 |
Government | Germany | Amarilla | Medium | 1520.0 | 260 | 20 | 30400.0 | 2432.000 | 27968.000 | 15200.0 | 12768.000 | 41944 | 11 | November | 2014 |
Midmarket | Germany | Amarilla | Medium | 711.0 | 260 | 15 | 10665.0 | 853.200 | 9811.800 | 7110.0 | 2701.800 | 41974 | 12 | December | 2014 |
Channel Partners | Mexico | Amarilla | Medium | 1375.0 | 260 | 12 | 16500.0 | 1320.000 | 15180.000 | 4125.0 | 11055.000 | 41609 | 12 | December | 2013 |
Small Business | Mexico | Amarilla | Medium | 635.0 | 260 | 300 | 190500.0 | 15240.000 | 175260.000 | 158750.0 | 16510.000 | 41974 | 12 | December | 2014 |
Government | United States of America | VTT | Medium | 436.5 | 250 | 20 | 8730.0 | 698.400 | 8031.600 | 4365.0 | 3666.600 | 41821 | 7 | July | 2014 |
Small Business | Canada | Carretera | Medium | 1094.0 | 3 | 300 | 328200.0 | 29538.000 | 298662.000 | 273500.0 | 25162.000 | 41791 | 6 | June | 2014 |
Channel Partners | Mexico | Carretera | Medium | 367.0 | 3 | 12 | 4404.0 | 396.360 | 4007.640 | 1101.0 | 2906.640 | 41548 | 10 | October | 2013 |
Small Business | Canada | Montana | Medium | 3802.5 | 5 | 300 | 1140750.0 | 102667.500 | 1038082.500 | 950625.0 | 87457.500 | 41730 | 4 | April | 2014 |
Government | France | Montana | Medium | 1666.0 | 5 | 350 | 583100.0 | 52479.000 | 530621.000 | 433160.0 | 97461.000 | 41760 | 5 | May | 2014 |
Small Business | France | Montana | Medium | 322.0 | 5 | 300 | 96600.0 | 8694.000 | 87906.000 | 80500.0 | 7406.000 | 41518 | 9 | September | 2013 |
Channel Partners | Canada | Montana | Medium | 2321.0 | 5 | 12 | 27852.0 | 2506.680 | 25345.320 | 6963.0 | 18382.320 | 41944 | 11 | November | 2014 |
Enterprise | France | Montana | Medium | 1857.0 | 5 | 125 | 232125.0 | 20891.250 | 211233.750 | 222840.0 | -11606.250 | 41579 | 11 | November | 2013 |
Government | Canada | Montana | Medium | 1611.0 | 5 | 7 | 11277.0 | 1014.930 | 10262.070 | 8055.0 | 2207.070 | 41609 | 12 | December | 2013 |
Enterprise | United States of America | Montana | Medium | 2797.0 | 5 | 125 | 349625.0 | 31466.250 | 318158.750 | 335640.0 | -17481.250 | 41974 | 12 | December | 2014 |
Small Business | Germany | Montana | Medium | 334.0 | 5 | 300 | 100200.0 | 9018.000 | 91182.000 | 83500.0 | 7682.000 | 41609 | 12 | December | 2013 |
Small Business | Mexico | Paseo | Medium | 2565.0 | 10 | 300 | 769500.0 | 69255.000 | 700245.000 | 641250.0 | 58995.000 | 41640 | 1 | January | 2014 |
Government | Mexico | Paseo | Medium | 2417.0 | 10 | 350 | 845950.0 | 76135.500 | 769814.500 | 628420.0 | 141394.500 | 41640 | 1 | January | 2014 |
Midmarket | United States of America | Paseo | Medium | 3675.0 | 10 | 15 | 55125.0 | 4961.250 | 50163.750 | 36750.0 | 13413.750 | 41730 | 4 | April | 2014 |
Small Business | Canada | Paseo | Medium | 1094.0 | 10 | 300 | 328200.0 | 29538.000 | 298662.000 | 273500.0 | 25162.000 | 41791 | 6 | June | 2014 |
Midmarket | France | Paseo | Medium | 1227.0 | 10 | 15 | 18405.0 | 1656.450 | 16748.550 | 12270.0 | 4478.550 | 41913 | 10 | October | 2014 |
Channel Partners | Mexico | Paseo | Medium | 367.0 | 10 | 12 | 4404.0 | 396.360 | 4007.640 | 1101.0 | 2906.640 | 41548 | 10 | October | 2013 |
Small Business | France | Paseo | Medium | 1324.0 | 10 | 300 | 397200.0 | 35748.000 | 361452.000 | 331000.0 | 30452.000 | 41944 | 11 | November | 2014 |
Channel Partners | Germany | Paseo | Medium | 1775.0 | 10 | 12 | 21300.0 | 1917.000 | 19383.000 | 5325.0 | 14058.000 | 41579 | 11 | November | 2013 |
Enterprise | United States of America | Paseo | Medium | 2797.0 | 10 | 125 | 349625.0 | 31466.250 | 318158.750 | 335640.0 | -17481.250 | 41974 | 12 | December | 2014 |
Midmarket | Mexico | Velo | Medium | 245.0 | 120 | 15 | 3675.0 | 330.750 | 3344.250 | 2450.0 | 894.250 | 41760 | 5 | May | 2014 |
Small Business | Canada | Velo | Medium | 3793.5 | 120 | 300 | 1138050.0 | 102424.500 | 1035625.500 | 948375.0 | 87250.500 | 41821 | 7 | July | 2014 |
Government | Germany | Velo | Medium | 1307.0 | 120 | 350 | 457450.0 | 41170.500 | 416279.500 | 339820.0 | 76459.500 | 41821 | 7 | July | 2014 |
Enterprise | Canada | Velo | Medium | 567.0 | 120 | 125 | 70875.0 | 6378.750 | 64496.250 | 68040.0 | -3543.750 | 41883 | 9 | September | 2014 |
Enterprise | Mexico | Velo | Medium | 2110.0 | 120 | 125 | 263750.0 | 23737.500 | 240012.500 | 253200.0 | -13187.500 | 41883 | 9 | September | 2014 |
Government | Canada | Velo | Medium | 1269.0 | 120 | 350 | 444150.0 | 39973.500 | 404176.500 | 329940.0 | 74236.500 | 41913 | 10 | October | 2014 |
Channel Partners | United States of America | VTT | Medium | 1956.0 | 250 | 12 | 23472.0 | 2112.480 | 21359.520 | 5868.0 | 15491.520 | 41640 | 1 | January | 2014 |
Small Business | Germany | VTT | Medium | 2659.0 | 250 | 300 | 797700.0 | 71793.000 | 725907.000 | 664750.0 | 61157.000 | 41671 | 2 | February | 2014 |
Government | United States of America | VTT | Medium | 1351.5 | 250 | 350 | 473025.0 | 42572.250 | 430452.750 | 351390.0 | 79062.750 | 41730 | 4 | April | 2014 |
Channel Partners | Germany | VTT | Medium | 880.0 | 250 | 12 | 10560.0 | 950.400 | 9609.600 | 2640.0 | 6969.600 | 41760 | 5 | May | 2014 |
Small Business | United States of America | VTT | Medium | 1867.0 | 250 | 300 | 560100.0 | 50409.000 | 509691.000 | 466750.0 | 42941.000 | 41883 | 9 | September | 2014 |
Channel Partners | France | VTT | Medium | 2234.0 | 250 | 12 | 26808.0 | 2412.720 | 24395.280 | 6702.0 | 17693.280 | 41518 | 9 | September | 2013 |
Midmarket | France | VTT | Medium | 1227.0 | 250 | 15 | 18405.0 | 1656.450 | 16748.550 | 12270.0 | 4478.550 | 41913 | 10 | October | 2014 |
Enterprise | Mexico | VTT | Medium | 877.0 | 250 | 125 | 109625.0 | 9866.250 | 99758.750 | 105240.0 | -5481.250 | 41944 | 11 | November | 2014 |
Government | United States of America | Amarilla | Medium | 2071.0 | 260 | 350 | 724850.0 | 65236.500 | 659613.500 | 538460.0 | 121153.500 | 41883 | 9 | September | 2014 |
Government | Canada | Amarilla | Medium | 1269.0 | 260 | 350 | 444150.0 | 39973.500 | 404176.500 | 329940.0 | 74236.500 | 41913 | 10 | October | 2014 |
Midmarket | Germany | Amarilla | Medium | 970.0 | 260 | 15 | 14550.0 | 1309.500 | 13240.500 | 9700.0 | 3540.500 | 41579 | 11 | November | 2013 |
Government | Mexico | Amarilla | Medium | 1694.0 | 260 | 20 | 33880.0 | 3049.200 | 30830.800 | 16940.0 | 13890.800 | 41944 | 11 | November | 2014 |
Government | Germany | Carretera | Medium | 663.0 | 3 | 20 | 13260.0 | 1193.400 | 12066.600 | 6630.0 | 5436.600 | 41760 | 5 | May | 2014 |
Government | Canada | Carretera | Medium | 819.0 | 3 | 7 | 5733.0 | 515.970 | 5217.030 | 4095.0 | 1122.030 | 41821 | 7 | July | 2014 |
Channel Partners | Germany | Carretera | Medium | 1580.0 | 3 | 12 | 18960.0 | 1706.400 | 17253.600 | 4740.0 | 12513.600 | 41883 | 9 | September | 2014 |
Government | Mexico | Carretera | Medium | 521.0 | 3 | 7 | 3647.0 | 328.230 | 3318.770 | 2605.0 | 713.770 | 41974 | 12 | December | 2014 |
Government | United States of America | Paseo | Medium | 973.0 | 10 | 20 | 19460.0 | 1751.400 | 17708.600 | 9730.0 | 7978.600 | 41699 | 3 | March | 2014 |
Government | Mexico | Paseo | Medium | 1038.0 | 10 | 20 | 20760.0 | 1868.400 | 18891.600 | 10380.0 | 8511.600 | 41791 | 6 | June | 2014 |
Government | Germany | Paseo | Medium | 360.0 | 10 | 7 | 2520.0 | 226.800 | 2293.200 | 1800.0 | 493.200 | 41913 | 10 | October | 2014 |
Channel Partners | France | Velo | Medium | 1967.0 | 120 | 12 | 23604.0 | 2124.360 | 21479.640 | 5901.0 | 15578.640 | 41699 | 3 | March | 2014 |
Midmarket | Mexico | Velo | Medium | 2628.0 | 120 | 15 | 39420.0 | 3547.800 | 35872.200 | 26280.0 | 9592.200 | 41730 | 4 | April | 2014 |
Government | Germany | VTT | Medium | 360.0 | 250 | 7 | 2520.0 | 226.800 | 2293.200 | 1800.0 | 493.200 | 41913 | 10 | October | 2014 |
Government | France | VTT | Medium | 2682.0 | 250 | 20 | 53640.0 | 4827.600 | 48812.400 | 26820.0 | 21992.400 | 41579 | 11 | November | 2013 |
Government | Mexico | VTT | Medium | 521.0 | 250 | 7 | 3647.0 | 328.230 | 3318.770 | 2605.0 | 713.770 | 41974 | 12 | December | 2014 |
Government | Mexico | Amarilla | Medium | 1038.0 | 260 | 20 | 20760.0 | 1868.400 | 18891.600 | 10380.0 | 8511.600 | 41791 | 6 | June | 2014 |
Midmarket | Canada | Amarilla | Medium | 1630.5 | 260 | 15 | 24457.5 | 2201.175 | 22256.325 | 16305.0 | 5951.325 | 41821 | 7 | July | 2014 |
Channel Partners | France | Amarilla | Medium | 306.0 | 260 | 12 | 3672.0 | 330.480 | 3341.520 | 918.0 | 2423.520 | 41609 | 12 | December | 2013 |
Channel Partners | United States of America | Carretera | High | 386.0 | 3 | 12 | 4632.0 | 463.200 | 4168.800 | 1158.0 | 3010.800 | 41548 | 10 | October | 2013 |
Government | United States of America | Montana | High | 2328.0 | 5 | 7 | 16296.0 | 1629.600 | 14666.400 | 11640.0 | 3026.400 | 41883 | 9 | September | 2014 |
Channel Partners | United States of America | Paseo | High | 386.0 | 10 | 12 | 4632.0 | 463.200 | 4168.800 | 1158.0 | 3010.800 | 41548 | 10 | October | 2013 |
Enterprise | United States of America | Carretera | High | 3445.5 | 3 | 125 | 430687.5 | 43068.750 | 387618.750 | 413460.0 | -25841.250 | 41730 | 4 | April | 2014 |
Enterprise | France | Carretera | High | 1482.0 | 3 | 125 | 185250.0 | 18525.000 | 166725.000 | 177840.0 | -11115.000 | 41609 | 12 | December | 2013 |
Government | United States of America | Montana | High | 2313.0 | 5 | 350 | 809550.0 | 80955.000 | 728595.000 | 601380.0 | 127215.000 | 41760 | 5 | May | 2014 |
Enterprise | United States of America | Montana | High | 1804.0 | 5 | 125 | 225500.0 | 22550.000 | 202950.000 | 216480.0 | -13530.000 | 41579 | 11 | November | 2013 |
Midmarket | France | Montana | High | 2072.0 | 5 | 15 | 31080.0 | 3108.000 | 27972.000 | 20720.0 | 7252.000 | 41974 | 12 | December | 2014 |
Government | France | Paseo | High | 1954.0 | 10 | 20 | 39080.0 | 3908.000 | 35172.000 | 19540.0 | 15632.000 | 41699 | 3 | March | 2014 |
Small Business | Mexico | Paseo | High | 591.0 | 10 | 300 | 177300.0 | 17730.000 | 159570.000 | 147750.0 | 11820.000 | 41760 | 5 | May | 2014 |
Midmarket | France | Paseo | High | 2167.0 | 10 | 15 | 32505.0 | 3250.500 | 29254.500 | 21670.0 | 7584.500 | 41548 | 10 | October | 2013 |
Government | Germany | Paseo | High | 241.0 | 10 | 20 | 4820.0 | 482.000 | 4338.000 | 2410.0 | 1928.000 | 41913 | 10 | October | 2014 |
Midmarket | Germany | Velo | High | 681.0 | 120 | 15 | 10215.0 | 1021.500 | 9193.500 | 6810.0 | 2383.500 | 41640 | 1 | January | 2014 |
Midmarket | Germany | Velo | High | 510.0 | 120 | 15 | 7650.0 | 765.000 | 6885.000 | 5100.0 | 1785.000 | 41730 | 4 | April | 2014 |
Midmarket | United States of America | Velo | High | 790.0 | 120 | 15 | 11850.0 | 1185.000 | 10665.000 | 7900.0 | 2765.000 | 41760 | 5 | May | 2014 |
Government | France | Velo | High | 639.0 | 120 | 350 | 223650.0 | 22365.000 | 201285.000 | 166140.0 | 35145.000 | 41821 | 7 | July | 2014 |
Enterprise | United States of America | Velo | High | 1596.0 | 120 | 125 | 199500.0 | 19950.000 | 179550.000 | 191520.0 | -11970.000 | 41883 | 9 | September | 2014 |
Small Business | United States of America | Velo | High | 2294.0 | 120 | 300 | 688200.0 | 68820.000 | 619380.000 | 573500.0 | 45880.000 | 41548 | 10 | October | 2013 |
Government | Germany | Velo | High | 241.0 | 120 | 20 | 4820.0 | 482.000 | 4338.000 | 2410.0 | 1928.000 | 41913 | 10 | October | 2014 |
Government | Germany | Velo | High | 2665.0 | 120 | 7 | 18655.0 | 1865.500 | 16789.500 | 13325.0 | 3464.500 | 41944 | 11 | November | 2014 |
Enterprise | Canada | Velo | High | 1916.0 | 120 | 125 | 239500.0 | 23950.000 | 215550.000 | 229920.0 | -14370.000 | 41609 | 12 | December | 2013 |
Small Business | France | Velo | High | 853.0 | 120 | 300 | 255900.0 | 25590.000 | 230310.000 | 213250.0 | 17060.000 | 41974 | 12 | December | 2014 |
Enterprise | Mexico | VTT | High | 341.0 | 250 | 125 | 42625.0 | 4262.500 | 38362.500 | 40920.0 | -2557.500 | 41760 | 5 | May | 2014 |
Midmarket | Mexico | VTT | High | 641.0 | 250 | 15 | 9615.0 | 961.500 | 8653.500 | 6410.0 | 2243.500 | 41821 | 7 | July | 2014 |
Government | United States of America | VTT | High | 2807.0 | 250 | 350 | 982450.0 | 98245.000 | 884205.000 | 729820.0 | 154385.000 | 41852 | 8 | August | 2014 |
Small Business | Mexico | VTT | High | 432.0 | 250 | 300 | 129600.0 | 12960.000 | 116640.000 | 108000.0 | 8640.000 | 41883 | 9 | September | 2014 |
Small Business | United States of America | VTT | High | 2294.0 | 250 | 300 | 688200.0 | 68820.000 | 619380.000 | 573500.0 | 45880.000 | 41548 | 10 | October | 2013 |
Midmarket | France | VTT | High | 2167.0 | 250 | 15 | 32505.0 | 3250.500 | 29254.500 | 21670.0 | 7584.500 | 41548 | 10 | October | 2013 |
Enterprise | Canada | VTT | High | 2529.0 | 250 | 125 | 316125.0 | 31612.500 | 284512.500 | 303480.0 | -18967.500 | 41944 | 11 | November | 2014 |
Government | Germany | VTT | High | 1870.0 | 250 | 350 | 654500.0 | 65450.000 | 589050.000 | 486200.0 | 102850.000 | 41609 | 12 | December | 2013 |
Enterprise | United States of America | Amarilla | High | 579.0 | 260 | 125 | 72375.0 | 7237.500 | 65137.500 | 69480.0 | -4342.500 | 41640 | 1 | January | 2014 |
Government | Canada | Amarilla | High | 2240.0 | 260 | 350 | 784000.0 | 78400.000 | 705600.000 | 582400.0 | 123200.000 | 41671 | 2 | February | 2014 |
Small Business | United States of America | Amarilla | High | 2993.0 | 260 | 300 | 897900.0 | 89790.000 | 808110.000 | 748250.0 | 59860.000 | 41699 | 3 | March | 2014 |
Channel Partners | Canada | Amarilla | High | 3520.5 | 260 | 12 | 42246.0 | 4224.600 | 38021.400 | 10561.5 | 27459.900 | 41730 | 4 | April | 2014 |
Government | Mexico | Amarilla | High | 2039.0 | 260 | 20 | 40780.0 | 4078.000 | 36702.000 | 20390.0 | 16312.000 | 41760 | 5 | May | 2014 |
Channel Partners | Germany | Amarilla | High | 2574.0 | 260 | 12 | 30888.0 | 3088.800 | 27799.200 | 7722.0 | 20077.200 | 41852 | 8 | August | 2014 |
Government | Canada | Amarilla | High | 707.0 | 260 | 350 | 247450.0 | 24745.000 | 222705.000 | 183820.0 | 38885.000 | 41883 | 9 | September | 2014 |
Midmarket | France | Amarilla | High | 2072.0 | 260 | 15 | 31080.0 | 3108.000 | 27972.000 | 20720.0 | 7252.000 | 41974 | 12 | December | 2014 |
Small Business | France | Amarilla | High | 853.0 | 260 | 300 | 255900.0 | 25590.000 | 230310.000 | 213250.0 | 17060.000 | 41974 | 12 | December | 2014 |
Channel Partners | France | Carretera | High | 1198.0 | 3 | 12 | 14376.0 | 1581.360 | 12794.640 | 3594.0 | 9200.640 | 41548 | 10 | October | 2013 |
Government | France | Paseo | High | 2532.0 | 10 | 7 | 17724.0 | 1949.640 | 15774.360 | 12660.0 | 3114.360 | 41730 | 4 | April | 2014 |
Channel Partners | France | Paseo | High | 1198.0 | 10 | 12 | 14376.0 | 1581.360 | 12794.640 | 3594.0 | 9200.640 | 41548 | 10 | October | 2013 |
Midmarket | Canada | Velo | High | 384.0 | 120 | 15 | 5760.0 | 633.600 | 5126.400 | 3840.0 | 1286.400 | 41640 | 1 | January | 2014 |
Channel Partners | Germany | Velo | High | 472.0 | 120 | 12 | 5664.0 | 623.040 | 5040.960 | 1416.0 | 3624.960 | 41913 | 10 | October | 2014 |
Government | United States of America | VTT | High | 1579.0 | 250 | 7 | 11053.0 | 1215.830 | 9837.170 | 7895.0 | 1942.170 | 41699 | 3 | March | 2014 |
Channel Partners | Mexico | VTT | High | 1005.0 | 250 | 12 | 12060.0 | 1326.600 | 10733.400 | 3015.0 | 7718.400 | 41518 | 9 | September | 2013 |
Midmarket | United States of America | Amarilla | High | 3199.5 | 260 | 15 | 47992.5 | 5279.175 | 42713.325 | 31995.0 | 10718.325 | 41821 | 7 | July | 2014 |
Channel Partners | Germany | Amarilla | High | 472.0 | 260 | 12 | 5664.0 | 623.040 | 5040.960 | 1416.0 | 3624.960 | 41913 | 10 | October | 2014 |
Channel Partners | Canada | Carretera | High | 1937.0 | 3 | 12 | 23244.0 | 2556.840 | 20687.160 | 5811.0 | 14876.160 | 41671 | 2 | February | 2014 |
Government | Germany | Carretera | High | 792.0 | 3 | 350 | 277200.0 | 30492.000 | 246708.000 | 205920.0 | 40788.000 | 41699 | 3 | March | 2014 |
Small Business | Germany | Carretera | High | 2811.0 | 3 | 300 | 843300.0 | 92763.000 | 750537.000 | 702750.0 | 47787.000 | 41821 | 7 | July | 2014 |
Enterprise | France | Carretera | High | 2441.0 | 3 | 125 | 305125.0 | 33563.750 | 271561.250 | 292920.0 | -21358.750 | 41913 | 10 | October | 2014 |
Midmarket | Canada | Carretera | High | 1560.0 | 3 | 15 | 23400.0 | 2574.000 | 20826.000 | 15600.0 | 5226.000 | 41579 | 11 | November | 2013 |
Government | Mexico | Carretera | High | 2706.0 | 3 | 7 | 18942.0 | 2083.620 | 16858.380 | 13530.0 | 3328.380 | 41579 | 11 | November | 2013 |
Government | Germany | Montana | High | 766.0 | 5 | 350 | 268100.0 | 29491.000 | 238609.000 | 199160.0 | 39449.000 | 41640 | 1 | January | 2014 |
Government | Germany | Montana | High | 2992.0 | 5 | 20 | 59840.0 | 6582.400 | 53257.600 | 29920.0 | 23337.600 | 41548 | 10 | October | 2013 |
Midmarket | Mexico | Montana | High | 2157.0 | 5 | 15 | 32355.0 | 3559.050 | 28795.950 | 21570.0 | 7225.950 | 41974 | 12 | December | 2014 |
Small Business | Canada | Paseo | High | 873.0 | 10 | 300 | 261900.0 | 28809.000 | 233091.000 | 218250.0 | 14841.000 | 41640 | 1 | January | 2014 |
Government | Mexico | Paseo | High | 1122.0 | 10 | 20 | 22440.0 | 2468.400 | 19971.600 | 11220.0 | 8751.600 | 41699 | 3 | March | 2014 |
Government | Canada | Paseo | High | 2104.5 | 10 | 350 | 736575.0 | 81023.250 | 655551.750 | 547170.0 | 108381.750 | 41821 | 7 | July | 2014 |
Channel Partners | Canada | Paseo | High | 4026.0 | 10 | 12 | 48312.0 | 5314.320 | 42997.680 | 12078.0 | 30919.680 | 41821 | 7 | July | 2014 |
Channel Partners | France | Paseo | High | 2425.5 | 10 | 12 | 29106.0 | 3201.660 | 25904.340 | 7276.5 | 18627.840 | 41821 | 7 | July | 2014 |
Government | Canada | Paseo | High | 2394.0 | 10 | 20 | 47880.0 | 5266.800 | 42613.200 | 23940.0 | 18673.200 | 41852 | 8 | August | 2014 |
Midmarket | Mexico | Paseo | High | 1984.0 | 10 | 15 | 29760.0 | 3273.600 | 26486.400 | 19840.0 | 6646.400 | 41852 | 8 | August | 2014 |
Enterprise | France | Paseo | High | 2441.0 | 10 | 125 | 305125.0 | 33563.750 | 271561.250 | 292920.0 | -21358.750 | 41913 | 10 | October | 2014 |
Government | Germany | Paseo | High | 2992.0 | 10 | 20 | 59840.0 | 6582.400 | 53257.600 | 29920.0 | 23337.600 | 41548 | 10 | October | 2013 |
Small Business | Canada | Paseo | High | 1366.0 | 10 | 300 | 409800.0 | 45078.000 | 364722.000 | 341500.0 | 23222.000 | 41944 | 11 | November | 2014 |
Government | France | Velo | High | 2805.0 | 120 | 20 | 56100.0 | 6171.000 | 49929.000 | 28050.0 | 21879.000 | 41518 | 9 | September | 2013 |
Midmarket | Mexico | Velo | High | 655.0 | 120 | 15 | 9825.0 | 1080.750 | 8744.250 | 6550.0 | 2194.250 | 41518 | 9 | September | 2013 |
Government | Mexico | Velo | High | 344.0 | 120 | 350 | 120400.0 | 13244.000 | 107156.000 | 89440.0 | 17716.000 | 41548 | 10 | October | 2013 |
Government | Canada | Velo | High | 1808.0 | 120 | 7 | 12656.0 | 1392.160 | 11263.840 | 9040.0 | 2223.840 | 41944 | 11 | November | 2014 |
Channel Partners | France | VTT | High | 1734.0 | 250 | 12 | 20808.0 | 2288.880 | 18519.120 | 5202.0 | 13317.120 | 41640 | 1 | January | 2014 |
Enterprise | Mexico | VTT | High | 554.0 | 250 | 125 | 69250.0 | 7617.500 | 61632.500 | 66480.0 | -4847.500 | 41640 | 1 | January | 2014 |
Government | Canada | VTT | High | 2935.0 | 250 | 20 | 58700.0 | 6457.000 | 52243.000 | 29350.0 | 22893.000 | 41579 | 11 | November | 2013 |
Enterprise | Germany | Amarilla | High | 3165.0 | 260 | 125 | 395625.0 | 43518.750 | 352106.250 | 379800.0 | -27693.750 | 41640 | 1 | January | 2014 |
Government | Mexico | Amarilla | High | 2629.0 | 260 | 20 | 52580.0 | 5783.800 | 46796.200 | 26290.0 | 20506.200 | 41640 | 1 | January | 2014 |
Enterprise | France | Amarilla | High | 1433.0 | 260 | 125 | 179125.0 | 19703.750 | 159421.250 | 171960.0 | -12538.750 | 41760 | 5 | May | 2014 |
Enterprise | Mexico | Amarilla | High | 947.0 | 260 | 125 | 118375.0 | 13021.250 | 105353.750 | 113640.0 | -8286.250 | 41518 | 9 | September | 2013 |
Government | Mexico | Amarilla | High | 344.0 | 260 | 350 | 120400.0 | 13244.000 | 107156.000 | 89440.0 | 17716.000 | 41548 | 10 | October | 2013 |
Midmarket | Mexico | Amarilla | High | 2157.0 | 260 | 15 | 32355.0 | 3559.050 | 28795.950 | 21570.0 | 7225.950 | 41974 | 12 | December | 2014 |
Government | United States of America | Paseo | High | 380.0 | 10 | 7 | 2660.0 | 292.600 | 2367.400 | 1900.0 | 467.400 | 41518 | 9 | September | 2013 |
Government | Mexico | Carretera | High | 886.0 | 3 | 350 | 310100.0 | 37212.000 | 272888.000 | 230360.0 | 42528.000 | 41791 | 6 | June | 2014 |
Enterprise | Canada | Carretera | High | 2416.0 | 3 | 125 | 302000.0 | 36240.000 | 265760.000 | 289920.0 | -24160.000 | 41518 | 9 | September | 2013 |
Enterprise | Mexico | Carretera | High | 2156.0 | 3 | 125 | 269500.0 | 32340.000 | 237160.000 | 258720.0 | -21560.000 | 41913 | 10 | October | 2014 |
Midmarket | Canada | Carretera | High | 2689.0 | 3 | 15 | 40335.0 | 4840.200 | 35494.800 | 26890.0 | 8604.800 | 41944 | 11 | November | 2014 |
Midmarket | United States of America | Montana | High | 677.0 | 5 | 15 | 10155.0 | 1218.600 | 8936.400 | 6770.0 | 2166.400 | 41699 | 3 | March | 2014 |
Small Business | France | Montana | High | 1773.0 | 5 | 300 | 531900.0 | 63828.000 | 468072.000 | 443250.0 | 24822.000 | 41730 | 4 | April | 2014 |
Government | Mexico | Montana | High | 2420.0 | 5 | 7 | 16940.0 | 2032.800 | 14907.200 | 12100.0 | 2807.200 | 41883 | 9 | September | 2014 |
Government | Canada | Montana | High | 2734.0 | 5 | 7 | 19138.0 | 2296.560 | 16841.440 | 13670.0 | 3171.440 | 41913 | 10 | October | 2014 |
Government | Mexico | Montana | High | 1715.0 | 5 | 20 | 34300.0 | 4116.000 | 30184.000 | 17150.0 | 13034.000 | 41548 | 10 | October | 2013 |
Small Business | France | Montana | High | 1186.0 | 5 | 300 | 355800.0 | 42696.000 | 313104.000 | 296500.0 | 16604.000 | 41609 | 12 | December | 2013 |
Small Business | United States of America | Paseo | High | 3495.0 | 10 | 300 | 1048500.0 | 125820.000 | 922680.000 | 873750.0 | 48930.000 | 41640 | 1 | January | 2014 |
Government | Mexico | Paseo | High | 886.0 | 10 | 350 | 310100.0 | 37212.000 | 272888.000 | 230360.0 | 42528.000 | 41791 | 6 | June | 2014 |
Enterprise | Mexico | Paseo | High | 2156.0 | 10 | 125 | 269500.0 | 32340.000 | 237160.000 | 258720.0 | -21560.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Paseo | High | 905.0 | 10 | 20 | 18100.0 | 2172.000 | 15928.000 | 9050.0 | 6878.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Paseo | High | 1715.0 | 10 | 20 | 34300.0 | 4116.000 | 30184.000 | 17150.0 | 13034.000 | 41548 | 10 | October | 2013 |
Government | France | Paseo | High | 1594.0 | 10 | 350 | 557900.0 | 66948.000 | 490952.000 | 414440.0 | 76512.000 | 41944 | 11 | November | 2014 |
Small Business | Germany | Paseo | High | 1359.0 | 10 | 300 | 407700.0 | 48924.000 | 358776.000 | 339750.0 | 19026.000 | 41944 | 11 | November | 2014 |
Small Business | Mexico | Paseo | High | 2150.0 | 10 | 300 | 645000.0 | 77400.000 | 567600.000 | 537500.0 | 30100.000 | 41944 | 11 | November | 2014 |
Government | Mexico | Paseo | High | 1197.0 | 10 | 350 | 418950.0 | 50274.000 | 368676.000 | 311220.0 | 57456.000 | 41944 | 11 | November | 2014 |
Midmarket | Mexico | Paseo | High | 380.0 | 10 | 15 | 5700.0 | 684.000 | 5016.000 | 3800.0 | 1216.000 | 41609 | 12 | December | 2013 |
Government | Mexico | Paseo | High | 1233.0 | 10 | 20 | 24660.0 | 2959.200 | 21700.800 | 12330.0 | 9370.800 | 41974 | 12 | December | 2014 |
Government | Mexico | Velo | High | 1395.0 | 120 | 350 | 488250.0 | 58590.000 | 429660.000 | 362700.0 | 66960.000 | 41821 | 7 | July | 2014 |
Government | United States of America | Velo | High | 986.0 | 120 | 350 | 345100.0 | 41412.000 | 303688.000 | 256360.0 | 47328.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Velo | High | 905.0 | 120 | 20 | 18100.0 | 2172.000 | 15928.000 | 9050.0 | 6878.000 | 41913 | 10 | October | 2014 |
Channel Partners | Canada | VTT | High | 2109.0 | 250 | 12 | 25308.0 | 3036.960 | 22271.040 | 6327.0 | 15944.040 | 41760 | 5 | May | 2014 |
Midmarket | France | VTT | High | 3874.5 | 250 | 15 | 58117.5 | 6974.100 | 51143.400 | 38745.0 | 12398.400 | 41821 | 7 | July | 2014 |
Government | Canada | VTT | High | 623.0 | 250 | 350 | 218050.0 | 26166.000 | 191884.000 | 161980.0 | 29904.000 | 41518 | 9 | September | 2013 |
Government | United States of America | VTT | High | 986.0 | 250 | 350 | 345100.0 | 41412.000 | 303688.000 | 256360.0 | 47328.000 | 41913 | 10 | October | 2014 |
Enterprise | United States of America | VTT | High | 2387.0 | 250 | 125 | 298375.0 | 35805.000 | 262570.000 | 286440.0 | -23870.000 | 41944 | 11 | November | 2014 |
Government | Mexico | VTT | High | 1233.0 | 250 | 20 | 24660.0 | 2959.200 | 21700.800 | 12330.0 | 9370.800 | 41974 | 12 | December | 2014 |
Government | United States of America | Amarilla | High | 270.0 | 260 | 350 | 94500.0 | 11340.000 | 83160.000 | 70200.0 | 12960.000 | 41671 | 2 | February | 2014 |
Government | France | Amarilla | High | 3421.5 | 260 | 7 | 23950.5 | 2874.060 | 21076.440 | 17107.5 | 3968.940 | 41821 | 7 | July | 2014 |
Government | Canada | Amarilla | High | 2734.0 | 260 | 7 | 19138.0 | 2296.560 | 16841.440 | 13670.0 | 3171.440 | 41913 | 10 | October | 2014 |
Midmarket | United States of America | Amarilla | High | 2548.0 | 260 | 15 | 38220.0 | 4586.400 | 33633.600 | 25480.0 | 8153.600 | 41579 | 11 | November | 2013 |
Government | France | Carretera | High | 2521.5 | 3 | 20 | 50430.0 | 6051.600 | 44378.400 | 25215.0 | 19163.400 | 41640 | 1 | January | 2014 |
Channel Partners | Mexico | Montana | High | 2661.0 | 5 | 12 | 31932.0 | 3831.840 | 28100.160 | 7983.0 | 20117.160 | 41760 | 5 | May | 2014 |
Government | Germany | Paseo | High | 1531.0 | 10 | 20 | 30620.0 | 3674.400 | 26945.600 | 15310.0 | 11635.600 | 41974 | 12 | December | 2014 |
Government | France | VTT | High | 1491.0 | 250 | 7 | 10437.0 | 1252.440 | 9184.560 | 7455.0 | 1729.560 | 41699 | 3 | March | 2014 |
Government | Germany | VTT | High | 1531.0 | 250 | 20 | 30620.0 | 3674.400 | 26945.600 | 15310.0 | 11635.600 | 41974 | 12 | December | 2014 |
Channel Partners | Canada | Amarilla | High | 2761.0 | 260 | 12 | 33132.0 | 3975.840 | 29156.160 | 8283.0 | 20873.160 | 41518 | 9 | September | 2013 |
Midmarket | United States of America | Carretera | High | 2567.0 | 3 | 15 | 38505.0 | 5005.650 | 33499.350 | 25670.0 | 7829.350 | 41791 | 6 | June | 2014 |
Midmarket | United States of America | VTT | High | 2567.0 | 250 | 15 | 38505.0 | 5005.650 | 33499.350 | 25670.0 | 7829.350 | 41791 | 6 | June | 2014 |
Government | Canada | Carretera | High | 923.0 | 3 | 350 | 323050.0 | 41996.500 | 281053.500 | 239980.0 | 41073.500 | 41699 | 3 | March | 2014 |
Government | France | Carretera | High | 1790.0 | 3 | 350 | 626500.0 | 81445.000 | 545055.000 | 465400.0 | 79655.000 | 41699 | 3 | March | 2014 |
Government | Germany | Carretera | High | 442.0 | 3 | 20 | 8840.0 | 1149.200 | 7690.800 | 4420.0 | 3270.800 | 41518 | 9 | September | 2013 |
Government | United States of America | Montana | High | 982.5 | 5 | 350 | 343875.0 | 44703.750 | 299171.250 | 255450.0 | 43721.250 | 41640 | 1 | January | 2014 |
Government | United States of America | Montana | High | 1298.0 | 5 | 7 | 9086.0 | 1181.180 | 7904.820 | 6490.0 | 1414.820 | 41671 | 2 | February | 2014 |
Channel Partners | Mexico | Montana | High | 604.0 | 5 | 12 | 7248.0 | 942.240 | 6305.760 | 1812.0 | 4493.760 | 41791 | 6 | June | 2014 |
Government | Mexico | Montana | High | 2255.0 | 5 | 20 | 45100.0 | 5863.000 | 39237.000 | 22550.0 | 16687.000 | 41821 | 7 | July | 2014 |
Government | Canada | Montana | High | 1249.0 | 5 | 20 | 24980.0 | 3247.400 | 21732.600 | 12490.0 | 9242.600 | 41913 | 10 | October | 2014 |
Government | United States of America | Paseo | High | 1438.5 | 10 | 7 | 10069.5 | 1309.035 | 8760.465 | 7192.5 | 1567.965 | 41640 | 1 | January | 2014 |
Small Business | Germany | Paseo | High | 807.0 | 10 | 300 | 242100.0 | 31473.000 | 210627.000 | 201750.0 | 8877.000 | 41640 | 1 | January | 2014 |
Government | United States of America | Paseo | High | 2641.0 | 10 | 20 | 52820.0 | 6866.600 | 45953.400 | 26410.0 | 19543.400 | 41671 | 2 | February | 2014 |
Government | Germany | Paseo | High | 2708.0 | 10 | 20 | 54160.0 | 7040.800 | 47119.200 | 27080.0 | 20039.200 | 41671 | 2 | February | 2014 |
Government | Canada | Paseo | High | 2632.0 | 10 | 350 | 921200.0 | 119756.000 | 801444.000 | 684320.0 | 117124.000 | 41791 | 6 | June | 2014 |
Enterprise | Canada | Paseo | High | 1583.0 | 10 | 125 | 197875.0 | 25723.750 | 172151.250 | 189960.0 | -17808.750 | 41791 | 6 | June | 2014 |
Channel Partners | Mexico | Paseo | High | 571.0 | 10 | 12 | 6852.0 | 890.760 | 5961.240 | 1713.0 | 4248.240 | 41821 | 7 | July | 2014 |
Government | France | Paseo | High | 2696.0 | 10 | 7 | 18872.0 | 2453.360 | 16418.640 | 13480.0 | 2938.640 | 41852 | 8 | August | 2014 |
Midmarket | Canada | Paseo | High | 1565.0 | 10 | 15 | 23475.0 | 3051.750 | 20423.250 | 15650.0 | 4773.250 | 41913 | 10 | October | 2014 |
Government | Canada | Paseo | High | 1249.0 | 10 | 20 | 24980.0 | 3247.400 | 21732.600 | 12490.0 | 9242.600 | 41913 | 10 | October | 2014 |
Government | Germany | Paseo | High | 357.0 | 10 | 350 | 124950.0 | 16243.500 | 108706.500 | 92820.0 | 15886.500 | 41944 | 11 | November | 2014 |
Channel Partners | Germany | Paseo | High | 1013.0 | 10 | 12 | 12156.0 | 1580.280 | 10575.720 | 3039.0 | 7536.720 | 41974 | 12 | December | 2014 |
Midmarket | France | Velo | High | 3997.5 | 120 | 15 | 59962.5 | 7795.125 | 52167.375 | 39975.0 | 12192.375 | 41640 | 1 | January | 2014 |
Government | Canada | Velo | High | 2632.0 | 120 | 350 | 921200.0 | 119756.000 | 801444.000 | 684320.0 | 117124.000 | 41791 | 6 | June | 2014 |
Government | France | Velo | High | 1190.0 | 120 | 7 | 8330.0 | 1082.900 | 7247.100 | 5950.0 | 1297.100 | 41791 | 6 | June | 2014 |
Channel Partners | Mexico | Velo | High | 604.0 | 120 | 12 | 7248.0 | 942.240 | 6305.760 | 1812.0 | 4493.760 | 41791 | 6 | June | 2014 |
Midmarket | Germany | Velo | High | 660.0 | 120 | 15 | 9900.0 | 1287.000 | 8613.000 | 6600.0 | 2013.000 | 41518 | 9 | September | 2013 |
Channel Partners | Mexico | Velo | High | 410.0 | 120 | 12 | 4920.0 | 639.600 | 4280.400 | 1230.0 | 3050.400 | 41913 | 10 | October | 2014 |
Small Business | Mexico | Velo | High | 2605.0 | 120 | 300 | 781500.0 | 101595.000 | 679905.000 | 651250.0 | 28655.000 | 41579 | 11 | November | 2013 |
Channel Partners | Germany | Velo | High | 1013.0 | 120 | 12 | 12156.0 | 1580.280 | 10575.720 | 3039.0 | 7536.720 | 41974 | 12 | December | 2014 |
Enterprise | Canada | VTT | High | 1583.0 | 250 | 125 | 197875.0 | 25723.750 | 172151.250 | 189960.0 | -17808.750 | 41791 | 6 | June | 2014 |
Midmarket | Canada | VTT | High | 1565.0 | 250 | 15 | 23475.0 | 3051.750 | 20423.250 | 15650.0 | 4773.250 | 41913 | 10 | October | 2014 |
Enterprise | Canada | Amarilla | High | 1659.0 | 260 | 125 | 207375.0 | 26958.750 | 180416.250 | 199080.0 | -18663.750 | 41640 | 1 | January | 2014 |
Government | France | Amarilla | High | 1190.0 | 260 | 7 | 8330.0 | 1082.900 | 7247.100 | 5950.0 | 1297.100 | 41791 | 6 | June | 2014 |
Channel Partners | Mexico | Amarilla | High | 410.0 | 260 | 12 | 4920.0 | 639.600 | 4280.400 | 1230.0 | 3050.400 | 41913 | 10 | October | 2014 |
Channel Partners | Germany | Amarilla | High | 1770.0 | 260 | 12 | 21240.0 | 2761.200 | 18478.800 | 5310.0 | 13168.800 | 41609 | 12 | December | 2013 |
Government | Mexico | Carretera | High | 2579.0 | 3 | 20 | 51580.0 | 7221.200 | 44358.800 | 25790.0 | 18568.800 | 41730 | 4 | April | 2014 |
Government | United States of America | Carretera | High | 1743.0 | 3 | 20 | 34860.0 | 4880.400 | 29979.600 | 17430.0 | 12549.600 | 41760 | 5 | May | 2014 |
Government | United States of America | Carretera | High | 2996.0 | 3 | 7 | 20972.0 | 2936.080 | 18035.920 | 14980.0 | 3055.920 | 41548 | 10 | October | 2013 |
Government | Germany | Carretera | High | 280.0 | 3 | 7 | 1960.0 | 274.400 | 1685.600 | 1400.0 | 285.600 | 41974 | 12 | December | 2014 |
Government | France | Montana | High | 293.0 | 5 | 7 | 2051.0 | 287.140 | 1763.860 | 1465.0 | 298.860 | 41671 | 2 | February | 2014 |
Government | United States of America | Montana | High | 2996.0 | 5 | 7 | 20972.0 | 2936.080 | 18035.920 | 14980.0 | 3055.920 | 41548 | 10 | October | 2013 |
Midmarket | Germany | Paseo | High | 278.0 | 10 | 15 | 4170.0 | 583.800 | 3586.200 | 2780.0 | 806.200 | 41671 | 2 | February | 2014 |
Government | Canada | Paseo | High | 2428.0 | 10 | 20 | 48560.0 | 6798.400 | 41761.600 | 24280.0 | 17481.600 | 41699 | 3 | March | 2014 |
Midmarket | United States of America | Paseo | High | 1767.0 | 10 | 15 | 26505.0 | 3710.700 | 22794.300 | 17670.0 | 5124.300 | 41883 | 9 | September | 2014 |
Channel Partners | France | Paseo | High | 1393.0 | 10 | 12 | 16716.0 | 2340.240 | 14375.760 | 4179.0 | 10196.760 | 41913 | 10 | October | 2014 |
Government | Germany | VTT | High | 280.0 | 250 | 7 | 1960.0 | 274.400 | 1685.600 | 1400.0 | 285.600 | 41974 | 12 | December | 2014 |
Channel Partners | France | Amarilla | High | 1393.0 | 260 | 12 | 16716.0 | 2340.240 | 14375.760 | 4179.0 | 10196.760 | 41913 | 10 | October | 2014 |
Channel Partners | United States of America | Amarilla | High | 2015.0 | 260 | 12 | 24180.0 | 3385.200 | 20794.800 | 6045.0 | 14749.800 | 41609 | 12 | December | 2013 |
Small Business | Mexico | Carretera | High | 801.0 | 3 | 300 | 240300.0 | 33642.000 | 206658.000 | 200250.0 | 6408.000 | 41821 | 7 | July | 2014 |
Enterprise | France | Carretera | High | 1023.0 | 3 | 125 | 127875.0 | 17902.500 | 109972.500 | 122760.0 | -12787.500 | 41518 | 9 | September | 2013 |
Small Business | Canada | Carretera | High | 1496.0 | 3 | 300 | 448800.0 | 62832.000 | 385968.000 | 374000.0 | 11968.000 | 41913 | 10 | October | 2014 |
Small Business | United States of America | Carretera | High | 1010.0 | 3 | 300 | 303000.0 | 42420.000 | 260580.000 | 252500.0 | 8080.000 | 41913 | 10 | October | 2014 |
Midmarket | Germany | Carretera | High | 1513.0 | 3 | 15 | 22695.0 | 3177.300 | 19517.700 | 15130.0 | 4387.700 | 41944 | 11 | November | 2014 |
Midmarket | Canada | Carretera | High | 2300.0 | 3 | 15 | 34500.0 | 4830.000 | 29670.000 | 23000.0 | 6670.000 | 41974 | 12 | December | 2014 |
Enterprise | Mexico | Carretera | High | 2821.0 | 3 | 125 | 352625.0 | 49367.500 | 303257.500 | 338520.0 | -35262.500 | 41609 | 12 | December | 2013 |
Government | Canada | Montana | High | 2227.5 | 5 | 350 | 779625.0 | 109147.500 | 670477.500 | 579150.0 | 91327.500 | 41640 | 1 | January | 2014 |
Government | Germany | Montana | High | 1199.0 | 5 | 350 | 419650.0 | 58751.000 | 360899.000 | 311740.0 | 49159.000 | 41730 | 4 | April | 2014 |
Government | Canada | Montana | High | 200.0 | 5 | 350 | 70000.0 | 9800.000 | 60200.000 | 52000.0 | 8200.000 | 41760 | 5 | May | 2014 |
Government | Canada | Montana | High | 388.0 | 5 | 7 | 2716.0 | 380.240 | 2335.760 | 1940.0 | 395.760 | 41883 | 9 | September | 2014 |
Government | Mexico | Montana | High | 1727.0 | 5 | 7 | 12089.0 | 1692.460 | 10396.540 | 8635.0 | 1761.540 | 41548 | 10 | October | 2013 |
Midmarket | Canada | Montana | High | 2300.0 | 5 | 15 | 34500.0 | 4830.000 | 29670.000 | 23000.0 | 6670.000 | 41974 | 12 | December | 2014 |
Government | Mexico | Paseo | High | 260.0 | 10 | 20 | 5200.0 | 728.000 | 4472.000 | 2600.0 | 1872.000 | 41671 | 2 | February | 2014 |
Midmarket | Canada | Paseo | High | 2470.0 | 10 | 15 | 37050.0 | 5187.000 | 31863.000 | 24700.0 | 7163.000 | 41518 | 9 | September | 2013 |
Midmarket | Canada | Paseo | High | 1743.0 | 10 | 15 | 26145.0 | 3660.300 | 22484.700 | 17430.0 | 5054.700 | 41548 | 10 | October | 2013 |
Channel Partners | United States of America | Paseo | High | 2914.0 | 10 | 12 | 34968.0 | 4895.520 | 30072.480 | 8742.0 | 21330.480 | 41913 | 10 | October | 2014 |
Government | France | Paseo | High | 1731.0 | 10 | 7 | 12117.0 | 1696.380 | 10420.620 | 8655.0 | 1765.620 | 41913 | 10 | October | 2014 |
Government | Canada | Paseo | High | 700.0 | 10 | 350 | 245000.0 | 34300.000 | 210700.000 | 182000.0 | 28700.000 | 41944 | 11 | November | 2014 |
Channel Partners | Canada | Paseo | High | 2222.0 | 10 | 12 | 26664.0 | 3732.960 | 22931.040 | 6666.0 | 16265.040 | 41579 | 11 | November | 2013 |
Government | United States of America | Paseo | High | 1177.0 | 10 | 350 | 411950.0 | 57673.000 | 354277.000 | 306020.0 | 48257.000 | 41944 | 11 | November | 2014 |
Government | France | Paseo | High | 1922.0 | 10 | 350 | 672700.0 | 94178.000 | 578522.000 | 499720.0 | 78802.000 | 41579 | 11 | November | 2013 |
Enterprise | Mexico | Velo | High | 1575.0 | 120 | 125 | 196875.0 | 27562.500 | 169312.500 | 189000.0 | -19687.500 | 41671 | 2 | February | 2014 |
Government | United States of America | Velo | High | 606.0 | 120 | 20 | 12120.0 | 1696.800 | 10423.200 | 6060.0 | 4363.200 | 41730 | 4 | April | 2014 |
Small Business | United States of America | Velo | High | 2460.0 | 120 | 300 | 738000.0 | 103320.000 | 634680.000 | 615000.0 | 19680.000 | 41821 | 7 | July | 2014 |
Small Business | Canada | Velo | High | 269.0 | 120 | 300 | 80700.0 | 11298.000 | 69402.000 | 67250.0 | 2152.000 | 41548 | 10 | October | 2013 |
Small Business | Germany | Velo | High | 2536.0 | 120 | 300 | 760800.0 | 106512.000 | 654288.000 | 634000.0 | 20288.000 | 41579 | 11 | November | 2013 |
Government | Mexico | VTT | High | 2903.0 | 250 | 7 | 20321.0 | 2844.940 | 17476.060 | 14515.0 | 2961.060 | 41699 | 3 | March | 2014 |
Small Business | United States of America | VTT | High | 2541.0 | 250 | 300 | 762300.0 | 106722.000 | 655578.000 | 635250.0 | 20328.000 | 41852 | 8 | August | 2014 |
Small Business | Canada | VTT | High | 269.0 | 250 | 300 | 80700.0 | 11298.000 | 69402.000 | 67250.0 | 2152.000 | 41548 | 10 | October | 2013 |
Small Business | Canada | VTT | High | 1496.0 | 250 | 300 | 448800.0 | 62832.000 | 385968.000 | 374000.0 | 11968.000 | 41913 | 10 | October | 2014 |
Small Business | United States of America | VTT | High | 1010.0 | 250 | 300 | 303000.0 | 42420.000 | 260580.000 | 252500.0 | 8080.000 | 41913 | 10 | October | 2014 |
Government | France | VTT | High | 1281.0 | 250 | 350 | 448350.0 | 62769.000 | 385581.000 | 333060.0 | 52521.000 | 41609 | 12 | December | 2013 |
Small Business | Canada | Amarilla | High | 888.0 | 260 | 300 | 266400.0 | 37296.000 | 229104.000 | 222000.0 | 7104.000 | 41699 | 3 | March | 2014 |
Enterprise | United States of America | Amarilla | High | 2844.0 | 260 | 125 | 355500.0 | 49770.000 | 305730.000 | 341280.0 | -35550.000 | 41760 | 5 | May | 2014 |
Channel Partners | France | Amarilla | High | 2475.0 | 260 | 12 | 29700.0 | 4158.000 | 25542.000 | 7425.0 | 18117.000 | 41852 | 8 | August | 2014 |
Midmarket | Canada | Amarilla | High | 1743.0 | 260 | 15 | 26145.0 | 3660.300 | 22484.700 | 17430.0 | 5054.700 | 41548 | 10 | October | 2013 |
Channel Partners | United States of America | Amarilla | High | 2914.0 | 260 | 12 | 34968.0 | 4895.520 | 30072.480 | 8742.0 | 21330.480 | 41913 | 10 | October | 2014 |
Government | France | Amarilla | High | 1731.0 | 260 | 7 | 12117.0 | 1696.380 | 10420.620 | 8655.0 | 1765.620 | 41913 | 10 | October | 2014 |
Government | Mexico | Amarilla | High | 1727.0 | 260 | 7 | 12089.0 | 1692.460 | 10396.540 | 8635.0 | 1761.540 | 41548 | 10 | October | 2013 |
Midmarket | Mexico | Amarilla | High | 1870.0 | 260 | 15 | 28050.0 | 3927.000 | 24123.000 | 18700.0 | 5423.000 | 41579 | 11 | November | 2013 |
Enterprise | France | Carretera | High | 1174.0 | 3 | 125 | 146750.0 | 22012.500 | 124737.500 | 140880.0 | -16142.500 | 41852 | 8 | August | 2014 |
Enterprise | Germany | Carretera | High | 2767.0 | 3 | 125 | 345875.0 | 51881.250 | 293993.750 | 332040.0 | -38046.250 | 41852 | 8 | August | 2014 |
Enterprise | Germany | Carretera | High | 1085.0 | 3 | 125 | 135625.0 | 20343.750 | 115281.250 | 130200.0 | -14918.750 | 41913 | 10 | October | 2014 |
Small Business | Mexico | Montana | High | 546.0 | 5 | 300 | 163800.0 | 24570.000 | 139230.000 | 136500.0 | 2730.000 | 41913 | 10 | October | 2014 |
Government | Germany | Paseo | High | 1158.0 | 10 | 20 | 23160.0 | 3474.000 | 19686.000 | 11580.0 | 8106.000 | 41699 | 3 | March | 2014 |
Midmarket | Canada | Paseo | High | 1614.0 | 10 | 15 | 24210.0 | 3631.500 | 20578.500 | 16140.0 | 4438.500 | 41730 | 4 | April | 2014 |
Government | Mexico | Paseo | High | 2535.0 | 10 | 7 | 17745.0 | 2661.750 | 15083.250 | 12675.0 | 2408.250 | 41730 | 4 | April | 2014 |
Government | Mexico | Paseo | High | 2851.0 | 10 | 350 | 997850.0 | 149677.500 | 848172.500 | 741260.0 | 106912.500 | 41760 | 5 | May | 2014 |
Midmarket | Canada | Paseo | High | 2559.0 | 10 | 15 | 38385.0 | 5757.750 | 32627.250 | 25590.0 | 7037.250 | 41852 | 8 | August | 2014 |
Government | United States of America | Paseo | High | 267.0 | 10 | 20 | 5340.0 | 801.000 | 4539.000 | 2670.0 | 1869.000 | 41548 | 10 | October | 2013 |
Enterprise | Germany | Paseo | High | 1085.0 | 10 | 125 | 135625.0 | 20343.750 | 115281.250 | 130200.0 | -14918.750 | 41913 | 10 | October | 2014 |
Midmarket | Germany | Paseo | High | 1175.0 | 10 | 15 | 17625.0 | 2643.750 | 14981.250 | 11750.0 | 3231.250 | 41913 | 10 | October | 2014 |
Government | United States of America | Paseo | High | 2007.0 | 10 | 350 | 702450.0 | 105367.500 | 597082.500 | 521820.0 | 75262.500 | 41579 | 11 | November | 2013 |
Government | Mexico | Paseo | High | 2151.0 | 10 | 350 | 752850.0 | 112927.500 | 639922.500 | 559260.0 | 80662.500 | 41579 | 11 | November | 2013 |
Channel Partners | United States of America | Paseo | High | 914.0 | 10 | 12 | 10968.0 | 1645.200 | 9322.800 | 2742.0 | 6580.800 | 41974 | 12 | December | 2014 |
Government | France | Paseo | High | 293.0 | 10 | 20 | 5860.0 | 879.000 | 4981.000 | 2930.0 | 2051.000 | 41974 | 12 | December | 2014 |
Channel Partners | Mexico | Velo | High | 500.0 | 120 | 12 | 6000.0 | 900.000 | 5100.000 | 1500.0 | 3600.000 | 41699 | 3 | March | 2014 |
Midmarket | France | Velo | High | 2826.0 | 120 | 15 | 42390.0 | 6358.500 | 36031.500 | 28260.0 | 7771.500 | 41760 | 5 | May | 2014 |
Enterprise | France | Velo | High | 663.0 | 120 | 125 | 82875.0 | 12431.250 | 70443.750 | 79560.0 | -9116.250 | 41883 | 9 | September | 2014 |
Small Business | United States of America | Velo | High | 2574.0 | 120 | 300 | 772200.0 | 115830.000 | 656370.000 | 643500.0 | 12870.000 | 41579 | 11 | November | 2013 |
Enterprise | United States of America | Velo | High | 2438.0 | 120 | 125 | 304750.0 | 45712.500 | 259037.500 | 292560.0 | -33522.500 | 41609 | 12 | December | 2013 |
Channel Partners | United States of America | Velo | High | 914.0 | 120 | 12 | 10968.0 | 1645.200 | 9322.800 | 2742.0 | 6580.800 | 41974 | 12 | December | 2014 |
Government | Canada | VTT | High | 865.5 | 250 | 20 | 17310.0 | 2596.500 | 14713.500 | 8655.0 | 6058.500 | 41821 | 7 | July | 2014 |
Midmarket | Germany | VTT | High | 492.0 | 250 | 15 | 7380.0 | 1107.000 | 6273.000 | 4920.0 | 1353.000 | 41821 | 7 | July | 2014 |
Government | United States of America | VTT | High | 267.0 | 250 | 20 | 5340.0 | 801.000 | 4539.000 | 2670.0 | 1869.000 | 41548 | 10 | October | 2013 |
Midmarket | Germany | VTT | High | 1175.0 | 250 | 15 | 17625.0 | 2643.750 | 14981.250 | 11750.0 | 3231.250 | 41913 | 10 | October | 2014 |
Enterprise | Canada | VTT | High | 2954.0 | 250 | 125 | 369250.0 | 55387.500 | 313862.500 | 354480.0 | -40617.500 | 41579 | 11 | November | 2013 |
Enterprise | Germany | VTT | High | 552.0 | 250 | 125 | 69000.0 | 10350.000 | 58650.000 | 66240.0 | -7590.000 | 41944 | 11 | November | 2014 |
Government | France | VTT | High | 293.0 | 250 | 20 | 5860.0 | 879.000 | 4981.000 | 2930.0 | 2051.000 | 41974 | 12 | December | 2014 |
Small Business | France | Amarilla | High | 2475.0 | 260 | 300 | 742500.0 | 111375.000 | 631125.000 | 618750.0 | 12375.000 | 41699 | 3 | March | 2014 |
Small Business | Mexico | Amarilla | High | 546.0 | 260 | 300 | 163800.0 | 24570.000 | 139230.000 | 136500.0 | 2730.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Montana | High | 1368.0 | 5 | 7 | 9576.0 | 1436.400 | 8139.600 | 6840.0 | 1299.600 | 41671 | 2 | February | 2014 |
Government | Canada | Paseo | High | 723.0 | 10 | 7 | 5061.0 | 759.150 | 4301.850 | 3615.0 | 686.850 | 41730 | 4 | April | 2014 |
Channel Partners | United States of America | VTT | High | 1806.0 | 250 | 12 | 21672.0 | 3250.800 | 18421.200 | 5418.0 | 13003.200 | 41760 | 5 | May | 2014 |
Government | France | Paseo | High | 1954.0 | 10 | 20 | 39080.0 | 3908.000 | 35172.000 | 19540.0 | 15632.000 | 41699 | 3 | March | 2014 |
Small Business | Mexico | Paseo | High | 591.0 | 10 | 300 | 177300.0 | 17730.000 | 159570.000 | 147750.0 | 11820.000 | 41760 | 5 | May | 2014 |
Midmarket | France | Paseo | High | 2167.0 | 10 | 15 | 32505.0 | 3250.500 | 29254.500 | 21670.0 | 7584.500 | 41548 | 10 | October | 2013 |
Government | Germany | Paseo | High | 241.0 | 10 | 20 | 4820.0 | 482.000 | 4338.000 | 2410.0 | 1928.000 | 41913 | 10 | October | 2014 |
Midmarket | Germany | Velo | High | 681.0 | 120 | 15 | 10215.0 | 1021.500 | 9193.500 | 6810.0 | 2383.500 | 41640 | 1 | January | 2014 |
Midmarket | Germany | Velo | High | 510.0 | 120 | 15 | 7650.0 | 765.000 | 6885.000 | 5100.0 | 1785.000 | 41730 | 4 | April | 2014 |
Midmarket | United States of America | Velo | High | 790.0 | 120 | 15 | 11850.0 | 1185.000 | 10665.000 | 7900.0 | 2765.000 | 41760 | 5 | May | 2014 |
Government | France | Velo | High | 639.0 | 120 | 350 | 223650.0 | 22365.000 | 201285.000 | 166140.0 | 35145.000 | 41821 | 7 | July | 2014 |
Enterprise | United States of America | Velo | High | 1596.0 | 120 | 125 | 199500.0 | 19950.000 | 179550.000 | 191520.0 | -11970.000 | 41883 | 9 | September | 2014 |
Small Business | United States of America | Velo | High | 2294.0 | 120 | 300 | 688200.0 | 68820.000 | 619380.000 | 573500.0 | 45880.000 | 41548 | 10 | October | 2013 |
Government | Germany | Velo | High | 241.0 | 120 | 20 | 4820.0 | 482.000 | 4338.000 | 2410.0 | 1928.000 | 41913 | 10 | October | 2014 |
Government | Germany | Velo | High | 2665.0 | 120 | 7 | 18655.0 | 1865.500 | 16789.500 | 13325.0 | 3464.500 | 41944 | 11 | November | 2014 |
Enterprise | Canada | Velo | High | 1916.0 | 120 | 125 | 239500.0 | 23950.000 | 215550.000 | 229920.0 | -14370.000 | 41609 | 12 | December | 2013 |
Small Business | France | Velo | High | 853.0 | 120 | 300 | 255900.0 | 25590.000 | 230310.000 | 213250.0 | 17060.000 | 41974 | 12 | December | 2014 |
Enterprise | Mexico | VTT | High | 341.0 | 250 | 125 | 42625.0 | 4262.500 | 38362.500 | 40920.0 | -2557.500 | 41760 | 5 | May | 2014 |
Midmarket | Mexico | VTT | High | 641.0 | 250 | 15 | 9615.0 | 961.500 | 8653.500 | 6410.0 | 2243.500 | 41821 | 7 | July | 2014 |
Government | United States of America | VTT | High | 2807.0 | 250 | 350 | 982450.0 | 98245.000 | 884205.000 | 729820.0 | 154385.000 | 41852 | 8 | August | 2014 |
Small Business | Mexico | VTT | High | 432.0 | 250 | 300 | 129600.0 | 12960.000 | 116640.000 | 108000.0 | 8640.000 | 41883 | 9 | September | 2014 |
Small Business | United States of America | VTT | High | 2294.0 | 250 | 300 | 688200.0 | 68820.000 | 619380.000 | 573500.0 | 45880.000 | 41548 | 10 | October | 2013 |
Midmarket | France | VTT | High | 2167.0 | 250 | 15 | 32505.0 | 3250.500 | 29254.500 | 21670.0 | 7584.500 | 41548 | 10 | October | 2013 |
Enterprise | Canada | VTT | High | 2529.0 | 250 | 125 | 316125.0 | 31612.500 | 284512.500 | 303480.0 | -18967.500 | 41944 | 11 | November | 2014 |
Government | Germany | VTT | High | 1870.0 | 250 | 350 | 654500.0 | 65450.000 | 589050.000 | 486200.0 | 102850.000 | 41609 | 12 | December | 2013 |
Enterprise | United States of America | Amarilla | High | 579.0 | 260 | 125 | 72375.0 | 7237.500 | 65137.500 | 69480.0 | -4342.500 | 41640 | 1 | January | 2014 |
Government | Canada | Amarilla | High | 2240.0 | 260 | 350 | 784000.0 | 78400.000 | 705600.000 | 582400.0 | 123200.000 | 41671 | 2 | February | 2014 |
Small Business | United States of America | Amarilla | High | 2993.0 | 260 | 300 | 897900.0 | 89790.000 | 808110.000 | 748250.0 | 59860.000 | 41699 | 3 | March | 2014 |
Channel Partners | Canada | Amarilla | High | 3520.5 | 260 | 12 | 42246.0 | 4224.600 | 38021.400 | 10561.5 | 27459.900 | 41730 | 4 | April | 2014 |
Government | Mexico | Amarilla | High | 2039.0 | 260 | 20 | 40780.0 | 4078.000 | 36702.000 | 20390.0 | 16312.000 | 41760 | 5 | May | 2014 |
Channel Partners | Germany | Amarilla | High | 2574.0 | 260 | 12 | 30888.0 | 3088.800 | 27799.200 | 7722.0 | 20077.200 | 41852 | 8 | August | 2014 |
Government | Canada | Amarilla | High | 707.0 | 260 | 350 | 247450.0 | 24745.000 | 222705.000 | 183820.0 | 38885.000 | 41883 | 9 | September | 2014 |
Midmarket | France | Amarilla | High | 2072.0 | 260 | 15 | 31080.0 | 3108.000 | 27972.000 | 20720.0 | 7252.000 | 41974 | 12 | December | 2014 |
Small Business | France | Amarilla | High | 853.0 | 260 | 300 | 255900.0 | 25590.000 | 230310.000 | 213250.0 | 17060.000 | 41974 | 12 | December | 2014 |
Channel Partners | France | Carretera | High | 1198.0 | 3 | 12 | 14376.0 | 1581.360 | 12794.640 | 3594.0 | 9200.640 | 41548 | 10 | October | 2013 |
Government | France | Paseo | High | 2532.0 | 10 | 7 | 17724.0 | 1949.640 | 15774.360 | 12660.0 | 3114.360 | 41730 | 4 | April | 2014 |
Channel Partners | France | Paseo | High | 1198.0 | 10 | 12 | 14376.0 | 1581.360 | 12794.640 | 3594.0 | 9200.640 | 41548 | 10 | October | 2013 |
Midmarket | Canada | Velo | High | 384.0 | 120 | 15 | 5760.0 | 633.600 | 5126.400 | 3840.0 | 1286.400 | 41640 | 1 | January | 2014 |
Channel Partners | Germany | Velo | High | 472.0 | 120 | 12 | 5664.0 | 623.040 | 5040.960 | 1416.0 | 3624.960 | 41913 | 10 | October | 2014 |
Government | United States of America | VTT | High | 1579.0 | 250 | 7 | 11053.0 | 1215.830 | 9837.170 | 7895.0 | 1942.170 | 41699 | 3 | March | 2014 |
Channel Partners | Mexico | VTT | High | 1005.0 | 250 | 12 | 12060.0 | 1326.600 | 10733.400 | 3015.0 | 7718.400 | 41518 | 9 | September | 2013 |
Midmarket | United States of America | Amarilla | High | 3199.5 | 260 | 15 | 47992.5 | 5279.175 | 42713.325 | 31995.0 | 10718.325 | 41821 | 7 | July | 2014 |
Channel Partners | Germany | Amarilla | High | 472.0 | 260 | 12 | 5664.0 | 623.040 | 5040.960 | 1416.0 | 3624.960 | 41913 | 10 | October | 2014 |
Channel Partners | Canada | Carretera | High | 1937.0 | 3 | 12 | 23244.0 | 2556.840 | 20687.160 | 5811.0 | 14876.160 | 41671 | 2 | February | 2014 |
Government | Germany | Carretera | High | 792.0 | 3 | 350 | 277200.0 | 30492.000 | 246708.000 | 205920.0 | 40788.000 | 41699 | 3 | March | 2014 |
Small Business | Germany | Carretera | High | 2811.0 | 3 | 300 | 843300.0 | 92763.000 | 750537.000 | 702750.0 | 47787.000 | 41821 | 7 | July | 2014 |
Enterprise | France | Carretera | High | 2441.0 | 3 | 125 | 305125.0 | 33563.750 | 271561.250 | 292920.0 | -21358.750 | 41913 | 10 | October | 2014 |
Midmarket | Canada | Carretera | High | 1560.0 | 3 | 15 | 23400.0 | 2574.000 | 20826.000 | 15600.0 | 5226.000 | 41579 | 11 | November | 2013 |
Government | Mexico | Carretera | High | 2706.0 | 3 | 7 | 18942.0 | 2083.620 | 16858.380 | 13530.0 | 3328.380 | 41579 | 11 | November | 2013 |
Government | Germany | Montana | High | 766.0 | 5 | 350 | 268100.0 | 29491.000 | 238609.000 | 199160.0 | 39449.000 | 41640 | 1 | January | 2014 |
Government | Germany | Montana | High | 2992.0 | 5 | 20 | 59840.0 | 6582.400 | 53257.600 | 29920.0 | 23337.600 | 41548 | 10 | October | 2013 |
Midmarket | Mexico | Montana | High | 2157.0 | 5 | 15 | 32355.0 | 3559.050 | 28795.950 | 21570.0 | 7225.950 | 41974 | 12 | December | 2014 |
Small Business | Canada | Paseo | High | 873.0 | 10 | 300 | 261900.0 | 28809.000 | 233091.000 | 218250.0 | 14841.000 | 41640 | 1 | January | 2014 |
Government | Mexico | Paseo | High | 1122.0 | 10 | 20 | 22440.0 | 2468.400 | 19971.600 | 11220.0 | 8751.600 | 41699 | 3 | March | 2014 |
Government | Canada | Paseo | High | 2104.5 | 10 | 350 | 736575.0 | 81023.250 | 655551.750 | 547170.0 | 108381.750 | 41821 | 7 | July | 2014 |
Channel Partners | Canada | Paseo | High | 4026.0 | 10 | 12 | 48312.0 | 5314.320 | 42997.680 | 12078.0 | 30919.680 | 41821 | 7 | July | 2014 |
Channel Partners | France | Paseo | High | 2425.5 | 10 | 12 | 29106.0 | 3201.660 | 25904.340 | 7276.5 | 18627.840 | 41821 | 7 | July | 2014 |
Government | Canada | Paseo | High | 2394.0 | 10 | 20 | 47880.0 | 5266.800 | 42613.200 | 23940.0 | 18673.200 | 41852 | 8 | August | 2014 |
Midmarket | Mexico | Paseo | High | 1984.0 | 10 | 15 | 29760.0 | 3273.600 | 26486.400 | 19840.0 | 6646.400 | 41852 | 8 | August | 2014 |
Enterprise | France | Paseo | High | 2441.0 | 10 | 125 | 305125.0 | 33563.750 | 271561.250 | 292920.0 | -21358.750 | 41913 | 10 | October | 2014 |
Government | Germany | Paseo | High | 2992.0 | 10 | 20 | 59840.0 | 6582.400 | 53257.600 | 29920.0 | 23337.600 | 41548 | 10 | October | 2013 |
Small Business | Canada | Paseo | High | 1366.0 | 10 | 300 | 409800.0 | 45078.000 | 364722.000 | 341500.0 | 23222.000 | 41944 | 11 | November | 2014 |
Government | France | Velo | High | 2805.0 | 120 | 20 | 56100.0 | 6171.000 | 49929.000 | 28050.0 | 21879.000 | 41518 | 9 | September | 2013 |
Midmarket | Mexico | Velo | High | 655.0 | 120 | 15 | 9825.0 | 1080.750 | 8744.250 | 6550.0 | 2194.250 | 41518 | 9 | September | 2013 |
Government | Mexico | Velo | High | 344.0 | 120 | 350 | 120400.0 | 13244.000 | 107156.000 | 89440.0 | 17716.000 | 41548 | 10 | October | 2013 |
Government | Canada | Velo | High | 1808.0 | 120 | 7 | 12656.0 | 1392.160 | 11263.840 | 9040.0 | 2223.840 | 41944 | 11 | November | 2014 |
Channel Partners | France | VTT | High | 1734.0 | 250 | 12 | 20808.0 | 2288.880 | 18519.120 | 5202.0 | 13317.120 | 41640 | 1 | January | 2014 |
Enterprise | Mexico | VTT | High | 554.0 | 250 | 125 | 69250.0 | 7617.500 | 61632.500 | 66480.0 | -4847.500 | 41640 | 1 | January | 2014 |
Government | Canada | VTT | High | 2935.0 | 250 | 20 | 58700.0 | 6457.000 | 52243.000 | 29350.0 | 22893.000 | 41579 | 11 | November | 2013 |
Enterprise | Germany | Amarilla | High | 3165.0 | 260 | 125 | 395625.0 | 43518.750 | 352106.250 | 379800.0 | -27693.750 | 41640 | 1 | January | 2014 |
Government | Mexico | Amarilla | High | 2629.0 | 260 | 20 | 52580.0 | 5783.800 | 46796.200 | 26290.0 | 20506.200 | 41640 | 1 | January | 2014 |
Enterprise | France | Amarilla | High | 1433.0 | 260 | 125 | 179125.0 | 19703.750 | 159421.250 | 171960.0 | -12538.750 | 41760 | 5 | May | 2014 |
Enterprise | Mexico | Amarilla | High | 947.0 | 260 | 125 | 118375.0 | 13021.250 | 105353.750 | 113640.0 | -8286.250 | 41518 | 9 | September | 2013 |
Government | Mexico | Amarilla | High | 344.0 | 260 | 350 | 120400.0 | 13244.000 | 107156.000 | 89440.0 | 17716.000 | 41548 | 10 | October | 2013 |
Midmarket | Mexico | Amarilla | High | 2157.0 | 260 | 15 | 32355.0 | 3559.050 | 28795.950 | 21570.0 | 7225.950 | 41974 | 12 | December | 2014 |
Government | United States of America | Paseo | High | 380.0 | 10 | 7 | 2660.0 | 292.600 | 2367.400 | 1900.0 | 467.400 | 41518 | 9 | September | 2013 |
Government | Mexico | Carretera | High | 886.0 | 3 | 350 | 310100.0 | 37212.000 | 272888.000 | 230360.0 | 42528.000 | 41791 | 6 | June | 2014 |
Enterprise | Canada | Carretera | High | 2416.0 | 3 | 125 | 302000.0 | 36240.000 | 265760.000 | 289920.0 | -24160.000 | 41518 | 9 | September | 2013 |
Enterprise | Mexico | Carretera | High | 2156.0 | 3 | 125 | 269500.0 | 32340.000 | 237160.000 | 258720.0 | -21560.000 | 41913 | 10 | October | 2014 |
Midmarket | Canada | Carretera | High | 2689.0 | 3 | 15 | 40335.0 | 4840.200 | 35494.800 | 26890.0 | 8604.800 | 41944 | 11 | November | 2014 |
Midmarket | United States of America | Montana | High | 677.0 | 5 | 15 | 10155.0 | 1218.600 | 8936.400 | 6770.0 | 2166.400 | 41699 | 3 | March | 2014 |
Small Business | France | Montana | High | 1773.0 | 5 | 300 | 531900.0 | 63828.000 | 468072.000 | 443250.0 | 24822.000 | 41730 | 4 | April | 2014 |
Government | Mexico | Montana | High | 2420.0 | 5 | 7 | 16940.0 | 2032.800 | 14907.200 | 12100.0 | 2807.200 | 41883 | 9 | September | 2014 |
Government | Canada | Montana | High | 2734.0 | 5 | 7 | 19138.0 | 2296.560 | 16841.440 | 13670.0 | 3171.440 | 41913 | 10 | October | 2014 |
Government | Mexico | Montana | High | 1715.0 | 5 | 20 | 34300.0 | 4116.000 | 30184.000 | 17150.0 | 13034.000 | 41548 | 10 | October | 2013 |
Small Business | France | Montana | High | 1186.0 | 5 | 300 | 355800.0 | 42696.000 | 313104.000 | 296500.0 | 16604.000 | 41609 | 12 | December | 2013 |
Small Business | United States of America | Paseo | High | 3495.0 | 10 | 300 | 1048500.0 | 125820.000 | 922680.000 | 873750.0 | 48930.000 | 41640 | 1 | January | 2014 |
Government | Mexico | Paseo | High | 886.0 | 10 | 350 | 310100.0 | 37212.000 | 272888.000 | 230360.0 | 42528.000 | 41791 | 6 | June | 2014 |
Enterprise | Mexico | Paseo | High | 2156.0 | 10 | 125 | 269500.0 | 32340.000 | 237160.000 | 258720.0 | -21560.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Paseo | High | 905.0 | 10 | 20 | 18100.0 | 2172.000 | 15928.000 | 9050.0 | 6878.000 | 41913 | 10 | October | 2014 |
Government | France | VTT | High | 1491.0 | 250 | 7 | 10437.0 | 1252.440 | 9184.560 | 7455.0 | 1729.560 | 41699 | 3 | March | 2014 |
Government | Germany | VTT | High | 1531.0 | 250 | 20 | 30620.0 | 3674.400 | 26945.600 | 15310.0 | 11635.600 | 41974 | 12 | December | 2014 |
Channel Partners | Canada | Amarilla | High | 2761.0 | 260 | 12 | 33132.0 | 3975.840 | 29156.160 | 8283.0 | 20873.160 | 41518 | 9 | September | 2013 |
Midmarket | United States of America | Carretera | High | 2567.0 | 3 | 15 | 38505.0 | 5005.650 | 33499.350 | 25670.0 | 7829.350 | 41791 | 6 | June | 2014 |
Midmarket | United States of America | VTT | High | 2567.0 | 250 | 15 | 38505.0 | 5005.650 | 33499.350 | 25670.0 | 7829.350 | 41791 | 6 | June | 2014 |
Government | Canada | Carretera | High | 923.0 | 3 | 350 | 323050.0 | 41996.500 | 281053.500 | 239980.0 | 41073.500 | 41699 | 3 | March | 2014 |
Government | France | Carretera | High | 1790.0 | 3 | 350 | 626500.0 | 81445.000 | 545055.000 | 465400.0 | 79655.000 | 41699 | 3 | March | 2014 |
Government | Germany | Carretera | High | 442.0 | 3 | 20 | 8840.0 | 1149.200 | 7690.800 | 4420.0 | 3270.800 | 41518 | 9 | September | 2013 |
Government | United States of America | Montana | High | 982.5 | 5 | 350 | 343875.0 | 44703.750 | 299171.250 | 255450.0 | 43721.250 | 41640 | 1 | January | 2014 |
Government | United States of America | Montana | High | 1298.0 | 5 | 7 | 9086.0 | 1181.180 | 7904.820 | 6490.0 | 1414.820 | 41671 | 2 | February | 2014 |
Channel Partners | Mexico | Montana | High | 604.0 | 5 | 12 | 7248.0 | 942.240 | 6305.760 | 1812.0 | 4493.760 | 41791 | 6 | June | 2014 |
Government | Mexico | Montana | High | 2255.0 | 5 | 20 | 45100.0 | 5863.000 | 39237.000 | 22550.0 | 16687.000 | 41821 | 7 | July | 2014 |
Government | Canada | Montana | High | 1249.0 | 5 | 20 | 24980.0 | 3247.400 | 21732.600 | 12490.0 | 9242.600 | 41913 | 10 | October | 2014 |
Government | United States of America | Paseo | High | 1438.5 | 10 | 7 | 10069.5 | 1309.035 | 8760.465 | 7192.5 | 1567.965 | 41640 | 1 | January | 2014 |
Small Business | Germany | Paseo | High | 807.0 | 10 | 300 | 242100.0 | 31473.000 | 210627.000 | 201750.0 | 8877.000 | 41640 | 1 | January | 2014 |
Government | United States of America | Paseo | High | 2641.0 | 10 | 20 | 52820.0 | 6866.600 | 45953.400 | 26410.0 | 19543.400 | 41671 | 2 | February | 2014 |
Government | Germany | Paseo | High | 2708.0 | 10 | 20 | 54160.0 | 7040.800 | 47119.200 | 27080.0 | 20039.200 | 41671 | 2 | February | 2014 |
Government | Canada | Paseo | High | 2632.0 | 10 | 350 | 921200.0 | 119756.000 | 801444.000 | 684320.0 | 117124.000 | 41791 | 6 | June | 2014 |
Enterprise | Canada | Paseo | High | 1583.0 | 10 | 125 | 197875.0 | 25723.750 | 172151.250 | 189960.0 | -17808.750 | 41791 | 6 | June | 2014 |
Channel Partners | Mexico | Paseo | High | 571.0 | 10 | 12 | 6852.0 | 890.760 | 5961.240 | 1713.0 | 4248.240 | 41821 | 7 | July | 2014 |
Government | France | Paseo | High | 2696.0 | 10 | 7 | 18872.0 | 2453.360 | 16418.640 | 13480.0 | 2938.640 | 41852 | 8 | August | 2014 |
Midmarket | Canada | Paseo | High | 1565.0 | 10 | 15 | 23475.0 | 3051.750 | 20423.250 | 15650.0 | 4773.250 | 41913 | 10 | October | 2014 |
Government | Canada | Paseo | High | 1249.0 | 10 | 20 | 24980.0 | 3247.400 | 21732.600 | 12490.0 | 9242.600 | 41913 | 10 | October | 2014 |
Government | Germany | Paseo | High | 357.0 | 10 | 350 | 124950.0 | 16243.500 | 108706.500 | 92820.0 | 15886.500 | 41944 | 11 | November | 2014 |
Channel Partners | Germany | Paseo | High | 1013.0 | 10 | 12 | 12156.0 | 1580.280 | 10575.720 | 3039.0 | 7536.720 | 41974 | 12 | December | 2014 |
Midmarket | France | Velo | High | 3997.5 | 120 | 15 | 59962.5 | 7795.125 | 52167.375 | 39975.0 | 12192.375 | 41640 | 1 | January | 2014 |
Government | Canada | Velo | High | 2632.0 | 120 | 350 | 921200.0 | 119756.000 | 801444.000 | 684320.0 | 117124.000 | 41791 | 6 | June | 2014 |
Government | France | Velo | High | 1190.0 | 120 | 7 | 8330.0 | 1082.900 | 7247.100 | 5950.0 | 1297.100 | 41791 | 6 | June | 2014 |
Channel Partners | Mexico | Velo | High | 604.0 | 120 | 12 | 7248.0 | 942.240 | 6305.760 | 1812.0 | 4493.760 | 41791 | 6 | June | 2014 |
Midmarket | Germany | Velo | High | 660.0 | 120 | 15 | 9900.0 | 1287.000 | 8613.000 | 6600.0 | 2013.000 | 41518 | 9 | September | 2013 |
Channel Partners | Mexico | Velo | High | 410.0 | 120 | 12 | 4920.0 | 639.600 | 4280.400 | 1230.0 | 3050.400 | 41913 | 10 | October | 2014 |
Small Business | Mexico | Velo | High | 2605.0 | 120 | 300 | 781500.0 | 101595.000 | 679905.000 | 651250.0 | 28655.000 | 41579 | 11 | November | 2013 |
Channel Partners | Germany | Velo | High | 1013.0 | 120 | 12 | 12156.0 | 1580.280 | 10575.720 | 3039.0 | 7536.720 | 41974 | 12 | December | 2014 |
Enterprise | Canada | VTT | High | 1583.0 | 250 | 125 | 197875.0 | 25723.750 | 172151.250 | 189960.0 | -17808.750 | 41791 | 6 | June | 2014 |
Midmarket | Canada | VTT | High | 1565.0 | 250 | 15 | 23475.0 | 3051.750 | 20423.250 | 15650.0 | 4773.250 | 41913 | 10 | October | 2014 |
Enterprise | Canada | Amarilla | High | 1659.0 | 260 | 125 | 207375.0 | 26958.750 | 180416.250 | 199080.0 | -18663.750 | 41640 | 1 | January | 2014 |
Government | France | Amarilla | High | 1190.0 | 260 | 7 | 8330.0 | 1082.900 | 7247.100 | 5950.0 | 1297.100 | 41791 | 6 | June | 2014 |
Channel Partners | Mexico | Amarilla | High | 410.0 | 260 | 12 | 4920.0 | 639.600 | 4280.400 | 1230.0 | 3050.400 | 41913 | 10 | October | 2014 |
Channel Partners | Germany | Amarilla | High | 1770.0 | 260 | 12 | 21240.0 | 2761.200 | 18478.800 | 5310.0 | 13168.800 | 41609 | 12 | December | 2013 |
Government | Mexico | Carretera | High | 2579.0 | 3 | 20 | 51580.0 | 7221.200 | 44358.800 | 25790.0 | 18568.800 | 41730 | 4 | April | 2014 |
Government | United States of America | Carretera | High | 1743.0 | 3 | 20 | 34860.0 | 4880.400 | 29979.600 | 17430.0 | 12549.600 | 41760 | 5 | May | 2014 |
Government | United States of America | Carretera | High | 2996.0 | 3 | 7 | 20972.0 | 2936.080 | 18035.920 | 14980.0 | 3055.920 | 41548 | 10 | October | 2013 |
Government | Germany | Carretera | High | 280.0 | 3 | 7 | 1960.0 | 274.400 | 1685.600 | 1400.0 | 285.600 | 41974 | 12 | December | 2014 |
Government | France | Montana | High | 293.0 | 5 | 7 | 2051.0 | 287.140 | 1763.860 | 1465.0 | 298.860 | 41671 | 2 | February | 2014 |
Government | United States of America | Montana | High | 2996.0 | 5 | 7 | 20972.0 | 2936.080 | 18035.920 | 14980.0 | 3055.920 | 41548 | 10 | October | 2013 |
Midmarket | Germany | Paseo | High | 278.0 | 10 | 15 | 4170.0 | 583.800 | 3586.200 | 2780.0 | 806.200 | 41671 | 2 | February | 2014 |
Government | Canada | Paseo | High | 2428.0 | 10 | 20 | 48560.0 | 6798.400 | 41761.600 | 24280.0 | 17481.600 | 41699 | 3 | March | 2014 |
Midmarket | United States of America | Paseo | High | 1767.0 | 10 | 15 | 26505.0 | 3710.700 | 22794.300 | 17670.0 | 5124.300 | 41883 | 9 | September | 2014 |
Channel Partners | France | Paseo | High | 1393.0 | 10 | 12 | 16716.0 | 2340.240 | 14375.760 | 4179.0 | 10196.760 | 41913 | 10 | October | 2014 |
Government | Germany | VTT | High | 280.0 | 250 | 7 | 1960.0 | 274.400 | 1685.600 | 1400.0 | 285.600 | 41974 | 12 | December | 2014 |
Channel Partners | France | Amarilla | High | 1393.0 | 260 | 12 | 16716.0 | 2340.240 | 14375.760 | 4179.0 | 10196.760 | 41913 | 10 | October | 2014 |
Government | France | Velo | High | 2805.0 | 120 | 20 | 56100.0 | 6171.000 | 49929.000 | 28050.0 | 21879.000 | 41518 | 9 | September | 2013 |
Midmarket | Mexico | Velo | High | 655.0 | 120 | 15 | 9825.0 | 1080.750 | 8744.250 | 6550.0 | 2194.250 | 41518 | 9 | September | 2013 |
Government | Mexico | Velo | High | 344.0 | 120 | 350 | 120400.0 | 13244.000 | 107156.000 | 89440.0 | 17716.000 | 41548 | 10 | October | 2013 |
Government | Canada | Velo | High | 1808.0 | 120 | 7 | 12656.0 | 1392.160 | 11263.840 | 9040.0 | 2223.840 | 41944 | 11 | November | 2014 |
Channel Partners | France | VTT | High | 1734.0 | 250 | 12 | 20808.0 | 2288.880 | 18519.120 | 5202.0 | 13317.120 | 41640 | 1 | January | 2014 |
Enterprise | Mexico | VTT | High | 554.0 | 250 | 125 | 69250.0 | 7617.500 | 61632.500 | 66480.0 | -4847.500 | 41640 | 1 | January | 2014 |
Government | Canada | VTT | High | 2935.0 | 250 | 20 | 58700.0 | 6457.000 | 52243.000 | 29350.0 | 22893.000 | 41579 | 11 | November | 2013 |
Enterprise | Germany | Amarilla | High | 3165.0 | 260 | 125 | 395625.0 | 43518.750 | 352106.250 | 379800.0 | -27693.750 | 41640 | 1 | January | 2014 |
Government | Mexico | Amarilla | High | 2629.0 | 260 | 20 | 52580.0 | 5783.800 | 46796.200 | 26290.0 | 20506.200 | 41640 | 1 | January | 2014 |
Enterprise | France | Amarilla | High | 1433.0 | 260 | 125 | 179125.0 | 19703.750 | 159421.250 | 171960.0 | -12538.750 | 41760 | 5 | May | 2014 |
Enterprise | Mexico | Amarilla | High | 947.0 | 260 | 125 | 118375.0 | 13021.250 | 105353.750 | 113640.0 | -8286.250 | 41518 | 9 | September | 2013 |
Government | Mexico | Amarilla | High | 344.0 | 260 | 350 | 120400.0 | 13244.000 | 107156.000 | 89440.0 | 17716.000 | 41548 | 10 | October | 2013 |
Midmarket | Mexico | Amarilla | High | 2157.0 | 260 | 15 | 32355.0 | 3559.050 | 28795.950 | 21570.0 | 7225.950 | 41974 | 12 | December | 2014 |
Government | United States of America | Paseo | High | 380.0 | 10 | 7 | 2660.0 | 292.600 | 2367.400 | 1900.0 | 467.400 | 41518 | 9 | September | 2013 |
Government | Mexico | Carretera | High | 886.0 | 3 | 350 | 310100.0 | 37212.000 | 272888.000 | 230360.0 | 42528.000 | 41791 | 6 | June | 2014 |
Enterprise | Canada | Carretera | High | 2416.0 | 3 | 125 | 302000.0 | 36240.000 | 265760.000 | 289920.0 | -24160.000 | 41518 | 9 | September | 2013 |
Enterprise | Mexico | Carretera | High | 2156.0 | 3 | 125 | 269500.0 | 32340.000 | 237160.000 | 258720.0 | -21560.000 | 41913 | 10 | October | 2014 |
Midmarket | Canada | Carretera | High | 2689.0 | 3 | 15 | 40335.0 | 4840.200 | 35494.800 | 26890.0 | 8604.800 | 41944 | 11 | November | 2014 |
Midmarket | United States of America | Montana | High | 677.0 | 5 | 15 | 10155.0 | 1218.600 | 8936.400 | 6770.0 | 2166.400 | 41699 | 3 | March | 2014 |
Small Business | France | Montana | High | 1773.0 | 5 | 300 | 531900.0 | 63828.000 | 468072.000 | 443250.0 | 24822.000 | 41730 | 4 | April | 2014 |
Government | Mexico | Montana | High | 2420.0 | 5 | 7 | 16940.0 | 2032.800 | 14907.200 | 12100.0 | 2807.200 | 41883 | 9 | September | 2014 |
Government | Canada | Montana | High | 2734.0 | 5 | 7 | 19138.0 | 2296.560 | 16841.440 | 13670.0 | 3171.440 | 41913 | 10 | October | 2014 |
Government | Mexico | Montana | High | 1715.0 | 5 | 20 | 34300.0 | 4116.000 | 30184.000 | 17150.0 | 13034.000 | 41548 | 10 | October | 2013 |
Small Business | France | Montana | High | 1186.0 | 5 | 300 | 355800.0 | 42696.000 | 313104.000 | 296500.0 | 16604.000 | 41609 | 12 | December | 2013 |
Small Business | United States of America | Paseo | High | 3495.0 | 10 | 300 | 1048500.0 | 125820.000 | 922680.000 | 873750.0 | 48930.000 | 41640 | 1 | January | 2014 |
Government | Mexico | Paseo | High | 886.0 | 10 | 350 | 310100.0 | 37212.000 | 272888.000 | 230360.0 | 42528.000 | 41791 | 6 | June | 2014 |
Enterprise | Mexico | Paseo | High | 2156.0 | 10 | 125 | 269500.0 | 32340.000 | 237160.000 | 258720.0 | -21560.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Paseo | High | 905.0 | 10 | 20 | 18100.0 | 2172.000 | 15928.000 | 9050.0 | 6878.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Paseo | High | 1715.0 | 10 | 20 | 34300.0 | 4116.000 | 30184.000 | 17150.0 | 13034.000 | 41548 | 10 | October | 2013 |
Government | France | Paseo | High | 1594.0 | 10 | 350 | 557900.0 | 66948.000 | 490952.000 | 414440.0 | 76512.000 | 41944 | 11 | November | 2014 |
Small Business | Germany | Paseo | High | 1359.0 | 10 | 300 | 407700.0 | 48924.000 | 358776.000 | 339750.0 | 19026.000 | 41944 | 11 | November | 2014 |
Small Business | Mexico | Paseo | High | 2150.0 | 10 | 300 | 645000.0 | 77400.000 | 567600.000 | 537500.0 | 30100.000 | 41944 | 11 | November | 2014 |
Government | Mexico | Paseo | High | 1197.0 | 10 | 350 | 418950.0 | 50274.000 | 368676.000 | 311220.0 | 57456.000 | 41944 | 11 | November | 2014 |
Midmarket | Mexico | Paseo | High | 380.0 | 10 | 15 | 5700.0 | 684.000 | 5016.000 | 3800.0 | 1216.000 | 41609 | 12 | December | 2013 |
Government | Mexico | Paseo | High | 1233.0 | 10 | 20 | 24660.0 | 2959.200 | 21700.800 | 12330.0 | 9370.800 | 41974 | 12 | December | 2014 |
Government | Mexico | Velo | High | 1395.0 | 120 | 350 | 488250.0 | 58590.000 | 429660.000 | 362700.0 | 66960.000 | 41821 | 7 | July | 2014 |
Government | United States of America | Velo | High | 986.0 | 120 | 350 | 345100.0 | 41412.000 | 303688.000 | 256360.0 | 47328.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Velo | High | 905.0 | 120 | 20 | 18100.0 | 2172.000 | 15928.000 | 9050.0 | 6878.000 | 41913 | 10 | October | 2014 |
Channel Partners | Canada | VTT | High | 2109.0 | 250 | 12 | 25308.0 | 3036.960 | 22271.040 | 6327.0 | 15944.040 | 41760 | 5 | May | 2014 |
Midmarket | France | VTT | High | 3874.5 | 250 | 15 | 58117.5 | 6974.100 | 51143.400 | 38745.0 | 12398.400 | 41821 | 7 | July | 2014 |
Government | Canada | VTT | High | 623.0 | 250 | 350 | 218050.0 | 26166.000 | 191884.000 | 161980.0 | 29904.000 | 41518 | 9 | September | 2013 |
Government | United States of America | VTT | High | 986.0 | 250 | 350 | 345100.0 | 41412.000 | 303688.000 | 256360.0 | 47328.000 | 41913 | 10 | October | 2014 |
Enterprise | United States of America | VTT | High | 2387.0 | 250 | 125 | 298375.0 | 35805.000 | 262570.000 | 286440.0 | -23870.000 | 41944 | 11 | November | 2014 |
Government | Mexico | VTT | High | 1233.0 | 250 | 20 | 24660.0 | 2959.200 | 21700.800 | 12330.0 | 9370.800 | 41974 | 12 | December | 2014 |
Government | United States of America | Amarilla | High | 270.0 | 260 | 350 | 94500.0 | 11340.000 | 83160.000 | 70200.0 | 12960.000 | 41671 | 2 | February | 2014 |
Government | France | Amarilla | High | 3421.5 | 260 | 7 | 23950.5 | 2874.060 | 21076.440 | 17107.5 | 3968.940 | 41821 | 7 | July | 2014 |
Government | Canada | Amarilla | High | 2734.0 | 260 | 7 | 19138.0 | 2296.560 | 16841.440 | 13670.0 | 3171.440 | 41913 | 10 | October | 2014 |
Midmarket | United States of America | Amarilla | High | 2548.0 | 260 | 15 | 38220.0 | 4586.400 | 33633.600 | 25480.0 | 8153.600 | 41579 | 11 | November | 2013 |
Government | France | Carretera | High | 2521.5 | 3 | 20 | 50430.0 | 6051.600 | 44378.400 | 25215.0 | 19163.400 | 41640 | 1 | January | 2014 |
Channel Partners | Mexico | Montana | High | 2661.0 | 5 | 12 | 31932.0 | 3831.840 | 28100.160 | 7983.0 | 20117.160 | 41760 | 5 | May | 2014 |
Government | Germany | Paseo | High | 1531.0 | 10 | 20 | 30620.0 | 3674.400 | 26945.600 | 15310.0 | 11635.600 | 41974 | 12 | December | 2014 |
Government | France | VTT | High | 1491.0 | 250 | 7 | 10437.0 | 1252.440 | 9184.560 | 7455.0 | 1729.560 | 41699 | 3 | March | 2014 |
Government | Germany | VTT | High | 1531.0 | 250 | 20 | 30620.0 | 3674.400 | 26945.600 | 15310.0 | 11635.600 | 41974 | 12 | December | 2014 |
Channel Partners | Canada | Amarilla | High | 2761.0 | 260 | 12 | 33132.0 | 3975.840 | 29156.160 | 8283.0 | 20873.160 | 41518 | 9 | September | 2013 |
Midmarket | United States of America | Carretera | High | 2567.0 | 3 | 15 | 38505.0 | 5005.650 | 33499.350 | 25670.0 | 7829.350 | 41791 | 6 | June | 2014 |
Midmarket | United States of America | VTT | High | 2567.0 | 250 | 15 | 38505.0 | 5005.650 | 33499.350 | 25670.0 | 7829.350 | 41791 | 6 | June | 2014 |
Government | France | Velo | High | 2805.0 | 120 | 20 | 56100.0 | 6171.000 | 49929.000 | 28050.0 | 21879.000 | 41518 | 9 | September | 2013 |
Midmarket | Mexico | Velo | High | 655.0 | 120 | 15 | 9825.0 | 1080.750 | 8744.250 | 6550.0 | 2194.250 | 41518 | 9 | September | 2013 |
Government | Mexico | Velo | High | 344.0 | 120 | 350 | 120400.0 | 13244.000 | 107156.000 | 89440.0 | 17716.000 | 41548 | 10 | October | 2013 |
Government | Canada | Velo | High | 1808.0 | 120 | 7 | 12656.0 | 1392.160 | 11263.840 | 9040.0 | 2223.840 | 41944 | 11 | November | 2014 |
Channel Partners | France | VTT | High | 1734.0 | 250 | 12 | 20808.0 | 2288.880 | 18519.120 | 5202.0 | 13317.120 | 41640 | 1 | January | 2014 |
Enterprise | Mexico | VTT | High | 554.0 | 250 | 125 | 69250.0 | 7617.500 | 61632.500 | 66480.0 | -4847.500 | 41640 | 1 | January | 2014 |
Government | Canada | VTT | High | 2935.0 | 250 | 20 | 58700.0 | 6457.000 | 52243.000 | 29350.0 | 22893.000 | 41579 | 11 | November | 2013 |
Enterprise | Germany | Amarilla | High | 3165.0 | 260 | 125 | 395625.0 | 43518.750 | 352106.250 | 379800.0 | -27693.750 | 41640 | 1 | January | 2014 |
Government | Mexico | Amarilla | High | 2629.0 | 260 | 20 | 52580.0 | 5783.800 | 46796.200 | 26290.0 | 20506.200 | 41640 | 1 | January | 2014 |
Enterprise | France | Amarilla | High | 1433.0 | 260 | 125 | 179125.0 | 19703.750 | 159421.250 | 171960.0 | -12538.750 | 41760 | 5 | May | 2014 |
Enterprise | Mexico | Amarilla | High | 947.0 | 260 | 125 | 118375.0 | 13021.250 | 105353.750 | 113640.0 | -8286.250 | 41518 | 9 | September | 2013 |
Government | Mexico | Amarilla | High | 344.0 | 260 | 350 | 120400.0 | 13244.000 | 107156.000 | 89440.0 | 17716.000 | 41548 | 10 | October | 2013 |
Midmarket | Mexico | Amarilla | High | 2157.0 | 260 | 15 | 32355.0 | 3559.050 | 28795.950 | 21570.0 | 7225.950 | 41974 | 12 | December | 2014 |
Government | United States of America | Paseo | High | 380.0 | 10 | 7 | 2660.0 | 292.600 | 2367.400 | 1900.0 | 467.400 | 41518 | 9 | September | 2013 |
Government | Mexico | Carretera | High | 886.0 | 3 | 350 | 310100.0 | 37212.000 | 272888.000 | 230360.0 | 42528.000 | 41791 | 6 | June | 2014 |
Enterprise | Canada | Carretera | High | 2416.0 | 3 | 125 | 302000.0 | 36240.000 | 265760.000 | 289920.0 | -24160.000 | 41518 | 9 | September | 2013 |
Enterprise | Mexico | Carretera | High | 2156.0 | 3 | 125 | 269500.0 | 32340.000 | 237160.000 | 258720.0 | -21560.000 | 41913 | 10 | October | 2014 |
Midmarket | Canada | Carretera | High | 2689.0 | 3 | 15 | 40335.0 | 4840.200 | 35494.800 | 26890.0 | 8604.800 | 41944 | 11 | November | 2014 |
Midmarket | United States of America | Montana | High | 677.0 | 5 | 15 | 10155.0 | 1218.600 | 8936.400 | 6770.0 | 2166.400 | 41699 | 3 | March | 2014 |
Small Business | France | Montana | High | 1773.0 | 5 | 300 | 531900.0 | 63828.000 | 468072.000 | 443250.0 | 24822.000 | 41730 | 4 | April | 2014 |
Government | Mexico | Montana | High | 2420.0 | 5 | 7 | 16940.0 | 2032.800 | 14907.200 | 12100.0 | 2807.200 | 41883 | 9 | September | 2014 |
Government | Canada | Montana | High | 2734.0 | 5 | 7 | 19138.0 | 2296.560 | 16841.440 | 13670.0 | 3171.440 | 41913 | 10 | October | 2014 |
Government | Mexico | Montana | High | 1715.0 | 5 | 20 | 34300.0 | 4116.000 | 30184.000 | 17150.0 | 13034.000 | 41548 | 10 | October | 2013 |
Small Business | France | Montana | High | 1186.0 | 5 | 300 | 355800.0 | 42696.000 | 313104.000 | 296500.0 | 16604.000 | 41609 | 12 | December | 2013 |
Small Business | United States of America | Paseo | High | 3495.0 | 10 | 300 | 1048500.0 | 125820.000 | 922680.000 | 873750.0 | 48930.000 | 41640 | 1 | January | 2014 |
Government | Mexico | Paseo | High | 886.0 | 10 | 350 | 310100.0 | 37212.000 | 272888.000 | 230360.0 | 42528.000 | 41791 | 6 | June | 2014 |
Enterprise | Mexico | Paseo | High | 2156.0 | 10 | 125 | 269500.0 | 32340.000 | 237160.000 | 258720.0 | -21560.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Paseo | High | 905.0 | 10 | 20 | 18100.0 | 2172.000 | 15928.000 | 9050.0 | 6878.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Paseo | High | 1715.0 | 10 | 20 | 34300.0 | 4116.000 | 30184.000 | 17150.0 | 13034.000 | 41548 | 10 | October | 2013 |
Government | France | Paseo | High | 1594.0 | 10 | 350 | 557900.0 | 66948.000 | 490952.000 | 414440.0 | 76512.000 | 41944 | 11 | November | 2014 |
Small Business | Germany | Paseo | High | 1359.0 | 10 | 300 | 407700.0 | 48924.000 | 358776.000 | 339750.0 | 19026.000 | 41944 | 11 | November | 2014 |
Small Business | Mexico | Paseo | High | 2150.0 | 10 | 300 | 645000.0 | 77400.000 | 567600.000 | 537500.0 | 30100.000 | 41944 | 11 | November | 2014 |
Government | Mexico | Paseo | High | 1197.0 | 10 | 350 | 418950.0 | 50274.000 | 368676.000 | 311220.0 | 57456.000 | 41944 | 11 | November | 2014 |
Midmarket | Mexico | Paseo | High | 380.0 | 10 | 15 | 5700.0 | 684.000 | 5016.000 | 3800.0 | 1216.000 | 41609 | 12 | December | 2013 |
Government | Mexico | Paseo | High | 1233.0 | 10 | 20 | 24660.0 | 2959.200 | 21700.800 | 12330.0 | 9370.800 | 41974 | 12 | December | 2014 |
Government | Mexico | Velo | High | 1395.0 | 120 | 350 | 488250.0 | 58590.000 | 429660.000 | 362700.0 | 66960.000 | 41821 | 7 | July | 2014 |
Government | United States of America | Velo | High | 986.0 | 120 | 350 | 345100.0 | 41412.000 | 303688.000 | 256360.0 | 47328.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Velo | High | 905.0 | 120 | 20 | 18100.0 | 2172.000 | 15928.000 | 9050.0 | 6878.000 | 41913 | 10 | October | 2014 |
Channel Partners | Canada | VTT | High | 2109.0 | 250 | 12 | 25308.0 | 3036.960 | 22271.040 | 6327.0 | 15944.040 | 41760 | 5 | May | 2014 |
Midmarket | France | VTT | High | 3874.5 | 250 | 15 | 58117.5 | 6974.100 | 51143.400 | 38745.0 | 12398.400 | 41821 | 7 | July | 2014 |
Government | Canada | VTT | High | 623.0 | 250 | 350 | 218050.0 | 26166.000 | 191884.000 | 161980.0 | 29904.000 | 41518 | 9 | September | 2013 |
Government | United States of America | VTT | High | 986.0 | 250 | 350 | 345100.0 | 41412.000 | 303688.000 | 256360.0 | 47328.000 | 41913 | 10 | October | 2014 |
Enterprise | United States of America | VTT | High | 2387.0 | 250 | 125 | 298375.0 | 35805.000 | 262570.000 | 286440.0 | -23870.000 | 41944 | 11 | November | 2014 |
Government | Mexico | VTT | High | 1233.0 | 250 | 20 | 24660.0 | 2959.200 | 21700.800 | 12330.0 | 9370.800 | 41974 | 12 | December | 2014 |
Government | United States of America | Amarilla | High | 270.0 | 260 | 350 | 94500.0 | 11340.000 | 83160.000 | 70200.0 | 12960.000 | 41671 | 2 | February | 2014 |
Government | France | Amarilla | High | 3421.5 | 260 | 7 | 23950.5 | 2874.060 | 21076.440 | 17107.5 | 3968.940 | 41821 | 7 | July | 2014 |
Government | Canada | Amarilla | High | 2734.0 | 260 | 7 | 19138.0 | 2296.560 | 16841.440 | 13670.0 | 3171.440 | 41913 | 10 | October | 2014 |
Midmarket | United States of America | Amarilla | High | 2548.0 | 260 | 15 | 38220.0 | 4586.400 | 33633.600 | 25480.0 | 8153.600 | 41579 | 11 | November | 2013 |
Government | France | Carretera | High | 2521.5 | 3 | 20 | 50430.0 | 6051.600 | 44378.400 | 25215.0 | 19163.400 | 41640 | 1 | January | 2014 |
Channel Partners | Mexico | Montana | High | 2661.0 | 5 | 12 | 31932.0 | 3831.840 | 28100.160 | 7983.0 | 20117.160 | 41760 | 5 | May | 2014 |
Government | Germany | Paseo | High | 1531.0 | 10 | 20 | 30620.0 | 3674.400 | 26945.600 | 15310.0 | 11635.600 | 41974 | 12 | December | 2014 |
Government | France | VTT | High | 1491.0 | 250 | 7 | 10437.0 | 1252.440 | 9184.560 | 7455.0 | 1729.560 | 41699 | 3 | March | 2014 |
Government | Germany | VTT | High | 1531.0 | 250 | 20 | 30620.0 | 3674.400 | 26945.600 | 15310.0 | 11635.600 | 41974 | 12 | December | 2014 |
Channel Partners | Canada | Amarilla | High | 2761.0 | 260 | 12 | 33132.0 | 3975.840 | 29156.160 | 8283.0 | 20873.160 | 41518 | 9 | September | 2013 |
Midmarket | United States of America | Carretera | High | 2567.0 | 3 | 15 | 38505.0 | 5005.650 | 33499.350 | 25670.0 | 7829.350 | 41791 | 6 | June | 2014 |
Midmarket | United States of America | VTT | High | 2567.0 | 250 | 15 | 38505.0 | 5005.650 | 33499.350 | 25670.0 | 7829.350 | 41791 | 6 | June | 2014 |
Government | France | Velo | High | 2805.0 | 120 | 20 | 56100.0 | 6171.000 | 49929.000 | 28050.0 | 21879.000 | 41518 | 9 | September | 2013 |
Midmarket | Mexico | Velo | High | 655.0 | 120 | 15 | 9825.0 | 1080.750 | 8744.250 | 6550.0 | 2194.250 | 41518 | 9 | September | 2013 |
Government | Mexico | Velo | High | 344.0 | 120 | 350 | 120400.0 | 13244.000 | 107156.000 | 89440.0 | 17716.000 | 41548 | 10 | October | 2013 |
Government | Canada | Velo | High | 1808.0 | 120 | 7 | 12656.0 | 1392.160 | 11263.840 | 9040.0 | 2223.840 | 41944 | 11 | November | 2014 |
Channel Partners | France | VTT | High | 1734.0 | 250 | 12 | 20808.0 | 2288.880 | 18519.120 | 5202.0 | 13317.120 | 41640 | 1 | January | 2014 |
Enterprise | Mexico | VTT | High | 554.0 | 250 | 125 | 69250.0 | 7617.500 | 61632.500 | 66480.0 | -4847.500 | 41640 | 1 | January | 2014 |
Government | Canada | VTT | High | 2935.0 | 250 | 20 | 58700.0 | 6457.000 | 52243.000 | 29350.0 | 22893.000 | 41579 | 11 | November | 2013 |
Enterprise | Germany | Amarilla | High | 3165.0 | 260 | 125 | 395625.0 | 43518.750 | 352106.250 | 379800.0 | -27693.750 | 41640 | 1 | January | 2014 |
Government | Mexico | Amarilla | High | 2629.0 | 260 | 20 | 52580.0 | 5783.800 | 46796.200 | 26290.0 | 20506.200 | 41640 | 1 | January | 2014 |
Enterprise | France | Amarilla | High | 1433.0 | 260 | 125 | 179125.0 | 19703.750 | 159421.250 | 171960.0 | -12538.750 | 41760 | 5 | May | 2014 |
Enterprise | Mexico | Amarilla | High | 947.0 | 260 | 125 | 118375.0 | 13021.250 | 105353.750 | 113640.0 | -8286.250 | 41518 | 9 | September | 2013 |
Government | Mexico | Amarilla | High | 344.0 | 260 | 350 | 120400.0 | 13244.000 | 107156.000 | 89440.0 | 17716.000 | 41548 | 10 | October | 2013 |
Midmarket | Mexico | Amarilla | High | 2157.0 | 260 | 15 | 32355.0 | 3559.050 | 28795.950 | 21570.0 | 7225.950 | 41974 | 12 | December | 2014 |
Government | United States of America | Paseo | High | 380.0 | 10 | 7 | 2660.0 | 292.600 | 2367.400 | 1900.0 | 467.400 | 41518 | 9 | September | 2013 |
Government | Mexico | Carretera | High | 886.0 | 3 | 350 | 310100.0 | 37212.000 | 272888.000 | 230360.0 | 42528.000 | 41791 | 6 | June | 2014 |
Enterprise | Canada | Carretera | High | 2416.0 | 3 | 125 | 302000.0 | 36240.000 | 265760.000 | 289920.0 | -24160.000 | 41518 | 9 | September | 2013 |
Enterprise | Mexico | Carretera | High | 2156.0 | 3 | 125 | 269500.0 | 32340.000 | 237160.000 | 258720.0 | -21560.000 | 41913 | 10 | October | 2014 |
Midmarket | Canada | Carretera | High | 2689.0 | 3 | 15 | 40335.0 | 4840.200 | 35494.800 | 26890.0 | 8604.800 | 41944 | 11 | November | 2014 |
Midmarket | United States of America | Montana | High | 677.0 | 5 | 15 | 10155.0 | 1218.600 | 8936.400 | 6770.0 | 2166.400 | 41699 | 3 | March | 2014 |
Small Business | France | Montana | High | 1773.0 | 5 | 300 | 531900.0 | 63828.000 | 468072.000 | 443250.0 | 24822.000 | 41730 | 4 | April | 2014 |
Government | Mexico | Montana | High | 2420.0 | 5 | 7 | 16940.0 | 2032.800 | 14907.200 | 12100.0 | 2807.200 | 41883 | 9 | September | 2014 |
Government | Canada | Montana | High | 2734.0 | 5 | 7 | 19138.0 | 2296.560 | 16841.440 | 13670.0 | 3171.440 | 41913 | 10 | October | 2014 |
Government | Mexico | Montana | High | 1715.0 | 5 | 20 | 34300.0 | 4116.000 | 30184.000 | 17150.0 | 13034.000 | 41548 | 10 | October | 2013 |
Small Business | France | Montana | High | 1186.0 | 5 | 300 | 355800.0 | 42696.000 | 313104.000 | 296500.0 | 16604.000 | 41609 | 12 | December | 2013 |
Small Business | United States of America | Paseo | High | 3495.0 | 10 | 300 | 1048500.0 | 125820.000 | 922680.000 | 873750.0 | 48930.000 | 41640 | 1 | January | 2014 |
Government | Mexico | Paseo | High | 886.0 | 10 | 350 | 310100.0 | 37212.000 | 272888.000 | 230360.0 | 42528.000 | 41791 | 6 | June | 2014 |
Enterprise | Mexico | Paseo | High | 2156.0 | 10 | 125 | 269500.0 | 32340.000 | 237160.000 | 258720.0 | -21560.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Paseo | High | 905.0 | 10 | 20 | 18100.0 | 2172.000 | 15928.000 | 9050.0 | 6878.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Paseo | High | 1715.0 | 10 | 20 | 34300.0 | 4116.000 | 30184.000 | 17150.0 | 13034.000 | 41548 | 10 | October | 2013 |
Government | France | Paseo | High | 1594.0 | 10 | 350 | 557900.0 | 66948.000 | 490952.000 | 414440.0 | 76512.000 | 41944 | 11 | November | 2014 |
Small Business | Germany | Paseo | High | 1359.0 | 10 | 300 | 407700.0 | 48924.000 | 358776.000 | 339750.0 | 19026.000 | 41944 | 11 | November | 2014 |
Small Business | Mexico | Paseo | High | 2150.0 | 10 | 300 | 645000.0 | 77400.000 | 567600.000 | 537500.0 | 30100.000 | 41944 | 11 | November | 2014 |
Government | Mexico | Paseo | High | 1197.0 | 10 | 350 | 418950.0 | 50274.000 | 368676.000 | 311220.0 | 57456.000 | 41944 | 11 | November | 2014 |
Midmarket | Mexico | Paseo | High | 380.0 | 10 | 15 | 5700.0 | 684.000 | 5016.000 | 3800.0 | 1216.000 | 41609 | 12 | December | 2013 |
Government | Mexico | Paseo | High | 1233.0 | 10 | 20 | 24660.0 | 2959.200 | 21700.800 | 12330.0 | 9370.800 | 41974 | 12 | December | 2014 |
Government | Mexico | Velo | High | 1395.0 | 120 | 350 | 488250.0 | 58590.000 | 429660.000 | 362700.0 | 66960.000 | 41821 | 7 | July | 2014 |
Government | United States of America | Velo | High | 986.0 | 120 | 350 | 345100.0 | 41412.000 | 303688.000 | 256360.0 | 47328.000 | 41913 | 10 | October | 2014 |
Government | Mexico | Velo | High | 905.0 | 120 | 20 | 18100.0 | 2172.000 | 15928.000 | 9050.0 | 6878.000 | 41913 | 10 | October | 2014 |
Channel Partners | Canada | VTT | High | 2109.0 | 250 | 12 | 25308.0 | 3036.960 | 22271.040 | 6327.0 | 15944.040 | 41760 | 5 | May | 2014 |
Midmarket | France | VTT | High | 3874.5 | 250 | 15 | 58117.5 | 6974.100 | 51143.400 | 38745.0 | 12398.400 | 41821 | 7 | July | 2014 |
Government | Canada | VTT | High | 623.0 | 250 | 350 | 218050.0 | 26166.000 | 191884.000 | 161980.0 | 29904.000 | 41518 | 9 | September | 2013 |
Government | United States of America | VTT | High | 986.0 | 250 | 350 | 345100.0 | 41412.000 | 303688.000 | 256360.0 | 47328.000 | 41913 | 10 | October | 2014 |
Enterprise | United States of America | VTT | High | 2387.0 | 250 | 125 | 298375.0 | 35805.000 | 262570.000 | 286440.0 | -23870.000 | 41944 | 11 | November | 2014 |
Government | Mexico | VTT | High | 1233.0 | 250 | 20 | 24660.0 | 2959.200 | 21700.800 | 12330.0 | 9370.800 | 41974 | 12 | December | 2014 |
Government | United States of America | Amarilla | High | 270.0 | 260 | 350 | 94500.0 | 11340.000 | 83160.000 | 70200.0 | 12960.000 | 41671 | 2 | February | 2014 |
Government | France | Amarilla | High | 3421.5 | 260 | 7 | 23950.5 | 2874.060 | 21076.440 | 17107.5 | 3968.940 | 41821 | 7 | July | 2014 |
Government | Canada | Amarilla | High | 2734.0 | 260 | 7 | 19138.0 | 2296.560 | 16841.440 | 13670.0 | 3171.440 | 41913 | 10 | October | 2014 |
Midmarket | United States of America | Amarilla | High | 2548.0 | 260 | 15 | 38220.0 | 4586.400 | 33633.600 | 25480.0 | 8153.600 | 41579 | 11 | November | 2013 |
Government | France | Carretera | High | 2521.5 | 3 | 20 | 50430.0 | 6051.600 | 44378.400 | 25215.0 | 19163.400 | 41640 | 1 | January | 2014 |
Channel Partners | Mexico | Montana | High | 2661.0 | 5 | 12 | 31932.0 | 3831.840 | 28100.160 | 7983.0 | 20117.160 | 41760 | 5 | May | 2014 |
Government | Germany | Paseo | High | 1531.0 | 10 | 20 | 30620.0 | 3674.400 | 26945.600 | 15310.0 | 11635.600 | 41974 | 12 | December | 2014 |
Government | France | VTT | High | 1491.0 | 250 | 7 | 10437.0 | 1252.440 | 9184.560 | 7455.0 | 1729.560 | 41699 | 3 | March | 2014 |
Government | Germany | VTT | High | 1531.0 | 250 | 20 | 30620.0 | 3674.400 | 26945.600 | 15310.0 | 11635.600 | 41974 | 12 | December | 2014 |
Channel Partners | Canada | Amarilla | High | 2761.0 | 260 | 12 | 33132.0 | 3975.840 | 29156.160 | 8283.0 | 20873.160 | 41518 | 9 | September | 2013 |
Midmarket | United States of America | Carretera | High | 2567.0 | 3 | 15 | 38505.0 | 5005.650 | 33499.350 | 25670.0 | 7829.350 | 41791 | 6 | June | 2014 |
Midmarket | United States of America | VTT | High | 2567.0 | 250 | 15 | 38505.0 | 5005.650 | 33499.350 | 25670.0 | 7829.350 | 41791 | 6 | June | 2014 |
library(skimr)
skim(navy)
Name | navy |
Number of rows | 1006 |
Number of columns | 16 |
_______________________ | |
Column type frequency: | |
character | 6 |
numeric | 10 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
Segment | 0 | 1 | 9 | 16 | 0 | 5 | 0 |
Country | 0 | 1 | 6 | 24 | 0 | 5 | 0 |
Product | 0 | 1 | 3 | 9 | 0 | 6 | 0 |
Discount.Band | 0 | 1 | 3 | 6 | 0 | 4 | 0 |
Month.Name | 0 | 1 | 3 | 9 | 0 | 12 | 0 |
Year | 0 | 1 | 4 | 4 | 0 | 2 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
Units.Sold | 0 | 1 | 1639.26 | 885.62 | 200.00 | 905.00 | 1566.00 | 2339.50 | 4492.5 | ▇▇▇▂▁ |
Manufacturing.Price | 0 | 1 | 101.69 | 110.35 | 3.00 | 5.00 | 10.00 | 250.00 | 260.0 | ▇▁▂▁▅ |
Sale.Price | 0 | 1 | 116.81 | 136.77 | 7.00 | 12.00 | 20.00 | 300.00 | 350.0 | ▇▂▁▁▃ |
Gross.Sales | 0 | 1 | 175936.31 | 245508.65 | 1799.00 | 18176.25 | 38592.50 | 269500.00 | 1207500.0 | ▇▂▁▁▁ |
Discounts | 0 | 1 | 14832.22 | 24110.38 | 0.00 | 1132.80 | 3559.05 | 19950.00 | 149677.5 | ▇▁▁▁▁ |
Sales | 0 | 1 | 161104.09 | 225860.91 | 1655.08 | 16748.55 | 35540.20 | 243346.88 | 1159200.0 | ▇▂▁▁▁ |
COGS | 0 | 1 | 139965.38 | 198115.49 | 918.00 | 8083.50 | 24490.00 | 236465.00 | 950625.0 | ▇▂▁▁▁ |
Profit | 0 | 1 | 21138.70 | 38428.09 | -40617.50 | 2750.00 | 9242.60 | 21272.24 | 262200.0 | ▇▂▁▁▁ |
Date | 0 | 1 | 41756.63 | 149.55 | 41518.00 | 41640.00 | 41760.00 | 41913.00 | 41974.0 | ▆▅▅▂▇ |
Month.Number | 0 | 1 | 7.84 | 3.44 | 1.00 | 5.00 | 9.00 | 10.00 | 12.0 | ▃▂▂▂▇ |
Thực hiện gán object navy là datasets Financial Sample Excel, thực hiện các lệnh trên objec navy, ta có được những thông tin sau:
library(tidyverse)
navy1 <- unique(navy) #lấy lượng biến trong "navy"
str(navy1)
## 'data.frame': 700 obs. of 16 variables:
## $ Segment : chr "Government" "Government" "Midmarket" "Midmarket" ...
## $ Country : chr "Canada" "Germany" "France" "Germany" ...
## $ Product : chr "Carretera" "Carretera" "Carretera" "Carretera" ...
## $ Discount.Band : chr "None" "None" "None" "None" ...
## $ Units.Sold : num 1618 1321 2178 888 2470 ...
## $ Manufacturing.Price: num 3 3 3 3 3 3 5 5 5 5 ...
## $ Sale.Price : num 20 20 15 15 15 350 15 12 20 12 ...
## $ Gross.Sales : num 32370 26420 32670 13320 37050 ...
## $ Discounts : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Sales : num 32370 26420 32670 13320 37050 ...
## $ COGS : num 16185 13210 21780 8880 24700 ...
## $ Profit : num 16185 13210 10890 4440 12350 ...
## $ Date : num 41640 41640 41791 41791 41791 ...
## $ Month.Number : num 1 1 6 6 6 12 3 6 6 6 ...
## $ Month.Name : chr "January" "January" "June" "June" ...
## $ Year : chr "2014" "2014" "2014" "2014" ...
navy2 <- distinct(navy) #Loại bỏ trung lắp trong "navy"
str(navy2)
## 'data.frame': 700 obs. of 16 variables:
## $ Segment : chr "Government" "Government" "Midmarket" "Midmarket" ...
## $ Country : chr "Canada" "Germany" "France" "Germany" ...
## $ Product : chr "Carretera" "Carretera" "Carretera" "Carretera" ...
## $ Discount.Band : chr "None" "None" "None" "None" ...
## $ Units.Sold : num 1618 1321 2178 888 2470 ...
## $ Manufacturing.Price: num 3 3 3 3 3 3 5 5 5 5 ...
## $ Sale.Price : num 20 20 15 15 15 350 15 12 20 12 ...
## $ Gross.Sales : num 32370 26420 32670 13320 37050 ...
## $ Discounts : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Sales : num 32370 26420 32670 13320 37050 ...
## $ COGS : num 16185 13210 21780 8880 24700 ...
## $ Profit : num 16185 13210 10890 4440 12350 ...
## $ Date : num 41640 41640 41791 41791 41791 ...
## $ Month.Number : num 1 1 6 6 6 12 3 6 6 6 ...
## $ Month.Name : chr "January" "January" "June" "June" ...
## $ Year : chr "2014" "2014" "2014" "2014" ...
Giả sử yêu cầu lấy những thông tin trong datasets đã loại bỏ trùng lặp “navy2” như sau: - lấy 100 quan sát đầu tiên trong datasets - lấy 50 quan sát cuối trong datastest - chọn những quan sát quốc gia Germany - chọn những sản phẩm Paseo hoặc Velo - chọn những sản phẩm Paseo có rủi ro trung bình - chọn làm việc với biến Country,Date mà Product là Paseo
navy100 <- head(navy,100)
str(navy100)
## 'data.frame': 100 obs. of 16 variables:
## $ Segment : chr "Government" "Government" "Midmarket" "Midmarket" ...
## $ Country : chr "Canada" "Germany" "France" "Germany" ...
## $ Product : chr "Carretera" "Carretera" "Carretera" "Carretera" ...
## $ Discount.Band : chr "None" "None" "None" "None" ...
## $ Units.Sold : num 1618 1321 2178 888 2470 ...
## $ Manufacturing.Price: num 3 3 3 3 3 3 5 5 5 5 ...
## $ Sale.Price : num 20 20 15 15 15 350 15 12 20 12 ...
## $ Gross.Sales : num 32370 26420 32670 13320 37050 ...
## $ Discounts : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Sales : num 32370 26420 32670 13320 37050 ...
## $ COGS : num 16185 13210 21780 8880 24700 ...
## $ Profit : num 16185 13210 10890 4440 12350 ...
## $ Date : num 41640 41640 41791 41791 41791 ...
## $ Month.Number : num 1 1 6 6 6 12 3 6 6 6 ...
## $ Month.Name : chr "January" "January" "June" "June" ...
## $ Year : chr "2014" "2014" "2014" "2014" ...
navy50 <- tail(navy,50)
str(navy50)
## 'data.frame': 50 obs. of 16 variables:
## $ Segment : chr "Government" "Enterprise" "Government" "Enterprise" ...
## $ Country : chr "Canada" "Germany" "Mexico" "France" ...
## $ Product : chr "VTT" "Amarilla" "Amarilla" "Amarilla" ...
## $ Discount.Band : chr "High" "High" "High" "High" ...
## $ Units.Sold : num 2935 3165 2629 1433 947 ...
## $ Manufacturing.Price: num 250 260 260 260 260 260 260 10 3 3 ...
## $ Sale.Price : num 20 125 20 125 125 350 15 7 350 125 ...
## $ Gross.Sales : num 58700 395625 52580 179125 118375 ...
## $ Discounts : num 6457 43519 5784 19704 13021 ...
## $ Sales : num 52243 352106 46796 159421 105354 ...
## $ COGS : num 29350 379800 26290 171960 113640 ...
## $ Profit : num 22893 -27694 20506 -12539 -8286 ...
## $ Date : num 41579 41640 41640 41760 41518 ...
## $ Month.Number : num 11 1 1 5 9 10 12 9 6 9 ...
## $ Month.Name : chr "November" "January" "January" "May" ...
## $ Year : chr "2013" "2014" "2014" "2014" ...
navy150 <- navy[navy$Product == 'Paseo' & navy$DiscountBand == 'Medium', ]
str(navy150)
## 'data.frame': 0 obs. of 16 variables:
## $ Segment : chr
## $ Country : chr
## $ Product : chr
## $ Discount.Band : chr
## $ Units.Sold : num
## $ Manufacturing.Price: num
## $ Sale.Price : num
## $ Gross.Sales : num
## $ Discounts : num
## $ Sales : num
## $ COGS : num
## $ Profit : num
## $ Date : num
## $ Month.Number : num
## $ Month.Name : chr
## $ Year : chr
navy200 <- navy[navy$Country == 'Germany', ]
str(navy200)
## 'data.frame': 179 obs. of 16 variables:
## $ Segment : chr "Government" "Midmarket" "Government" "Midmarket" ...
## $ Country : chr "Germany" "Germany" "Germany" "Germany" ...
## $ Product : chr "Carretera" "Carretera" "Carretera" "Montana" ...
## $ Discount.Band : chr "None" "None" "None" "None" ...
## $ Units.Sold : num 1321 888 1513 921 1545 ...
## $ Manufacturing.Price: num 3 3 3 5 5 5 10 10 10 120 ...
## $ Sale.Price : num 20 15 350 15 12 7 350 12 350 12 ...
## $ Gross.Sales : num 26420 13320 529550 13815 18540 ...
## $ Discounts : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Sales : num 26420 13320 529550 13815 18540 ...
## $ COGS : num 13210 8880 393380 9210 4635 ...
## $ Profit : num 13210 4440 136170 4605 13905 ...
## $ Date : num 41640 41791 41974 41699 41791 ...
## $ Month.Number : num 1 6 12 3 6 9 6 7 12 3 ...
## $ Month.Name : chr "January" "June" "December" "March" ...
## $ Year : chr "2014" "2014" "2014" "2014" ...
navy200 <- navy[navy$Product == 'Paseo' | navy$Product == 'Velo',]
str(navy200)
## 'data.frame': 432 obs. of 16 variables:
## $ Segment : chr "Government" "Midmarket" "Channel Partners" "Government" ...
## $ Country : chr "Canada" "Mexico" "Canada" "Germany" ...
## $ Product : chr "Paseo" "Paseo" "Paseo" "Paseo" ...
## $ Discount.Band : chr "None" "None" "None" "None" ...
## $ Units.Sold : num 292 974 2518 1006 367 ...
## $ Manufacturing.Price: num 10 10 10 10 10 10 10 10 10 10 ...
## $ Sale.Price : num 20 15 12 350 12 7 15 300 15 7 ...
## $ Gross.Sales : num 5840 14610 30216 352100 4404 ...
## $ Discounts : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Sales : num 5840 14610 30216 352100 4404 ...
## $ COGS : num 2920 9740 7554 261560 1101 ...
## $ Profit : num 2920 4870 22662 90540 3303 ...
## $ Date : num 41671 41671 41791 41791 41821 ...
## $ Month.Number : num 2 2 6 6 7 8 9 9 9 10 ...
## $ Month.Name : chr "February" "February" "June" "June" ...
## $ Year : chr "2014" "2014" "2014" "2014" ...
library(dplyr)
navy300 <- filter(navy, Product=='Paseo') %>% select(Country,Date,)
str(navy300)
## 'data.frame': 278 obs. of 2 variables:
## $ Country: chr "Canada" "Mexico" "Canada" "Germany" ...
## $ Date : num 41671 41671 41791 41791 41821 ...
Từ object cũ navy ta tạo thành object mới **navyx*, với các biến mới như sau:
navyx <- mutate(navy, pVND= Profit*24.550)
str(navyx)
## 'data.frame': 1006 obs. of 17 variables:
## $ Segment : chr "Government" "Government" "Midmarket" "Midmarket" ...
## $ Country : chr "Canada" "Germany" "France" "Germany" ...
## $ Product : chr "Carretera" "Carretera" "Carretera" "Carretera" ...
## $ Discount.Band : chr "None" "None" "None" "None" ...
## $ Units.Sold : num 1618 1321 2178 888 2470 ...
## $ Manufacturing.Price: num 3 3 3 3 3 3 5 5 5 5 ...
## $ Sale.Price : num 20 20 15 15 15 350 15 12 20 12 ...
## $ Gross.Sales : num 32370 26420 32670 13320 37050 ...
## $ Discounts : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Sales : num 32370 26420 32670 13320 37050 ...
## $ COGS : num 16185 13210 21780 8880 24700 ...
## $ Profit : num 16185 13210 10890 4440 12350 ...
## $ Date : num 41640 41640 41791 41791 41791 ...
## $ Month.Number : num 1 1 6 6 6 12 3 6 6 6 ...
## $ Month.Name : chr "January" "January" "June" "June" ...
## $ Year : chr "2014" "2014" "2014" "2014" ...
## $ pVND : num 397342 324306 267350 109002 303192 ...
navyx$tPro <- case_when(navy$Product< 1000 ~ 'bán ra thấp' , navy$Product == 1000 ~ 'bán ra trung bình' , navy$Product > 1000 ~ ' bán ra cao')
str(navyx)
## 'data.frame': 1006 obs. of 18 variables:
## $ Segment : chr "Government" "Government" "Midmarket" "Midmarket" ...
## $ Country : chr "Canada" "Germany" "France" "Germany" ...
## $ Product : chr "Carretera" "Carretera" "Carretera" "Carretera" ...
## $ Discount.Band : chr "None" "None" "None" "None" ...
## $ Units.Sold : num 1618 1321 2178 888 2470 ...
## $ Manufacturing.Price: num 3 3 3 3 3 3 5 5 5 5 ...
## $ Sale.Price : num 20 20 15 15 15 350 15 12 20 12 ...
## $ Gross.Sales : num 32370 26420 32670 13320 37050 ...
## $ Discounts : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Sales : num 32370 26420 32670 13320 37050 ...
## $ COGS : num 16185 13210 21780 8880 24700 ...
## $ Profit : num 16185 13210 10890 4440 12350 ...
## $ Date : num 41640 41640 41791 41791 41791 ...
## $ Month.Number : num 1 1 6 6 6 12 3 6 6 6 ...
## $ Month.Name : chr "January" "January" "June" "June" ...
## $ Year : chr "2014" "2014" "2014" "2014" ...
## $ pVND : num 397342 324306 267350 109002 303192 ...
## $ tPro : chr " bán ra cao" " bán ra cao" " bán ra cao" " bán ra cao" ...
```