Date: 16:55:31, 20 - 01 - 2024
data <- read.csv(file.choose(), header = T)
data
STT | Năm | CÔNG.TY | Y | X2 | X3 |
---|---|---|---|---|---|
1 | 1935 | GE | 33.10 | 1170.6 | 97.8 |
2 | 1936 | GE | 45.00 | 2015.8 | 104.4 |
3 | 1937 | GE | 77.20 | 2803.3 | 118.0 |
4 | 1938 | GE | 44.60 | 2039.7 | 156.2 |
5 | 1939 | GE | 48.10 | 2256.2 | 172.6 |
6 | 1940 | GE | 74.40 | 2132.2 | 186.6 |
7 | 1941 | GE | 113.00 | 1834.1 | 220.9 |
8 | 1942 | GE | 91.90 | 1588.0 | 287.8 |
9 | 1943 | GE | 61.30 | 1749.4 | 319.9 |
10 | 1944 | GE | 56.80 | 1687.2 | 321.3 |
11 | 1945 | GE | 93.60 | 2007.7 | 319.6 |
12 | 1946 | GE | 159.90 | 2208.3 | 346.0 |
13 | 1947 | GE | 147.20 | 1656.7 | 456.4 |
14 | 1948 | GE | 146.30 | 1604.4 | 543.4 |
15 | 1949 | GE | 98.30 | 1431.8 | 618.3 |
16 | 1950 | GE | 93.50 | 1610.5 | 647.4 |
17 | 1951 | GE | 135.20 | 1819.4 | 671.3 |
18 | 1952 | GE | 157.30 | 2079.7 | 726.1 |
19 | 1953 | GE | 179.50 | 2371.6 | 800.3 |
20 | 1954 | GE | 189.60 | 2759.9 | 888.9 |
21 | 1935 | US | 209.90 | 1362.4 | 53.8 |
22 | 1936 | US | 355.30 | 1807.1 | 50.5 |
23 | 1937 | US | 469.90 | 2673.3 | 118.1 |
24 | 1938 | US | 262.30 | 1801.9 | 260.2 |
25 | 1939 | US | 230.40 | 1957.3 | 312.7 |
26 | 1940 | US | 361.60 | 2202.9 | 254.2 |
27 | 1941 | US | 472.80 | 2380.5 | 261.4 |
28 | 1942 | US | 445.60 | 2168.6 | 298.7 |
29 | 1943 | US | 361.60 | 1985.1 | 301.8 |
30 | 1944 | US | 288.20 | 1813.9 | 279.1 |
31 | 1945 | US | 258.70 | 1850.2 | 213.8 |
32 | 1946 | US | 420.30 | 2067.7 | 232.6 |
33 | 1947 | US | 420.50 | 1796.3 | 264.8 |
34 | 1948 | US | 494.50 | 1625.8 | 306.9 |
35 | 1949 | US | 405.10 | 1667.0 | 351.1 |
36 | 1950 | US | 418.80 | 1677.4 | 357.8 |
37 | 1951 | US | 588.20 | 2289.5 | 341.1 |
38 | 1952 | US | 645.20 | 2159.4 | 444.2 |
39 | 1953 | US | 641.00 | 2031.3 | 623.6 |
40 | 1954 | US | 459.30 | 2115.5 | 669.7 |
41 | 1935 | GM | 317.60 | 3078.5 | 2.8 |
42 | 1936 | GM | 391.80 | 4661.7 | 52.6 |
43 | 1937 | GM | 410.60 | 5387.1 | 156.9 |
44 | 1938 | GM | 257.70 | 2792.2 | 209.2 |
45 | 1939 | GM | 330.80 | 4313.2 | 203.4 |
46 | 1940 | GM | 461.20 | 4643.9 | 207.2 |
47 | 1941 | GM | 512.00 | 4551.2 | 255.2 |
48 | 1942 | GM | 448.00 | 3244.1 | 303.7 |
49 | 1943 | GM | 499.60 | 4053.7 | 264.1 |
50 | 1944 | GM | 547.50 | 4379.3 | 201.6 |
51 | 1945 | GM | 561.20 | 4840.9 | 265.0 |
52 | 1946 | GM | 688.10 | 4900.0 | 402.0 |
53 | 1947 | GM | 568.90 | 3526.5 | 761.5 |
54 | 1948 | GM | 529.20 | 3245.7 | 922.4 |
55 | 1949 | GM | 555.10 | 3700.2 | 1020.1 |
56 | 1950 | GM | 642.90 | 3755.6 | 1099.0 |
57 | 1951 | GM | 755.90 | 4833.0 | 1207.7 |
58 | 1952 | GM | 891.20 | 4926.9 | 1430.5 |
59 | 1953 | GM | 1304.40 | 6241.7 | 1777.3 |
60 | 1954 | GM | 1486.70 | 5593.6 | 226.3 |
61 | 1935 | WEST | 12.93 | 191.5 | 1.8 |
62 | 1936 | WEST | 25.90 | 516.0 | 0.8 |
63 | 1937 | WEST | 35.05 | 729.0 | 7.4 |
64 | 1938 | WEST | 22.89 | 560.4 | 18.1 |
65 | 1939 | WEST | 18.84 | 519.9 | 23.5 |
66 | 1940 | WEST | 28.57 | 628.5 | 26.5 |
67 | 1941 | WEST | 48.51 | 537.1 | 36.2 |
68 | 1942 | WEST | 43.34 | 561.2 | 60.8 |
69 | 1943 | WEST | 37.02 | 617.2 | 84.4 |
70 | 1944 | WEST | 37.81 | 626.7 | 91.2 |
71 | 1945 | WEST | 39.27 | 737.2 | 92.4 |
72 | 1946 | WEST | 53.46 | 760.5 | 86.0 |
73 | 1947 | WEST | 55.56 | 581.4 | 111.1 |
74 | 1948 | WEST | 49.56 | 662.3 | 130.6 |
75 | 1949 | WEST | 32.04 | 583.8 | 141.8 |
76 | 1950 | WEST | 32.24 | 635.2 | 136.7 |
77 | 1951 | WEST | 54.38 | 732.8 | 129.7 |
78 | 1952 | WEST | 71.78 | 864.1 | 145.5 |
79 | 1953 | WEST | 90.08 | 1193.5 | 174.8 |
80 | 1954 | WEST | 68.60 | 1188.9 | 213.5 |
library(xlsx)
Data <- read.xlsx(file.choose(), sheetIndex = 1, header = T)
Data
STT | Năm | CÔNG.TY | Y | X2 | X3 | NA. |
---|---|---|---|---|---|---|
1 | 1935 | GE | 33.10 | 1170.6 | 97.8 | NA |
2 | 1936 | GE | 45.00 | 2015.8 | 104.4 | NA |
3 | 1937 | GE | 77.20 | 2803.3 | 118.0 | NA |
4 | 1938 | GE | 44.60 | 2039.7 | 156.2 | NA |
5 | 1939 | GE | 48.10 | 2256.2 | 172.6 | NA |
6 | 1940 | GE | 74.40 | 2132.2 | 186.6 | NA |
7 | 1941 | GE | 113.00 | 1834.1 | 220.9 | NA |
8 | 1942 | GE | 91.90 | 1588.0 | 287.8 | NA |
9 | 1943 | GE | 61.30 | 1749.4 | 319.9 | NA |
10 | 1944 | GE | 56.80 | 1687.2 | 321.3 | NA |
11 | 1945 | GE | 93.60 | 2007.7 | 319.6 | NA |
12 | 1946 | GE | 159.90 | 2208.3 | 346.0 | NA |
13 | 1947 | GE | 147.20 | 1656.7 | 456.4 | NA |
14 | 1948 | GE | 146.30 | 1604.4 | 543.4 | NA |
15 | 1949 | GE | 98.30 | 1431.8 | 618.3 | NA |
16 | 1950 | GE | 93.50 | 1610.5 | 647.4 | NA |
17 | 1951 | GE | 135.20 | 1819.4 | 671.3 | NA |
18 | 1952 | GE | 157.30 | 2079.7 | 726.1 | NA |
19 | 1953 | GE | 179.50 | 2371.6 | 800.3 | NA |
20 | 1954 | GE | 189.60 | 2759.9 | 888.9 | NA |
21 | 1935 | US | 209.90 | 1362.4 | 53.8 | NA |
22 | 1936 | US | 355.30 | 1807.1 | 50.5 | NA |
23 | 1937 | US | 469.90 | 2673.3 | 118.1 | NA |
24 | 1938 | US | 262.30 | 1801.9 | 260.2 | NA |
25 | 1939 | US | 230.40 | 1957.3 | 312.7 | NA |
26 | 1940 | US | 361.60 | 2202.9 | 254.2 | NA |
27 | 1941 | US | 472.80 | 2380.5 | 261.4 | NA |
28 | 1942 | US | 445.60 | 2168.6 | 298.7 | NA |
29 | 1943 | US | 361.60 | 1985.1 | 301.8 | NA |
30 | 1944 | US | 288.20 | 1813.9 | 279.1 | NA |
31 | 1945 | US | 258.70 | 1850.2 | 213.8 | NA |
32 | 1946 | US | 420.30 | 2067.7 | 232.6 | NA |
33 | 1947 | US | 420.50 | 1796.3 | 264.8 | NA |
34 | 1948 | US | 494.50 | 1625.8 | 306.9 | NA |
35 | 1949 | US | 405.10 | 1667.0 | 351.1 | NA |
36 | 1950 | US | 418.80 | 1677.4 | 357.8 | NA |
37 | 1951 | US | 588.20 | 2289.5 | 341.1 | NA |
38 | 1952 | US | 645.20 | 2159.4 | 444.2 | NA |
39 | 1953 | US | 641.00 | 2031.3 | 623.6 | NA |
40 | 1954 | US | 459.30 | 2115.5 | 669.7 | NA |
41 | 1935 | GM | 317.60 | 3078.5 | 2.8 | NA |
42 | 1936 | GM | 391.80 | 4661.7 | 52.6 | NA |
43 | 1937 | GM | 410.60 | 5387.1 | 156.9 | NA |
44 | 1938 | GM | 257.70 | 2792.2 | 209.2 | NA |
45 | 1939 | GM | 330.80 | 4313.2 | 203.4 | NA |
46 | 1940 | GM | 461.20 | 4643.9 | 207.2 | NA |
47 | 1941 | GM | 512.00 | 4551.2 | 255.2 | NA |
48 | 1942 | GM | 448.00 | 3244.1 | 303.7 | NA |
49 | 1943 | GM | 499.60 | 4053.7 | 264.1 | NA |
50 | 1944 | GM | 547.50 | 4379.3 | 201.6 | NA |
51 | 1945 | GM | 561.20 | 4840.9 | 265.0 | NA |
52 | 1946 | GM | 688.10 | 4900.0 | 402.0 | NA |
53 | 1947 | GM | 568.90 | 3526.5 | 761.5 | NA |
54 | 1948 | GM | 529.20 | 3245.7 | 922.4 | NA |
55 | 1949 | GM | 555.10 | 3700.2 | 1020.1 | NA |
56 | 1950 | GM | 642.90 | 3755.6 | 1099.0 | NA |
57 | 1951 | GM | 755.90 | 4833.0 | 1207.7 | NA |
58 | 1952 | GM | 891.20 | 4926.9 | 1430.5 | NA |
59 | 1953 | GM | 1304.40 | 6241.7 | 1777.3 | NA |
60 | 1954 | GM | 1486.70 | 5593.6 | 226.3 | NA |
61 | 1935 | WEST | 12.93 | 191.5 | 1.8 | NA |
62 | 1936 | WEST | 25.90 | 516.0 | 0.8 | NA |
63 | 1937 | WEST | 35.05 | 729.0 | 7.4 | NA |
64 | 1938 | WEST | 22.89 | 560.4 | 18.1 | NA |
65 | 1939 | WEST | 18.84 | 519.9 | 23.5 | NA |
66 | 1940 | WEST | 28.57 | 628.5 | 26.5 | NA |
67 | 1941 | WEST | 48.51 | 537.1 | 36.2 | NA |
68 | 1942 | WEST | 43.34 | 561.2 | 60.8 | NA |
69 | 1943 | WEST | 37.02 | 617.2 | 84.4 | NA |
70 | 1944 | WEST | 37.81 | 626.7 | 91.2 | NA |
71 | 1945 | WEST | 39.27 | 737.2 | 92.4 | NA |
72 | 1946 | WEST | 53.46 | 760.5 | 86.0 | NA |
73 | 1947 | WEST | 55.56 | 581.4 | 111.1 | NA |
74 | 1948 | WEST | 49.56 | 662.3 | 130.6 | NA |
75 | 1949 | WEST | 32.04 | 583.8 | 141.8 | NA |
76 | 1950 | WEST | 32.24 | 635.2 | 136.7 | NA |
77 | 1951 | WEST | 54.38 | 732.8 | 129.7 | NA |
78 | 1952 | WEST | 71.78 | 864.1 | 145.5 | NA |
79 | 1953 | WEST | 90.08 | 1193.5 | 174.8 | NA |
80 | 1954 | WEST | 68.60 | 1188.9 | 213.5 | NA |
library(datasets)
data(package = 'datasets')
b <- women
b
height | weight |
---|---|
58 | 115 |
59 | 117 |
60 | 120 |
61 | 123 |
62 | 126 |
63 | 129 |
64 | 132 |
65 | 135 |
66 | 139 |
67 | 142 |
68 | 146 |
69 | 150 |
70 | 154 |
71 | 159 |
72 | 164 |
library(ggplot2)
data(package = 'ggplot2')
a <- msleep
a
name | genus | vore | order | conservation | sleep_total | sleep_rem | sleep_cycle | awake | brainwt | bodywt |
---|---|---|---|---|---|---|---|---|---|---|
Cheetah | Acinonyx | carni | Carnivora | lc | 12.1 | NA | NA | 11.90 | NA | 50.000 |
Owl monkey | Aotus | omni | Primates | NA | 17.0 | 1.8 | NA | 7.00 | 0.01550 | 0.480 |
Mountain beaver | Aplodontia | herbi | Rodentia | nt | 14.4 | 2.4 | NA | 9.60 | NA | 1.350 |
Greater short-tailed shrew | Blarina | omni | Soricomorpha | lc | 14.9 | 2.3 | 0.1333333 | 9.10 | 0.00029 | 0.019 |
Cow | Bos | herbi | Artiodactyla | domesticated | 4.0 | 0.7 | 0.6666667 | 20.00 | 0.42300 | 600.000 |
Three-toed sloth | Bradypus | herbi | Pilosa | NA | 14.4 | 2.2 | 0.7666667 | 9.60 | NA | 3.850 |
Northern fur seal | Callorhinus | carni | Carnivora | vu | 8.7 | 1.4 | 0.3833333 | 15.30 | NA | 20.490 |
Vesper mouse | Calomys | NA | Rodentia | NA | 7.0 | NA | NA | 17.00 | NA | 0.045 |
Dog | Canis | carni | Carnivora | domesticated | 10.1 | 2.9 | 0.3333333 | 13.90 | 0.07000 | 14.000 |
Roe deer | Capreolus | herbi | Artiodactyla | lc | 3.0 | NA | NA | 21.00 | 0.09820 | 14.800 |
Goat | Capri | herbi | Artiodactyla | lc | 5.3 | 0.6 | NA | 18.70 | 0.11500 | 33.500 |
Guinea pig | Cavis | herbi | Rodentia | domesticated | 9.4 | 0.8 | 0.2166667 | 14.60 | 0.00550 | 0.728 |
Grivet | Cercopithecus | omni | Primates | lc | 10.0 | 0.7 | NA | 14.00 | NA | 4.750 |
Chinchilla | Chinchilla | herbi | Rodentia | domesticated | 12.5 | 1.5 | 0.1166667 | 11.50 | 0.00640 | 0.420 |
Star-nosed mole | Condylura | omni | Soricomorpha | lc | 10.3 | 2.2 | NA | 13.70 | 0.00100 | 0.060 |
African giant pouched rat | Cricetomys | omni | Rodentia | NA | 8.3 | 2.0 | NA | 15.70 | 0.00660 | 1.000 |
Lesser short-tailed shrew | Cryptotis | omni | Soricomorpha | lc | 9.1 | 1.4 | 0.1500000 | 14.90 | 0.00014 | 0.005 |
Long-nosed armadillo | Dasypus | carni | Cingulata | lc | 17.4 | 3.1 | 0.3833333 | 6.60 | 0.01080 | 3.500 |
Tree hyrax | Dendrohyrax | herbi | Hyracoidea | lc | 5.3 | 0.5 | NA | 18.70 | 0.01230 | 2.950 |
North American Opossum | Didelphis | omni | Didelphimorphia | lc | 18.0 | 4.9 | 0.3333333 | 6.00 | 0.00630 | 1.700 |
Asian elephant | Elephas | herbi | Proboscidea | en | 3.9 | NA | NA | 20.10 | 4.60300 | 2547.000 |
Big brown bat | Eptesicus | insecti | Chiroptera | lc | 19.7 | 3.9 | 0.1166667 | 4.30 | 0.00030 | 0.023 |
Horse | Equus | herbi | Perissodactyla | domesticated | 2.9 | 0.6 | 1.0000000 | 21.10 | 0.65500 | 521.000 |
Donkey | Equus | herbi | Perissodactyla | domesticated | 3.1 | 0.4 | NA | 20.90 | 0.41900 | 187.000 |
European hedgehog | Erinaceus | omni | Erinaceomorpha | lc | 10.1 | 3.5 | 0.2833333 | 13.90 | 0.00350 | 0.770 |
Patas monkey | Erythrocebus | omni | Primates | lc | 10.9 | 1.1 | NA | 13.10 | 0.11500 | 10.000 |
Western american chipmunk | Eutamias | herbi | Rodentia | NA | 14.9 | NA | NA | 9.10 | NA | 0.071 |
Domestic cat | Felis | carni | Carnivora | domesticated | 12.5 | 3.2 | 0.4166667 | 11.50 | 0.02560 | 3.300 |
Galago | Galago | omni | Primates | NA | 9.8 | 1.1 | 0.5500000 | 14.20 | 0.00500 | 0.200 |
Giraffe | Giraffa | herbi | Artiodactyla | cd | 1.9 | 0.4 | NA | 22.10 | NA | 899.995 |
Pilot whale | Globicephalus | carni | Cetacea | cd | 2.7 | 0.1 | NA | 21.35 | NA | 800.000 |
Gray seal | Haliochoerus | carni | Carnivora | lc | 6.2 | 1.5 | NA | 17.80 | 0.32500 | 85.000 |
Gray hyrax | Heterohyrax | herbi | Hyracoidea | lc | 6.3 | 0.6 | NA | 17.70 | 0.01227 | 2.625 |
Human | Homo | omni | Primates | NA | 8.0 | 1.9 | 1.5000000 | 16.00 | 1.32000 | 62.000 |
Mongoose lemur | Lemur | herbi | Primates | vu | 9.5 | 0.9 | NA | 14.50 | NA | 1.670 |
African elephant | Loxodonta | herbi | Proboscidea | vu | 3.3 | NA | NA | 20.70 | 5.71200 | 6654.000 |
Thick-tailed opposum | Lutreolina | carni | Didelphimorphia | lc | 19.4 | 6.6 | NA | 4.60 | NA | 0.370 |
Macaque | Macaca | omni | Primates | NA | 10.1 | 1.2 | 0.7500000 | 13.90 | 0.17900 | 6.800 |
Mongolian gerbil | Meriones | herbi | Rodentia | lc | 14.2 | 1.9 | NA | 9.80 | NA | 0.053 |
Golden hamster | Mesocricetus | herbi | Rodentia | en | 14.3 | 3.1 | 0.2000000 | 9.70 | 0.00100 | 0.120 |
Vole | Microtus | herbi | Rodentia | NA | 12.8 | NA | NA | 11.20 | NA | 0.035 |
House mouse | Mus | herbi | Rodentia | nt | 12.5 | 1.4 | 0.1833333 | 11.50 | 0.00040 | 0.022 |
Little brown bat | Myotis | insecti | Chiroptera | NA | 19.9 | 2.0 | 0.2000000 | 4.10 | 0.00025 | 0.010 |
Round-tailed muskrat | Neofiber | herbi | Rodentia | nt | 14.6 | NA | NA | 9.40 | NA | 0.266 |
Slow loris | Nyctibeus | carni | Primates | NA | 11.0 | NA | NA | 13.00 | 0.01250 | 1.400 |
Degu | Octodon | herbi | Rodentia | lc | 7.7 | 0.9 | NA | 16.30 | NA | 0.210 |
Northern grasshopper mouse | Onychomys | carni | Rodentia | lc | 14.5 | NA | NA | 9.50 | NA | 0.028 |
Rabbit | Oryctolagus | herbi | Lagomorpha | domesticated | 8.4 | 0.9 | 0.4166667 | 15.60 | 0.01210 | 2.500 |
Sheep | Ovis | herbi | Artiodactyla | domesticated | 3.8 | 0.6 | NA | 20.20 | 0.17500 | 55.500 |
Chimpanzee | Pan | omni | Primates | NA | 9.7 | 1.4 | 1.4166667 | 14.30 | 0.44000 | 52.200 |
Tiger | Panthera | carni | Carnivora | en | 15.8 | NA | NA | 8.20 | NA | 162.564 |
Jaguar | Panthera | carni | Carnivora | nt | 10.4 | NA | NA | 13.60 | 0.15700 | 100.000 |
Lion | Panthera | carni | Carnivora | vu | 13.5 | NA | NA | 10.50 | NA | 161.499 |
Baboon | Papio | omni | Primates | NA | 9.4 | 1.0 | 0.6666667 | 14.60 | 0.18000 | 25.235 |
Desert hedgehog | Paraechinus | NA | Erinaceomorpha | lc | 10.3 | 2.7 | NA | 13.70 | 0.00240 | 0.550 |
Potto | Perodicticus | omni | Primates | lc | 11.0 | NA | NA | 13.00 | NA | 1.100 |
Deer mouse | Peromyscus | NA | Rodentia | NA | 11.5 | NA | NA | 12.50 | NA | 0.021 |
Phalanger | Phalanger | NA | Diprotodontia | NA | 13.7 | 1.8 | NA | 10.30 | 0.01140 | 1.620 |
Caspian seal | Phoca | carni | Carnivora | vu | 3.5 | 0.4 | NA | 20.50 | NA | 86.000 |
Common porpoise | Phocoena | carni | Cetacea | vu | 5.6 | NA | NA | 18.45 | NA | 53.180 |
Potoroo | Potorous | herbi | Diprotodontia | NA | 11.1 | 1.5 | NA | 12.90 | NA | 1.100 |
Giant armadillo | Priodontes | insecti | Cingulata | en | 18.1 | 6.1 | NA | 5.90 | 0.08100 | 60.000 |
Rock hyrax | Procavia | NA | Hyracoidea | lc | 5.4 | 0.5 | NA | 18.60 | 0.02100 | 3.600 |
Laboratory rat | Rattus | herbi | Rodentia | lc | 13.0 | 2.4 | 0.1833333 | 11.00 | 0.00190 | 0.320 |
African striped mouse | Rhabdomys | omni | Rodentia | NA | 8.7 | NA | NA | 15.30 | NA | 0.044 |
Squirrel monkey | Saimiri | omni | Primates | NA | 9.6 | 1.4 | NA | 14.40 | 0.02000 | 0.743 |
Eastern american mole | Scalopus | insecti | Soricomorpha | lc | 8.4 | 2.1 | 0.1666667 | 15.60 | 0.00120 | 0.075 |
Cotton rat | Sigmodon | herbi | Rodentia | NA | 11.3 | 1.1 | 0.1500000 | 12.70 | 0.00118 | 0.148 |
Mole rat | Spalax | NA | Rodentia | NA | 10.6 | 2.4 | NA | 13.40 | 0.00300 | 0.122 |
Arctic ground squirrel | Spermophilus | herbi | Rodentia | lc | 16.6 | NA | NA | 7.40 | 0.00570 | 0.920 |
Thirteen-lined ground squirrel | Spermophilus | herbi | Rodentia | lc | 13.8 | 3.4 | 0.2166667 | 10.20 | 0.00400 | 0.101 |
Golden-mantled ground squirrel | Spermophilus | herbi | Rodentia | lc | 15.9 | 3.0 | NA | 8.10 | NA | 0.205 |
Musk shrew | Suncus | NA | Soricomorpha | NA | 12.8 | 2.0 | 0.1833333 | 11.20 | 0.00033 | 0.048 |
Pig | Sus | omni | Artiodactyla | domesticated | 9.1 | 2.4 | 0.5000000 | 14.90 | 0.18000 | 86.250 |
Short-nosed echidna | Tachyglossus | insecti | Monotremata | NA | 8.6 | NA | NA | 15.40 | 0.02500 | 4.500 |
Eastern american chipmunk | Tamias | herbi | Rodentia | NA | 15.8 | NA | NA | 8.20 | NA | 0.112 |
Brazilian tapir | Tapirus | herbi | Perissodactyla | vu | 4.4 | 1.0 | 0.9000000 | 19.60 | 0.16900 | 207.501 |
Tenrec | Tenrec | omni | Afrosoricida | NA | 15.6 | 2.3 | NA | 8.40 | 0.00260 | 0.900 |
Tree shrew | Tupaia | omni | Scandentia | NA | 8.9 | 2.6 | 0.2333333 | 15.10 | 0.00250 | 0.104 |
Bottle-nosed dolphin | Tursiops | carni | Cetacea | NA | 5.2 | NA | NA | 18.80 | NA | 173.330 |
Genet | Genetta | carni | Carnivora | NA | 6.3 | 1.3 | NA | 17.70 | 0.01750 | 2.000 |
Arctic fox | Vulpes | carni | Carnivora | NA | 12.5 | NA | NA | 11.50 | 0.04450 | 3.380 |
Red fox | Vulpes | carni | Carnivora | NA | 9.8 | 2.4 | 0.3500000 | 14.20 | 0.05040 | 4.230 |
e <- data
is.data.frame(e)
## [1] TRUE
is.matrix(e)
## [1] FALSE
length(e)
## [1] 6
names(e)
## [1] "STT" "Năm" "CÔNG.TY" "Y" "X2" "X3"
dim(e)
## [1] 80 6
library(skimr)
skim(e)
Name | e |
Number of rows | 80 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
character | 1 |
numeric | 5 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
CÔNG.TY | 0 | 1 | 2 | 4 | 0 | 4 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
STT | 0 | 1 | 40.50 | 23.24 | 1.00 | 20.75 | 40.50 | 60.25 | 80.0 | ▇▇▇▇▇ |
Năm | 0 | 1 | 1944.50 | 5.80 | 1935.00 | 1939.75 | 1944.50 | 1949.25 | 1954.0 | ▇▇▇▇▇ |
Y | 0 | 1 | 290.92 | 284.85 | 12.93 | 55.26 | 199.75 | 459.78 | 1486.7 | ▇▅▁▁▁ |
X2 | 0 | 1 | 2229.45 | 1430.01 | 191.50 | 1192.35 | 1971.20 | 2794.97 | 6241.7 | ▅▇▂▂▁ |
X3 | 0 | 1 | 333.51 | 337.71 | 0.80 | 118.07 | 243.40 | 352.78 | 1777.3 | ▇▁▁▁▁ |
head(e, 10)
STT | Năm | CÔNG.TY | Y | X2 | X3 |
---|---|---|---|---|---|
1 | 1935 | GE | 33.1 | 1170.6 | 97.8 |
2 | 1936 | GE | 45.0 | 2015.8 | 104.4 |
3 | 1937 | GE | 77.2 | 2803.3 | 118.0 |
4 | 1938 | GE | 44.6 | 2039.7 | 156.2 |
5 | 1939 | GE | 48.1 | 2256.2 | 172.6 |
6 | 1940 | GE | 74.4 | 2132.2 | 186.6 |
7 | 1941 | GE | 113.0 | 1834.1 | 220.9 |
8 | 1942 | GE | 91.9 | 1588.0 | 287.8 |
9 | 1943 | GE | 61.3 | 1749.4 | 319.9 |
10 | 1944 | GE | 56.8 | 1687.2 | 321.3 |
tail(e,12)
STT | Năm | CÔNG.TY | Y | X2 | X3 | |
---|---|---|---|---|---|---|
69 | 69 | 1943 | WEST | 37.02 | 617.2 | 84.4 |
70 | 70 | 1944 | WEST | 37.81 | 626.7 | 91.2 |
71 | 71 | 1945 | WEST | 39.27 | 737.2 | 92.4 |
72 | 72 | 1946 | WEST | 53.46 | 760.5 | 86.0 |
73 | 73 | 1947 | WEST | 55.56 | 581.4 | 111.1 |
74 | 74 | 1948 | WEST | 49.56 | 662.3 | 130.6 |
75 | 75 | 1949 | WEST | 32.04 | 583.8 | 141.8 |
76 | 76 | 1950 | WEST | 32.24 | 635.2 | 136.7 |
77 | 77 | 1951 | WEST | 54.38 | 732.8 | 129.7 |
78 | 78 | 1952 | WEST | 71.78 | 864.1 | 145.5 |
79 | 79 | 1953 | WEST | 90.08 | 1193.5 | 174.8 |
80 | 80 | 1954 | WEST | 68.60 | 1188.9 | 213.5 |
str(e)
## 'data.frame': 80 obs. of 6 variables:
## $ STT : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Năm : int 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 ...
## $ CÔNG.TY: chr "GE" "GE" "GE" "GE" ...
## $ Y : num 33.1 45 77.2 44.6 48.1 74.4 113 91.9 61.3 56.8 ...
## $ X2 : num 1171 2016 2803 2040 2256 ...
## $ X3 : num 97.8 104.4 118 156.2 172.6 ...
is.na(e)
## STT Năm CÔNG.TY Y X2 X3
## [1,] FALSE FALSE FALSE FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE FALSE FALSE FALSE
## [4,] FALSE FALSE FALSE FALSE FALSE FALSE
## [5,] FALSE FALSE FALSE FALSE FALSE FALSE
## [6,] FALSE FALSE FALSE FALSE FALSE FALSE
## [7,] FALSE FALSE FALSE FALSE FALSE FALSE
## [8,] FALSE FALSE FALSE FALSE FALSE FALSE
## [9,] FALSE FALSE FALSE FALSE FALSE FALSE
## [10,] FALSE FALSE FALSE FALSE FALSE FALSE
## [11,] FALSE FALSE FALSE FALSE FALSE FALSE
## [12,] FALSE FALSE FALSE FALSE FALSE FALSE
## [13,] FALSE FALSE FALSE FALSE FALSE FALSE
## [14,] FALSE FALSE FALSE FALSE FALSE FALSE
## [15,] FALSE FALSE FALSE FALSE FALSE FALSE
## [16,] FALSE FALSE FALSE FALSE FALSE FALSE
## [17,] FALSE FALSE FALSE FALSE FALSE FALSE
## [18,] FALSE FALSE FALSE FALSE FALSE FALSE
## [19,] FALSE FALSE FALSE FALSE FALSE FALSE
## [20,] FALSE FALSE FALSE FALSE FALSE FALSE
## [21,] FALSE FALSE FALSE FALSE FALSE FALSE
## [22,] FALSE FALSE FALSE FALSE FALSE FALSE
## [23,] FALSE FALSE FALSE FALSE FALSE FALSE
## [24,] FALSE FALSE FALSE FALSE FALSE FALSE
## [25,] FALSE FALSE FALSE FALSE FALSE FALSE
## [26,] FALSE FALSE FALSE FALSE FALSE FALSE
## [27,] FALSE FALSE FALSE FALSE FALSE FALSE
## [28,] FALSE FALSE FALSE FALSE FALSE FALSE
## [29,] FALSE FALSE FALSE FALSE FALSE FALSE
## [30,] FALSE FALSE FALSE FALSE FALSE FALSE
## [31,] FALSE FALSE FALSE FALSE FALSE FALSE
## [32,] FALSE FALSE FALSE FALSE FALSE FALSE
## [33,] FALSE FALSE FALSE FALSE FALSE FALSE
## [34,] FALSE FALSE FALSE FALSE FALSE FALSE
## [35,] FALSE FALSE FALSE FALSE FALSE FALSE
## [36,] FALSE FALSE FALSE FALSE FALSE FALSE
## [37,] FALSE FALSE FALSE FALSE FALSE FALSE
## [38,] FALSE FALSE FALSE FALSE FALSE FALSE
## [39,] FALSE FALSE FALSE FALSE FALSE FALSE
## [40,] FALSE FALSE FALSE FALSE FALSE FALSE
## [41,] FALSE FALSE FALSE FALSE FALSE FALSE
## [42,] FALSE FALSE FALSE FALSE FALSE FALSE
## [43,] FALSE FALSE FALSE FALSE FALSE FALSE
## [44,] FALSE FALSE FALSE FALSE FALSE FALSE
## [45,] FALSE FALSE FALSE FALSE FALSE FALSE
## [46,] FALSE FALSE FALSE FALSE FALSE FALSE
## [47,] FALSE FALSE FALSE FALSE FALSE FALSE
## [48,] FALSE FALSE FALSE FALSE FALSE FALSE
## [49,] FALSE FALSE FALSE FALSE FALSE FALSE
## [50,] FALSE FALSE FALSE FALSE FALSE FALSE
## [51,] FALSE FALSE FALSE FALSE FALSE FALSE
## [52,] FALSE FALSE FALSE FALSE FALSE FALSE
## [53,] FALSE FALSE FALSE FALSE FALSE FALSE
## [54,] FALSE FALSE FALSE FALSE FALSE FALSE
## [55,] FALSE FALSE FALSE FALSE FALSE FALSE
## [56,] FALSE FALSE FALSE FALSE FALSE FALSE
## [57,] FALSE FALSE FALSE FALSE FALSE FALSE
## [58,] FALSE FALSE FALSE FALSE FALSE FALSE
## [59,] FALSE FALSE FALSE FALSE FALSE FALSE
## [60,] FALSE FALSE FALSE FALSE FALSE FALSE
## [61,] FALSE FALSE FALSE FALSE FALSE FALSE
## [62,] FALSE FALSE FALSE FALSE FALSE FALSE
## [63,] FALSE FALSE FALSE FALSE FALSE FALSE
## [64,] FALSE FALSE FALSE FALSE FALSE FALSE
## [65,] FALSE FALSE FALSE FALSE FALSE FALSE
## [66,] FALSE FALSE FALSE FALSE FALSE FALSE
## [67,] FALSE FALSE FALSE FALSE FALSE FALSE
## [68,] FALSE FALSE FALSE FALSE FALSE FALSE
## [69,] FALSE FALSE FALSE FALSE FALSE FALSE
## [70,] FALSE FALSE FALSE FALSE FALSE FALSE
## [71,] FALSE FALSE FALSE FALSE FALSE FALSE
## [72,] FALSE FALSE FALSE FALSE FALSE FALSE
## [73,] FALSE FALSE FALSE FALSE FALSE FALSE
## [74,] FALSE FALSE FALSE FALSE FALSE FALSE
## [75,] FALSE FALSE FALSE FALSE FALSE FALSE
## [76,] FALSE FALSE FALSE FALSE FALSE FALSE
## [77,] FALSE FALSE FALSE FALSE FALSE FALSE
## [78,] FALSE FALSE FALSE FALSE FALSE FALSE
## [79,] FALSE FALSE FALSE FALSE FALSE FALSE
## [80,] FALSE FALSE FALSE FALSE FALSE FALSE
sum(is.na(e))
## [1] 0
which(is.na(e))
## integer(0)
names(e) <- c('S', 'N', 'CT', 'Y', 'X2', 'X3')
e
S | N | CT | Y | X2 | X3 |
---|---|---|---|---|---|
1 | 1935 | GE | 33.10 | 1170.6 | 97.8 |
2 | 1936 | GE | 45.00 | 2015.8 | 104.4 |
3 | 1937 | GE | 77.20 | 2803.3 | 118.0 |
4 | 1938 | GE | 44.60 | 2039.7 | 156.2 |
5 | 1939 | GE | 48.10 | 2256.2 | 172.6 |
6 | 1940 | GE | 74.40 | 2132.2 | 186.6 |
7 | 1941 | GE | 113.00 | 1834.1 | 220.9 |
8 | 1942 | GE | 91.90 | 1588.0 | 287.8 |
9 | 1943 | GE | 61.30 | 1749.4 | 319.9 |
10 | 1944 | GE | 56.80 | 1687.2 | 321.3 |
11 | 1945 | GE | 93.60 | 2007.7 | 319.6 |
12 | 1946 | GE | 159.90 | 2208.3 | 346.0 |
13 | 1947 | GE | 147.20 | 1656.7 | 456.4 |
14 | 1948 | GE | 146.30 | 1604.4 | 543.4 |
15 | 1949 | GE | 98.30 | 1431.8 | 618.3 |
16 | 1950 | GE | 93.50 | 1610.5 | 647.4 |
17 | 1951 | GE | 135.20 | 1819.4 | 671.3 |
18 | 1952 | GE | 157.30 | 2079.7 | 726.1 |
19 | 1953 | GE | 179.50 | 2371.6 | 800.3 |
20 | 1954 | GE | 189.60 | 2759.9 | 888.9 |
21 | 1935 | US | 209.90 | 1362.4 | 53.8 |
22 | 1936 | US | 355.30 | 1807.1 | 50.5 |
23 | 1937 | US | 469.90 | 2673.3 | 118.1 |
24 | 1938 | US | 262.30 | 1801.9 | 260.2 |
25 | 1939 | US | 230.40 | 1957.3 | 312.7 |
26 | 1940 | US | 361.60 | 2202.9 | 254.2 |
27 | 1941 | US | 472.80 | 2380.5 | 261.4 |
28 | 1942 | US | 445.60 | 2168.6 | 298.7 |
29 | 1943 | US | 361.60 | 1985.1 | 301.8 |
30 | 1944 | US | 288.20 | 1813.9 | 279.1 |
31 | 1945 | US | 258.70 | 1850.2 | 213.8 |
32 | 1946 | US | 420.30 | 2067.7 | 232.6 |
33 | 1947 | US | 420.50 | 1796.3 | 264.8 |
34 | 1948 | US | 494.50 | 1625.8 | 306.9 |
35 | 1949 | US | 405.10 | 1667.0 | 351.1 |
36 | 1950 | US | 418.80 | 1677.4 | 357.8 |
37 | 1951 | US | 588.20 | 2289.5 | 341.1 |
38 | 1952 | US | 645.20 | 2159.4 | 444.2 |
39 | 1953 | US | 641.00 | 2031.3 | 623.6 |
40 | 1954 | US | 459.30 | 2115.5 | 669.7 |
41 | 1935 | GM | 317.60 | 3078.5 | 2.8 |
42 | 1936 | GM | 391.80 | 4661.7 | 52.6 |
43 | 1937 | GM | 410.60 | 5387.1 | 156.9 |
44 | 1938 | GM | 257.70 | 2792.2 | 209.2 |
45 | 1939 | GM | 330.80 | 4313.2 | 203.4 |
46 | 1940 | GM | 461.20 | 4643.9 | 207.2 |
47 | 1941 | GM | 512.00 | 4551.2 | 255.2 |
48 | 1942 | GM | 448.00 | 3244.1 | 303.7 |
49 | 1943 | GM | 499.60 | 4053.7 | 264.1 |
50 | 1944 | GM | 547.50 | 4379.3 | 201.6 |
51 | 1945 | GM | 561.20 | 4840.9 | 265.0 |
52 | 1946 | GM | 688.10 | 4900.0 | 402.0 |
53 | 1947 | GM | 568.90 | 3526.5 | 761.5 |
54 | 1948 | GM | 529.20 | 3245.7 | 922.4 |
55 | 1949 | GM | 555.10 | 3700.2 | 1020.1 |
56 | 1950 | GM | 642.90 | 3755.6 | 1099.0 |
57 | 1951 | GM | 755.90 | 4833.0 | 1207.7 |
58 | 1952 | GM | 891.20 | 4926.9 | 1430.5 |
59 | 1953 | GM | 1304.40 | 6241.7 | 1777.3 |
60 | 1954 | GM | 1486.70 | 5593.6 | 226.3 |
61 | 1935 | WEST | 12.93 | 191.5 | 1.8 |
62 | 1936 | WEST | 25.90 | 516.0 | 0.8 |
63 | 1937 | WEST | 35.05 | 729.0 | 7.4 |
64 | 1938 | WEST | 22.89 | 560.4 | 18.1 |
65 | 1939 | WEST | 18.84 | 519.9 | 23.5 |
66 | 1940 | WEST | 28.57 | 628.5 | 26.5 |
67 | 1941 | WEST | 48.51 | 537.1 | 36.2 |
68 | 1942 | WEST | 43.34 | 561.2 | 60.8 |
69 | 1943 | WEST | 37.02 | 617.2 | 84.4 |
70 | 1944 | WEST | 37.81 | 626.7 | 91.2 |
71 | 1945 | WEST | 39.27 | 737.2 | 92.4 |
72 | 1946 | WEST | 53.46 | 760.5 | 86.0 |
73 | 1947 | WEST | 55.56 | 581.4 | 111.1 |
74 | 1948 | WEST | 49.56 | 662.3 | 130.6 |
75 | 1949 | WEST | 32.04 | 583.8 | 141.8 |
76 | 1950 | WEST | 32.24 | 635.2 | 136.7 |
77 | 1951 | WEST | 54.38 | 732.8 | 129.7 |
78 | 1952 | WEST | 71.78 | 864.1 | 145.5 |
79 | 1953 | WEST | 90.08 | 1193.5 | 174.8 |
80 | 1954 | WEST | 68.60 | 1188.9 | 213.5 |
a1 <- e[10,4]
a1
## [1] 56.8
CT <- e$CT
CT
## [1] "GE" "GE" "GE" "GE" "GE" "GE" "GE" "GE" "GE" "GE"
## [11] "GE" "GE" "GE" "GE" "GE" "GE" "GE" "GE" "GE" "GE"
## [21] "US" "US" "US" "US" "US" "US" "US" "US" "US" "US"
## [31] "US" "US" "US" "US" "US" "US" "US" "US" "US" "US"
## [41] "GM" "GM" "GM" "GM" "GM" "GM" "GM" "GM" "GM" "GM"
## [51] "GM" "GM" "GM" "GM" "GM" "GM" "GM" "GM" "GM" "GM"
## [61] "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST"
## [71] "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST"
a2 <- e[3,]
a2
S | N | CT | Y | X2 | X3 | |
---|---|---|---|---|---|---|
3 | 3 | 1937 | GE | 77.2 | 2803.3 | 118 |
a3 <- e[,c(1,4)]
a3
S | Y |
---|---|
1 | 33.10 |
2 | 45.00 |
3 | 77.20 |
4 | 44.60 |
5 | 48.10 |
6 | 74.40 |
7 | 113.00 |
8 | 91.90 |
9 | 61.30 |
10 | 56.80 |
11 | 93.60 |
12 | 159.90 |
13 | 147.20 |
14 | 146.30 |
15 | 98.30 |
16 | 93.50 |
17 | 135.20 |
18 | 157.30 |
19 | 179.50 |
20 | 189.60 |
21 | 209.90 |
22 | 355.30 |
23 | 469.90 |
24 | 262.30 |
25 | 230.40 |
26 | 361.60 |
27 | 472.80 |
28 | 445.60 |
29 | 361.60 |
30 | 288.20 |
31 | 258.70 |
32 | 420.30 |
33 | 420.50 |
34 | 494.50 |
35 | 405.10 |
36 | 418.80 |
37 | 588.20 |
38 | 645.20 |
39 | 641.00 |
40 | 459.30 |
41 | 317.60 |
42 | 391.80 |
43 | 410.60 |
44 | 257.70 |
45 | 330.80 |
46 | 461.20 |
47 | 512.00 |
48 | 448.00 |
49 | 499.60 |
50 | 547.50 |
51 | 561.20 |
52 | 688.10 |
53 | 568.90 |
54 | 529.20 |
55 | 555.10 |
56 | 642.90 |
57 | 755.90 |
58 | 891.20 |
59 | 1304.40 |
60 | 1486.70 |
61 | 12.93 |
62 | 25.90 |
63 | 35.05 |
64 | 22.89 |
65 | 18.84 |
66 | 28.57 |
67 | 48.51 |
68 | 43.34 |
69 | 37.02 |
70 | 37.81 |
71 | 39.27 |
72 | 53.46 |
73 | 55.56 |
74 | 49.56 |
75 | 32.04 |
76 | 32.24 |
77 | 54.38 |
78 | 71.78 |
79 | 90.08 |
80 | 68.60 |
a4 <- e[c(3,5,7,15,56),]
a4
S | N | CT | Y | X2 | X3 | |
---|---|---|---|---|---|---|
3 | 3 | 1937 | GE | 77.2 | 2803.3 | 118.0 |
5 | 5 | 1939 | GE | 48.1 | 2256.2 | 172.6 |
7 | 7 | 1941 | GE | 113.0 | 1834.1 | 220.9 |
15 | 15 | 1949 | GE | 98.3 | 1431.8 | 618.3 |
56 | 56 | 1950 | GM | 642.9 | 3755.6 | 1099.0 |
a5 <- e[e$Y <50 & e$X2 <=2000,]
a5
S | N | CT | Y | X2 | X3 | |
---|---|---|---|---|---|---|
1 | 1 | 1935 | GE | 33.10 | 1170.6 | 97.8 |
61 | 61 | 1935 | WEST | 12.93 | 191.5 | 1.8 |
62 | 62 | 1936 | WEST | 25.90 | 516.0 | 0.8 |
63 | 63 | 1937 | WEST | 35.05 | 729.0 | 7.4 |
64 | 64 | 1938 | WEST | 22.89 | 560.4 | 18.1 |
65 | 65 | 1939 | WEST | 18.84 | 519.9 | 23.5 |
66 | 66 | 1940 | WEST | 28.57 | 628.5 | 26.5 |
67 | 67 | 1941 | WEST | 48.51 | 537.1 | 36.2 |
68 | 68 | 1942 | WEST | 43.34 | 561.2 | 60.8 |
69 | 69 | 1943 | WEST | 37.02 | 617.2 | 84.4 |
70 | 70 | 1944 | WEST | 37.81 | 626.7 | 91.2 |
71 | 71 | 1945 | WEST | 39.27 | 737.2 | 92.4 |
74 | 74 | 1948 | WEST | 49.56 | 662.3 | 130.6 |
75 | 75 | 1949 | WEST | 32.04 | 583.8 | 141.8 |
76 | 76 | 1950 | WEST | 32.24 | 635.2 | 136.7 |
a5 <- e[e$CT =='WEST'| e$X3 >= 50,]
a5
S | N | CT | Y | X2 | X3 | |
---|---|---|---|---|---|---|
1 | 1 | 1935 | GE | 33.10 | 1170.6 | 97.8 |
2 | 2 | 1936 | GE | 45.00 | 2015.8 | 104.4 |
3 | 3 | 1937 | GE | 77.20 | 2803.3 | 118.0 |
4 | 4 | 1938 | GE | 44.60 | 2039.7 | 156.2 |
5 | 5 | 1939 | GE | 48.10 | 2256.2 | 172.6 |
6 | 6 | 1940 | GE | 74.40 | 2132.2 | 186.6 |
7 | 7 | 1941 | GE | 113.00 | 1834.1 | 220.9 |
8 | 8 | 1942 | GE | 91.90 | 1588.0 | 287.8 |
9 | 9 | 1943 | GE | 61.30 | 1749.4 | 319.9 |
10 | 10 | 1944 | GE | 56.80 | 1687.2 | 321.3 |
11 | 11 | 1945 | GE | 93.60 | 2007.7 | 319.6 |
12 | 12 | 1946 | GE | 159.90 | 2208.3 | 346.0 |
13 | 13 | 1947 | GE | 147.20 | 1656.7 | 456.4 |
14 | 14 | 1948 | GE | 146.30 | 1604.4 | 543.4 |
15 | 15 | 1949 | GE | 98.30 | 1431.8 | 618.3 |
16 | 16 | 1950 | GE | 93.50 | 1610.5 | 647.4 |
17 | 17 | 1951 | GE | 135.20 | 1819.4 | 671.3 |
18 | 18 | 1952 | GE | 157.30 | 2079.7 | 726.1 |
19 | 19 | 1953 | GE | 179.50 | 2371.6 | 800.3 |
20 | 20 | 1954 | GE | 189.60 | 2759.9 | 888.9 |
21 | 21 | 1935 | US | 209.90 | 1362.4 | 53.8 |
22 | 22 | 1936 | US | 355.30 | 1807.1 | 50.5 |
23 | 23 | 1937 | US | 469.90 | 2673.3 | 118.1 |
24 | 24 | 1938 | US | 262.30 | 1801.9 | 260.2 |
25 | 25 | 1939 | US | 230.40 | 1957.3 | 312.7 |
26 | 26 | 1940 | US | 361.60 | 2202.9 | 254.2 |
27 | 27 | 1941 | US | 472.80 | 2380.5 | 261.4 |
28 | 28 | 1942 | US | 445.60 | 2168.6 | 298.7 |
29 | 29 | 1943 | US | 361.60 | 1985.1 | 301.8 |
30 | 30 | 1944 | US | 288.20 | 1813.9 | 279.1 |
31 | 31 | 1945 | US | 258.70 | 1850.2 | 213.8 |
32 | 32 | 1946 | US | 420.30 | 2067.7 | 232.6 |
33 | 33 | 1947 | US | 420.50 | 1796.3 | 264.8 |
34 | 34 | 1948 | US | 494.50 | 1625.8 | 306.9 |
35 | 35 | 1949 | US | 405.10 | 1667.0 | 351.1 |
36 | 36 | 1950 | US | 418.80 | 1677.4 | 357.8 |
37 | 37 | 1951 | US | 588.20 | 2289.5 | 341.1 |
38 | 38 | 1952 | US | 645.20 | 2159.4 | 444.2 |
39 | 39 | 1953 | US | 641.00 | 2031.3 | 623.6 |
40 | 40 | 1954 | US | 459.30 | 2115.5 | 669.7 |
42 | 42 | 1936 | GM | 391.80 | 4661.7 | 52.6 |
43 | 43 | 1937 | GM | 410.60 | 5387.1 | 156.9 |
44 | 44 | 1938 | GM | 257.70 | 2792.2 | 209.2 |
45 | 45 | 1939 | GM | 330.80 | 4313.2 | 203.4 |
46 | 46 | 1940 | GM | 461.20 | 4643.9 | 207.2 |
47 | 47 | 1941 | GM | 512.00 | 4551.2 | 255.2 |
48 | 48 | 1942 | GM | 448.00 | 3244.1 | 303.7 |
49 | 49 | 1943 | GM | 499.60 | 4053.7 | 264.1 |
50 | 50 | 1944 | GM | 547.50 | 4379.3 | 201.6 |
51 | 51 | 1945 | GM | 561.20 | 4840.9 | 265.0 |
52 | 52 | 1946 | GM | 688.10 | 4900.0 | 402.0 |
53 | 53 | 1947 | GM | 568.90 | 3526.5 | 761.5 |
54 | 54 | 1948 | GM | 529.20 | 3245.7 | 922.4 |
55 | 55 | 1949 | GM | 555.10 | 3700.2 | 1020.1 |
56 | 56 | 1950 | GM | 642.90 | 3755.6 | 1099.0 |
57 | 57 | 1951 | GM | 755.90 | 4833.0 | 1207.7 |
58 | 58 | 1952 | GM | 891.20 | 4926.9 | 1430.5 |
59 | 59 | 1953 | GM | 1304.40 | 6241.7 | 1777.3 |
60 | 60 | 1954 | GM | 1486.70 | 5593.6 | 226.3 |
61 | 61 | 1935 | WEST | 12.93 | 191.5 | 1.8 |
62 | 62 | 1936 | WEST | 25.90 | 516.0 | 0.8 |
63 | 63 | 1937 | WEST | 35.05 | 729.0 | 7.4 |
64 | 64 | 1938 | WEST | 22.89 | 560.4 | 18.1 |
65 | 65 | 1939 | WEST | 18.84 | 519.9 | 23.5 |
66 | 66 | 1940 | WEST | 28.57 | 628.5 | 26.5 |
67 | 67 | 1941 | WEST | 48.51 | 537.1 | 36.2 |
68 | 68 | 1942 | WEST | 43.34 | 561.2 | 60.8 |
69 | 69 | 1943 | WEST | 37.02 | 617.2 | 84.4 |
70 | 70 | 1944 | WEST | 37.81 | 626.7 | 91.2 |
71 | 71 | 1945 | WEST | 39.27 | 737.2 | 92.4 |
72 | 72 | 1946 | WEST | 53.46 | 760.5 | 86.0 |
73 | 73 | 1947 | WEST | 55.56 | 581.4 | 111.1 |
74 | 74 | 1948 | WEST | 49.56 | 662.3 | 130.6 |
75 | 75 | 1949 | WEST | 32.04 | 583.8 | 141.8 |
76 | 76 | 1950 | WEST | 32.24 | 635.2 | 136.7 |
77 | 77 | 1951 | WEST | 54.38 | 732.8 | 129.7 |
78 | 78 | 1952 | WEST | 71.78 | 864.1 | 145.5 |
79 | 79 | 1953 | WEST | 90.08 | 1193.5 | 174.8 |
80 | 80 | 1954 | WEST | 68.60 | 1188.9 | 213.5 |
str(e)
## 'data.frame': 80 obs. of 6 variables:
## $ S : int 1 2 3 4 5 6 7 8 9 10 ...
## $ N : int 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 ...
## $ CT: chr "GE" "GE" "GE" "GE" ...
## $ Y : num 33.1 45 77.2 44.6 48.1 74.4 113 91.9 61.3 56.8 ...
## $ X2: num 1171 2016 2803 2040 2256 ...
## $ X3: num 97.8 104.4 118 156.2 172.6 ...
head(e,4)
S | N | CT | Y | X2 | X3 |
---|---|---|---|---|---|
1 | 1935 | GE | 33.1 | 1170.6 | 97.8 |
2 | 1936 | GE | 45.0 | 2015.8 | 104.4 |
3 | 1937 | GE | 77.2 | 2803.3 | 118.0 |
4 | 1938 | GE | 44.6 | 2039.7 | 156.2 |
tail(e,7)
S | N | CT | Y | X2 | X3 | |
---|---|---|---|---|---|---|
74 | 74 | 1948 | WEST | 49.56 | 662.3 | 130.6 |
75 | 75 | 1949 | WEST | 32.04 | 583.8 | 141.8 |
76 | 76 | 1950 | WEST | 32.24 | 635.2 | 136.7 |
77 | 77 | 1951 | WEST | 54.38 | 732.8 | 129.7 |
78 | 78 | 1952 | WEST | 71.78 | 864.1 | 145.5 |
79 | 79 | 1953 | WEST | 90.08 | 1193.5 | 174.8 |
80 | 80 | 1954 | WEST | 68.60 | 1188.9 | 213.5 |
a6 <- e[e$CT =='GE',]
a6
S | N | CT | Y | X2 | X3 |
---|---|---|---|---|---|
1 | 1935 | GE | 33.1 | 1170.6 | 97.8 |
2 | 1936 | GE | 45.0 | 2015.8 | 104.4 |
3 | 1937 | GE | 77.2 | 2803.3 | 118.0 |
4 | 1938 | GE | 44.6 | 2039.7 | 156.2 |
5 | 1939 | GE | 48.1 | 2256.2 | 172.6 |
6 | 1940 | GE | 74.4 | 2132.2 | 186.6 |
7 | 1941 | GE | 113.0 | 1834.1 | 220.9 |
8 | 1942 | GE | 91.9 | 1588.0 | 287.8 |
9 | 1943 | GE | 61.3 | 1749.4 | 319.9 |
10 | 1944 | GE | 56.8 | 1687.2 | 321.3 |
11 | 1945 | GE | 93.6 | 2007.7 | 319.6 |
12 | 1946 | GE | 159.9 | 2208.3 | 346.0 |
13 | 1947 | GE | 147.2 | 1656.7 | 456.4 |
14 | 1948 | GE | 146.3 | 1604.4 | 543.4 |
15 | 1949 | GE | 98.3 | 1431.8 | 618.3 |
16 | 1950 | GE | 93.5 | 1610.5 | 647.4 |
17 | 1951 | GE | 135.2 | 1819.4 | 671.3 |
18 | 1952 | GE | 157.3 | 2079.7 | 726.1 |
19 | 1953 | GE | 179.5 | 2371.6 | 800.3 |
20 | 1954 | GE | 189.6 | 2759.9 | 888.9 |
a7 <- e[e$CT != 'WEST',]
a7
S | N | CT | Y | X2 | X3 |
---|---|---|---|---|---|
1 | 1935 | GE | 33.1 | 1170.6 | 97.8 |
2 | 1936 | GE | 45.0 | 2015.8 | 104.4 |
3 | 1937 | GE | 77.2 | 2803.3 | 118.0 |
4 | 1938 | GE | 44.6 | 2039.7 | 156.2 |
5 | 1939 | GE | 48.1 | 2256.2 | 172.6 |
6 | 1940 | GE | 74.4 | 2132.2 | 186.6 |
7 | 1941 | GE | 113.0 | 1834.1 | 220.9 |
8 | 1942 | GE | 91.9 | 1588.0 | 287.8 |
9 | 1943 | GE | 61.3 | 1749.4 | 319.9 |
10 | 1944 | GE | 56.8 | 1687.2 | 321.3 |
11 | 1945 | GE | 93.6 | 2007.7 | 319.6 |
12 | 1946 | GE | 159.9 | 2208.3 | 346.0 |
13 | 1947 | GE | 147.2 | 1656.7 | 456.4 |
14 | 1948 | GE | 146.3 | 1604.4 | 543.4 |
15 | 1949 | GE | 98.3 | 1431.8 | 618.3 |
16 | 1950 | GE | 93.5 | 1610.5 | 647.4 |
17 | 1951 | GE | 135.2 | 1819.4 | 671.3 |
18 | 1952 | GE | 157.3 | 2079.7 | 726.1 |
19 | 1953 | GE | 179.5 | 2371.6 | 800.3 |
20 | 1954 | GE | 189.6 | 2759.9 | 888.9 |
21 | 1935 | US | 209.9 | 1362.4 | 53.8 |
22 | 1936 | US | 355.3 | 1807.1 | 50.5 |
23 | 1937 | US | 469.9 | 2673.3 | 118.1 |
24 | 1938 | US | 262.3 | 1801.9 | 260.2 |
25 | 1939 | US | 230.4 | 1957.3 | 312.7 |
26 | 1940 | US | 361.6 | 2202.9 | 254.2 |
27 | 1941 | US | 472.8 | 2380.5 | 261.4 |
28 | 1942 | US | 445.6 | 2168.6 | 298.7 |
29 | 1943 | US | 361.6 | 1985.1 | 301.8 |
30 | 1944 | US | 288.2 | 1813.9 | 279.1 |
31 | 1945 | US | 258.7 | 1850.2 | 213.8 |
32 | 1946 | US | 420.3 | 2067.7 | 232.6 |
33 | 1947 | US | 420.5 | 1796.3 | 264.8 |
34 | 1948 | US | 494.5 | 1625.8 | 306.9 |
35 | 1949 | US | 405.1 | 1667.0 | 351.1 |
36 | 1950 | US | 418.8 | 1677.4 | 357.8 |
37 | 1951 | US | 588.2 | 2289.5 | 341.1 |
38 | 1952 | US | 645.2 | 2159.4 | 444.2 |
39 | 1953 | US | 641.0 | 2031.3 | 623.6 |
40 | 1954 | US | 459.3 | 2115.5 | 669.7 |
41 | 1935 | GM | 317.6 | 3078.5 | 2.8 |
42 | 1936 | GM | 391.8 | 4661.7 | 52.6 |
43 | 1937 | GM | 410.6 | 5387.1 | 156.9 |
44 | 1938 | GM | 257.7 | 2792.2 | 209.2 |
45 | 1939 | GM | 330.8 | 4313.2 | 203.4 |
46 | 1940 | GM | 461.2 | 4643.9 | 207.2 |
47 | 1941 | GM | 512.0 | 4551.2 | 255.2 |
48 | 1942 | GM | 448.0 | 3244.1 | 303.7 |
49 | 1943 | GM | 499.6 | 4053.7 | 264.1 |
50 | 1944 | GM | 547.5 | 4379.3 | 201.6 |
51 | 1945 | GM | 561.2 | 4840.9 | 265.0 |
52 | 1946 | GM | 688.1 | 4900.0 | 402.0 |
53 | 1947 | GM | 568.9 | 3526.5 | 761.5 |
54 | 1948 | GM | 529.2 | 3245.7 | 922.4 |
55 | 1949 | GM | 555.1 | 3700.2 | 1020.1 |
56 | 1950 | GM | 642.9 | 3755.6 | 1099.0 |
57 | 1951 | GM | 755.9 | 4833.0 | 1207.7 |
58 | 1952 | GM | 891.2 | 4926.9 | 1430.5 |
59 | 1953 | GM | 1304.4 | 6241.7 | 1777.3 |
60 | 1954 | GM | 1486.7 | 5593.6 | 226.3 |
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ lubridate 1.9.3 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
i <- iris
i1 <- filter(i,Sepal.Length >5|Species=='setosa')
i1
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa |
4.9 | 3.0 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
4.6 | 3.1 | 1.5 | 0.2 | setosa |
5.0 | 3.6 | 1.4 | 0.2 | setosa |
5.4 | 3.9 | 1.7 | 0.4 | setosa |
4.6 | 3.4 | 1.4 | 0.3 | setosa |
5.0 | 3.4 | 1.5 | 0.2 | setosa |
4.4 | 2.9 | 1.4 | 0.2 | setosa |
4.9 | 3.1 | 1.5 | 0.1 | setosa |
5.4 | 3.7 | 1.5 | 0.2 | setosa |
4.8 | 3.4 | 1.6 | 0.2 | setosa |
4.8 | 3.0 | 1.4 | 0.1 | setosa |
4.3 | 3.0 | 1.1 | 0.1 | setosa |
5.8 | 4.0 | 1.2 | 0.2 | setosa |
5.7 | 4.4 | 1.5 | 0.4 | setosa |
5.4 | 3.9 | 1.3 | 0.4 | setosa |
5.1 | 3.5 | 1.4 | 0.3 | setosa |
5.7 | 3.8 | 1.7 | 0.3 | setosa |
5.1 | 3.8 | 1.5 | 0.3 | setosa |
5.4 | 3.4 | 1.7 | 0.2 | setosa |
5.1 | 3.7 | 1.5 | 0.4 | setosa |
4.6 | 3.6 | 1.0 | 0.2 | setosa |
5.1 | 3.3 | 1.7 | 0.5 | setosa |
4.8 | 3.4 | 1.9 | 0.2 | setosa |
5.0 | 3.0 | 1.6 | 0.2 | setosa |
5.0 | 3.4 | 1.6 | 0.4 | setosa |
5.2 | 3.5 | 1.5 | 0.2 | setosa |
5.2 | 3.4 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.6 | 0.2 | setosa |
4.8 | 3.1 | 1.6 | 0.2 | setosa |
5.4 | 3.4 | 1.5 | 0.4 | setosa |
5.2 | 4.1 | 1.5 | 0.1 | setosa |
5.5 | 4.2 | 1.4 | 0.2 | setosa |
4.9 | 3.1 | 1.5 | 0.2 | setosa |
5.0 | 3.2 | 1.2 | 0.2 | setosa |
5.5 | 3.5 | 1.3 | 0.2 | setosa |
4.9 | 3.6 | 1.4 | 0.1 | setosa |
4.4 | 3.0 | 1.3 | 0.2 | setosa |
5.1 | 3.4 | 1.5 | 0.2 | setosa |
5.0 | 3.5 | 1.3 | 0.3 | setosa |
4.5 | 2.3 | 1.3 | 0.3 | setosa |
4.4 | 3.2 | 1.3 | 0.2 | setosa |
5.0 | 3.5 | 1.6 | 0.6 | setosa |
5.1 | 3.8 | 1.9 | 0.4 | setosa |
4.8 | 3.0 | 1.4 | 0.3 | setosa |
5.1 | 3.8 | 1.6 | 0.2 | setosa |
4.6 | 3.2 | 1.4 | 0.2 | setosa |
5.3 | 3.7 | 1.5 | 0.2 | setosa |
5.0 | 3.3 | 1.4 | 0.2 | setosa |
7.0 | 3.2 | 4.7 | 1.4 | versicolor |
6.4 | 3.2 | 4.5 | 1.5 | versicolor |
6.9 | 3.1 | 4.9 | 1.5 | versicolor |
5.5 | 2.3 | 4.0 | 1.3 | versicolor |
6.5 | 2.8 | 4.6 | 1.5 | versicolor |
5.7 | 2.8 | 4.5 | 1.3 | versicolor |
6.3 | 3.3 | 4.7 | 1.6 | versicolor |
6.6 | 2.9 | 4.6 | 1.3 | versicolor |
5.2 | 2.7 | 3.9 | 1.4 | versicolor |
5.9 | 3.0 | 4.2 | 1.5 | versicolor |
6.0 | 2.2 | 4.0 | 1.0 | versicolor |
6.1 | 2.9 | 4.7 | 1.4 | versicolor |
5.6 | 2.9 | 3.6 | 1.3 | versicolor |
6.7 | 3.1 | 4.4 | 1.4 | versicolor |
5.6 | 3.0 | 4.5 | 1.5 | versicolor |
5.8 | 2.7 | 4.1 | 1.0 | versicolor |
6.2 | 2.2 | 4.5 | 1.5 | versicolor |
5.6 | 2.5 | 3.9 | 1.1 | versicolor |
5.9 | 3.2 | 4.8 | 1.8 | versicolor |
6.1 | 2.8 | 4.0 | 1.3 | versicolor |
6.3 | 2.5 | 4.9 | 1.5 | versicolor |
6.1 | 2.8 | 4.7 | 1.2 | versicolor |
6.4 | 2.9 | 4.3 | 1.3 | versicolor |
6.6 | 3.0 | 4.4 | 1.4 | versicolor |
6.8 | 2.8 | 4.8 | 1.4 | versicolor |
6.7 | 3.0 | 5.0 | 1.7 | versicolor |
6.0 | 2.9 | 4.5 | 1.5 | versicolor |
5.7 | 2.6 | 3.5 | 1.0 | versicolor |
5.5 | 2.4 | 3.8 | 1.1 | versicolor |
5.5 | 2.4 | 3.7 | 1.0 | versicolor |
5.8 | 2.7 | 3.9 | 1.2 | versicolor |
6.0 | 2.7 | 5.1 | 1.6 | versicolor |
5.4 | 3.0 | 4.5 | 1.5 | versicolor |
6.0 | 3.4 | 4.5 | 1.6 | versicolor |
6.7 | 3.1 | 4.7 | 1.5 | versicolor |
6.3 | 2.3 | 4.4 | 1.3 | versicolor |
5.6 | 3.0 | 4.1 | 1.3 | versicolor |
5.5 | 2.5 | 4.0 | 1.3 | versicolor |
5.5 | 2.6 | 4.4 | 1.2 | versicolor |
6.1 | 3.0 | 4.6 | 1.4 | versicolor |
5.8 | 2.6 | 4.0 | 1.2 | versicolor |
5.6 | 2.7 | 4.2 | 1.3 | versicolor |
5.7 | 3.0 | 4.2 | 1.2 | versicolor |
5.7 | 2.9 | 4.2 | 1.3 | versicolor |
6.2 | 2.9 | 4.3 | 1.3 | versicolor |
5.1 | 2.5 | 3.0 | 1.1 | versicolor |
5.7 | 2.8 | 4.1 | 1.3 | versicolor |
6.3 | 3.3 | 6.0 | 2.5 | virginica |
5.8 | 2.7 | 5.1 | 1.9 | virginica |
7.1 | 3.0 | 5.9 | 2.1 | virginica |
6.3 | 2.9 | 5.6 | 1.8 | virginica |
6.5 | 3.0 | 5.8 | 2.2 | virginica |
7.6 | 3.0 | 6.6 | 2.1 | virginica |
7.3 | 2.9 | 6.3 | 1.8 | virginica |
6.7 | 2.5 | 5.8 | 1.8 | virginica |
7.2 | 3.6 | 6.1 | 2.5 | virginica |
6.5 | 3.2 | 5.1 | 2.0 | virginica |
6.4 | 2.7 | 5.3 | 1.9 | virginica |
6.8 | 3.0 | 5.5 | 2.1 | virginica |
5.7 | 2.5 | 5.0 | 2.0 | virginica |
5.8 | 2.8 | 5.1 | 2.4 | virginica |
6.4 | 3.2 | 5.3 | 2.3 | virginica |
6.5 | 3.0 | 5.5 | 1.8 | virginica |
7.7 | 3.8 | 6.7 | 2.2 | virginica |
7.7 | 2.6 | 6.9 | 2.3 | virginica |
6.0 | 2.2 | 5.0 | 1.5 | virginica |
6.9 | 3.2 | 5.7 | 2.3 | virginica |
5.6 | 2.8 | 4.9 | 2.0 | virginica |
7.7 | 2.8 | 6.7 | 2.0 | virginica |
6.3 | 2.7 | 4.9 | 1.8 | virginica |
6.7 | 3.3 | 5.7 | 2.1 | virginica |
7.2 | 3.2 | 6.0 | 1.8 | virginica |
6.2 | 2.8 | 4.8 | 1.8 | virginica |
6.1 | 3.0 | 4.9 | 1.8 | virginica |
6.4 | 2.8 | 5.6 | 2.1 | virginica |
7.2 | 3.0 | 5.8 | 1.6 | virginica |
7.4 | 2.8 | 6.1 | 1.9 | virginica |
7.9 | 3.8 | 6.4 | 2.0 | virginica |
6.4 | 2.8 | 5.6 | 2.2 | virginica |
6.3 | 2.8 | 5.1 | 1.5 | virginica |
6.1 | 2.6 | 5.6 | 1.4 | virginica |
7.7 | 3.0 | 6.1 | 2.3 | virginica |
6.3 | 3.4 | 5.6 | 2.4 | virginica |
6.4 | 3.1 | 5.5 | 1.8 | virginica |
6.0 | 3.0 | 4.8 | 1.8 | virginica |
6.9 | 3.1 | 5.4 | 2.1 | virginica |
6.7 | 3.1 | 5.6 | 2.4 | virginica |
6.9 | 3.1 | 5.1 | 2.3 | virginica |
5.8 | 2.7 | 5.1 | 1.9 | virginica |
6.8 | 3.2 | 5.9 | 2.3 | virginica |
6.7 | 3.3 | 5.7 | 2.5 | virginica |
6.7 | 3.0 | 5.2 | 2.3 | virginica |
6.3 | 2.5 | 5.0 | 1.9 | virginica |
6.5 | 3.0 | 5.2 | 2.0 | virginica |
6.2 | 3.4 | 5.4 | 2.3 | virginica |
5.9 | 3.0 | 5.1 | 1.8 | virginica |
i2 <- i %>% filter(Petal.Width >= 1.5|Species == 'virginica')
i2
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
6.4 | 3.2 | 4.5 | 1.5 | versicolor |
6.9 | 3.1 | 4.9 | 1.5 | versicolor |
6.5 | 2.8 | 4.6 | 1.5 | versicolor |
6.3 | 3.3 | 4.7 | 1.6 | versicolor |
5.9 | 3.0 | 4.2 | 1.5 | versicolor |
5.6 | 3.0 | 4.5 | 1.5 | versicolor |
6.2 | 2.2 | 4.5 | 1.5 | versicolor |
5.9 | 3.2 | 4.8 | 1.8 | versicolor |
6.3 | 2.5 | 4.9 | 1.5 | versicolor |
6.7 | 3.0 | 5.0 | 1.7 | versicolor |
6.0 | 2.9 | 4.5 | 1.5 | versicolor |
6.0 | 2.7 | 5.1 | 1.6 | versicolor |
5.4 | 3.0 | 4.5 | 1.5 | versicolor |
6.0 | 3.4 | 4.5 | 1.6 | versicolor |
6.7 | 3.1 | 4.7 | 1.5 | versicolor |
6.3 | 3.3 | 6.0 | 2.5 | virginica |
5.8 | 2.7 | 5.1 | 1.9 | virginica |
7.1 | 3.0 | 5.9 | 2.1 | virginica |
6.3 | 2.9 | 5.6 | 1.8 | virginica |
6.5 | 3.0 | 5.8 | 2.2 | virginica |
7.6 | 3.0 | 6.6 | 2.1 | virginica |
4.9 | 2.5 | 4.5 | 1.7 | virginica |
7.3 | 2.9 | 6.3 | 1.8 | virginica |
6.7 | 2.5 | 5.8 | 1.8 | virginica |
7.2 | 3.6 | 6.1 | 2.5 | virginica |
6.5 | 3.2 | 5.1 | 2.0 | virginica |
6.4 | 2.7 | 5.3 | 1.9 | virginica |
6.8 | 3.0 | 5.5 | 2.1 | virginica |
5.7 | 2.5 | 5.0 | 2.0 | virginica |
5.8 | 2.8 | 5.1 | 2.4 | virginica |
6.4 | 3.2 | 5.3 | 2.3 | virginica |
6.5 | 3.0 | 5.5 | 1.8 | virginica |
7.7 | 3.8 | 6.7 | 2.2 | virginica |
7.7 | 2.6 | 6.9 | 2.3 | virginica |
6.0 | 2.2 | 5.0 | 1.5 | virginica |
6.9 | 3.2 | 5.7 | 2.3 | virginica |
5.6 | 2.8 | 4.9 | 2.0 | virginica |
7.7 | 2.8 | 6.7 | 2.0 | virginica |
6.3 | 2.7 | 4.9 | 1.8 | virginica |
6.7 | 3.3 | 5.7 | 2.1 | virginica |
7.2 | 3.2 | 6.0 | 1.8 | virginica |
6.2 | 2.8 | 4.8 | 1.8 | virginica |
6.1 | 3.0 | 4.9 | 1.8 | virginica |
6.4 | 2.8 | 5.6 | 2.1 | virginica |
7.2 | 3.0 | 5.8 | 1.6 | virginica |
7.4 | 2.8 | 6.1 | 1.9 | virginica |
7.9 | 3.8 | 6.4 | 2.0 | virginica |
6.4 | 2.8 | 5.6 | 2.2 | virginica |
6.3 | 2.8 | 5.1 | 1.5 | virginica |
6.1 | 2.6 | 5.6 | 1.4 | virginica |
7.7 | 3.0 | 6.1 | 2.3 | virginica |
6.3 | 3.4 | 5.6 | 2.4 | virginica |
6.4 | 3.1 | 5.5 | 1.8 | virginica |
6.0 | 3.0 | 4.8 | 1.8 | virginica |
6.9 | 3.1 | 5.4 | 2.1 | virginica |
6.7 | 3.1 | 5.6 | 2.4 | virginica |
6.9 | 3.1 | 5.1 | 2.3 | virginica |
5.8 | 2.7 | 5.1 | 1.9 | virginica |
6.8 | 3.2 | 5.9 | 2.3 | virginica |
6.7 | 3.3 | 5.7 | 2.5 | virginica |
6.7 | 3.0 | 5.2 | 2.3 | virginica |
6.3 | 2.5 | 5.0 | 1.9 | virginica |
6.5 | 3.0 | 5.2 | 2.0 | virginica |
6.2 | 3.4 | 5.4 | 2.3 | virginica |
5.9 | 3.0 | 5.1 | 1.8 | virginica |
i3 <- i %>% select(Sepal.Length, Petal.Width, Species)
i3
Sepal.Length | Petal.Width | Species |
---|---|---|
5.1 | 0.2 | setosa |
4.9 | 0.2 | setosa |
4.7 | 0.2 | setosa |
4.6 | 0.2 | setosa |
5.0 | 0.2 | setosa |
5.4 | 0.4 | setosa |
4.6 | 0.3 | setosa |
5.0 | 0.2 | setosa |
4.4 | 0.2 | setosa |
4.9 | 0.1 | setosa |
5.4 | 0.2 | setosa |
4.8 | 0.2 | setosa |
4.8 | 0.1 | setosa |
4.3 | 0.1 | setosa |
5.8 | 0.2 | setosa |
5.7 | 0.4 | setosa |
5.4 | 0.4 | setosa |
5.1 | 0.3 | setosa |
5.7 | 0.3 | setosa |
5.1 | 0.3 | setosa |
5.4 | 0.2 | setosa |
5.1 | 0.4 | setosa |
4.6 | 0.2 | setosa |
5.1 | 0.5 | setosa |
4.8 | 0.2 | setosa |
5.0 | 0.2 | setosa |
5.0 | 0.4 | setosa |
5.2 | 0.2 | setosa |
5.2 | 0.2 | setosa |
4.7 | 0.2 | setosa |
4.8 | 0.2 | setosa |
5.4 | 0.4 | setosa |
5.2 | 0.1 | setosa |
5.5 | 0.2 | setosa |
4.9 | 0.2 | setosa |
5.0 | 0.2 | setosa |
5.5 | 0.2 | setosa |
4.9 | 0.1 | setosa |
4.4 | 0.2 | setosa |
5.1 | 0.2 | setosa |
5.0 | 0.3 | setosa |
4.5 | 0.3 | setosa |
4.4 | 0.2 | setosa |
5.0 | 0.6 | setosa |
5.1 | 0.4 | setosa |
4.8 | 0.3 | setosa |
5.1 | 0.2 | setosa |
4.6 | 0.2 | setosa |
5.3 | 0.2 | setosa |
5.0 | 0.2 | setosa |
7.0 | 1.4 | versicolor |
6.4 | 1.5 | versicolor |
6.9 | 1.5 | versicolor |
5.5 | 1.3 | versicolor |
6.5 | 1.5 | versicolor |
5.7 | 1.3 | versicolor |
6.3 | 1.6 | versicolor |
4.9 | 1.0 | versicolor |
6.6 | 1.3 | versicolor |
5.2 | 1.4 | versicolor |
5.0 | 1.0 | versicolor |
5.9 | 1.5 | versicolor |
6.0 | 1.0 | versicolor |
6.1 | 1.4 | versicolor |
5.6 | 1.3 | versicolor |
6.7 | 1.4 | versicolor |
5.6 | 1.5 | versicolor |
5.8 | 1.0 | versicolor |
6.2 | 1.5 | versicolor |
5.6 | 1.1 | versicolor |
5.9 | 1.8 | versicolor |
6.1 | 1.3 | versicolor |
6.3 | 1.5 | versicolor |
6.1 | 1.2 | versicolor |
6.4 | 1.3 | versicolor |
6.6 | 1.4 | versicolor |
6.8 | 1.4 | versicolor |
6.7 | 1.7 | versicolor |
6.0 | 1.5 | versicolor |
5.7 | 1.0 | versicolor |
5.5 | 1.1 | versicolor |
5.5 | 1.0 | versicolor |
5.8 | 1.2 | versicolor |
6.0 | 1.6 | versicolor |
5.4 | 1.5 | versicolor |
6.0 | 1.6 | versicolor |
6.7 | 1.5 | versicolor |
6.3 | 1.3 | versicolor |
5.6 | 1.3 | versicolor |
5.5 | 1.3 | versicolor |
5.5 | 1.2 | versicolor |
6.1 | 1.4 | versicolor |
5.8 | 1.2 | versicolor |
5.0 | 1.0 | versicolor |
5.6 | 1.3 | versicolor |
5.7 | 1.2 | versicolor |
5.7 | 1.3 | versicolor |
6.2 | 1.3 | versicolor |
5.1 | 1.1 | versicolor |
5.7 | 1.3 | versicolor |
6.3 | 2.5 | virginica |
5.8 | 1.9 | virginica |
7.1 | 2.1 | virginica |
6.3 | 1.8 | virginica |
6.5 | 2.2 | virginica |
7.6 | 2.1 | virginica |
4.9 | 1.7 | virginica |
7.3 | 1.8 | virginica |
6.7 | 1.8 | virginica |
7.2 | 2.5 | virginica |
6.5 | 2.0 | virginica |
6.4 | 1.9 | virginica |
6.8 | 2.1 | virginica |
5.7 | 2.0 | virginica |
5.8 | 2.4 | virginica |
6.4 | 2.3 | virginica |
6.5 | 1.8 | virginica |
7.7 | 2.2 | virginica |
7.7 | 2.3 | virginica |
6.0 | 1.5 | virginica |
6.9 | 2.3 | virginica |
5.6 | 2.0 | virginica |
7.7 | 2.0 | virginica |
6.3 | 1.8 | virginica |
6.7 | 2.1 | virginica |
7.2 | 1.8 | virginica |
6.2 | 1.8 | virginica |
6.1 | 1.8 | virginica |
6.4 | 2.1 | virginica |
7.2 | 1.6 | virginica |
7.4 | 1.9 | virginica |
7.9 | 2.0 | virginica |
6.4 | 2.2 | virginica |
6.3 | 1.5 | virginica |
6.1 | 1.4 | virginica |
7.7 | 2.3 | virginica |
6.3 | 2.4 | virginica |
6.4 | 1.8 | virginica |
6.0 | 1.8 | virginica |
6.9 | 2.1 | virginica |
6.7 | 2.4 | virginica |
6.9 | 2.3 | virginica |
5.8 | 1.9 | virginica |
6.8 | 2.3 | virginica |
6.7 | 2.5 | virginica |
6.7 | 2.3 | virginica |
6.3 | 1.9 | virginica |
6.5 | 2.0 | virginica |
6.2 | 2.3 | virginica |
5.9 | 1.8 | virginica |
i4 <- i %>% filter(Petal.Length <3| Species =='versicolor') %>% select(Sepal.Length,Petal.Width,Species)
i4
Sepal.Length | Petal.Width | Species |
---|---|---|
5.1 | 0.2 | setosa |
4.9 | 0.2 | setosa |
4.7 | 0.2 | setosa |
4.6 | 0.2 | setosa |
5.0 | 0.2 | setosa |
5.4 | 0.4 | setosa |
4.6 | 0.3 | setosa |
5.0 | 0.2 | setosa |
4.4 | 0.2 | setosa |
4.9 | 0.1 | setosa |
5.4 | 0.2 | setosa |
4.8 | 0.2 | setosa |
4.8 | 0.1 | setosa |
4.3 | 0.1 | setosa |
5.8 | 0.2 | setosa |
5.7 | 0.4 | setosa |
5.4 | 0.4 | setosa |
5.1 | 0.3 | setosa |
5.7 | 0.3 | setosa |
5.1 | 0.3 | setosa |
5.4 | 0.2 | setosa |
5.1 | 0.4 | setosa |
4.6 | 0.2 | setosa |
5.1 | 0.5 | setosa |
4.8 | 0.2 | setosa |
5.0 | 0.2 | setosa |
5.0 | 0.4 | setosa |
5.2 | 0.2 | setosa |
5.2 | 0.2 | setosa |
4.7 | 0.2 | setosa |
4.8 | 0.2 | setosa |
5.4 | 0.4 | setosa |
5.2 | 0.1 | setosa |
5.5 | 0.2 | setosa |
4.9 | 0.2 | setosa |
5.0 | 0.2 | setosa |
5.5 | 0.2 | setosa |
4.9 | 0.1 | setosa |
4.4 | 0.2 | setosa |
5.1 | 0.2 | setosa |
5.0 | 0.3 | setosa |
4.5 | 0.3 | setosa |
4.4 | 0.2 | setosa |
5.0 | 0.6 | setosa |
5.1 | 0.4 | setosa |
4.8 | 0.3 | setosa |
5.1 | 0.2 | setosa |
4.6 | 0.2 | setosa |
5.3 | 0.2 | setosa |
5.0 | 0.2 | setosa |
7.0 | 1.4 | versicolor |
6.4 | 1.5 | versicolor |
6.9 | 1.5 | versicolor |
5.5 | 1.3 | versicolor |
6.5 | 1.5 | versicolor |
5.7 | 1.3 | versicolor |
6.3 | 1.6 | versicolor |
4.9 | 1.0 | versicolor |
6.6 | 1.3 | versicolor |
5.2 | 1.4 | versicolor |
5.0 | 1.0 | versicolor |
5.9 | 1.5 | versicolor |
6.0 | 1.0 | versicolor |
6.1 | 1.4 | versicolor |
5.6 | 1.3 | versicolor |
6.7 | 1.4 | versicolor |
5.6 | 1.5 | versicolor |
5.8 | 1.0 | versicolor |
6.2 | 1.5 | versicolor |
5.6 | 1.1 | versicolor |
5.9 | 1.8 | versicolor |
6.1 | 1.3 | versicolor |
6.3 | 1.5 | versicolor |
6.1 | 1.2 | versicolor |
6.4 | 1.3 | versicolor |
6.6 | 1.4 | versicolor |
6.8 | 1.4 | versicolor |
6.7 | 1.7 | versicolor |
6.0 | 1.5 | versicolor |
5.7 | 1.0 | versicolor |
5.5 | 1.1 | versicolor |
5.5 | 1.0 | versicolor |
5.8 | 1.2 | versicolor |
6.0 | 1.6 | versicolor |
5.4 | 1.5 | versicolor |
6.0 | 1.6 | versicolor |
6.7 | 1.5 | versicolor |
6.3 | 1.3 | versicolor |
5.6 | 1.3 | versicolor |
5.5 | 1.3 | versicolor |
5.5 | 1.2 | versicolor |
6.1 | 1.4 | versicolor |
5.8 | 1.2 | versicolor |
5.0 | 1.0 | versicolor |
5.6 | 1.3 | versicolor |
5.7 | 1.2 | versicolor |
5.7 | 1.3 | versicolor |
6.2 | 1.3 | versicolor |
5.1 | 1.1 | versicolor |
5.7 | 1.3 | versicolor |
w <- women
tich <- w$height+w$weight
tich
## [1] 173 176 180 184 188 192 196 200 205 209 214 219 224 230 236
sqrt = sqrt(tich)
sqrt
## [1] 13.15295 13.26650 13.41641 13.56466 13.71131 13.85641 14.00000 14.14214
## [9] 14.31782 14.45683 14.62874 14.79865 14.96663 15.16575 15.36229
w1 <- w %>% mutate(sqrt)
w1
height | weight | sqrt |
---|---|---|
58 | 115 | 13.15295 |
59 | 117 | 13.26650 |
60 | 120 | 13.41641 |
61 | 123 | 13.56466 |
62 | 126 | 13.71131 |
63 | 129 | 13.85641 |
64 | 132 | 14.00000 |
65 | 135 | 14.14214 |
66 | 139 | 14.31782 |
67 | 142 | 14.45683 |
68 | 146 | 14.62874 |
69 | 150 | 14.79865 |
70 | 154 | 14.96663 |
71 | 159 | 15.16575 |
72 | 164 | 15.36229 |
library(WDI)
ind <- WDIsearch('Total reserves')
ind
indicator | name | |
---|---|---|
4340 | DT.DOD.DSTC.IR.ZS | Short-term debt (% of total reserves) |
6593 | FI.RES.TOTL.CD | Total reserves (includes gold, current US\() | |6594 |FI.RES.TOTL.CD.WB |Total reserves including gold valued at London gold price (current US\)) |
6595 | FI.RES.TOTL.CD.ZS | Total reserves includes gold (% of GDP) |
6596 | FI.RES.TOTL.DT.ZS | Total reserves (% of total external debt) |
6597 | FI.RES.TOTL.MO | Total reserves in months of imports |
6598 | FI.RES.TOTL.MO.WB | Total reserves in months of imports of goods and services |
6599 | FI.RES.XGLD.CD | Total reserves minus gold (current US$) |
7408 | FM.LBL.BMNY.IR.ZS | Broad money to total reserves ratio |
7416 | FM.LBL.MQMY.IR.ZS | Money and quasi money (M2) to total reserves ratio |
17958 | TOTRESV | Total Reserves |
ind1 <- WDI(indicator = 'FI.RES.TOTL.MO', country = c('VN'), extra = T)
ind1
country | iso2c | iso3c | year | FI.RES.TOTL.MO | status | lastupdated | region | capital | longitude | latitude | income | lending |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Viet Nam | VN | VNM | 2022 | 2.641353 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2021 | 3.686074 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2020 | 3.978296 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2019 | 3.366793 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2018 | 2.529580 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2017 | 2.462901 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2016 | 2.223985 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2015 | 1.850373 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2014 | 2.536335 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2013 | 2.146522 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2012 | 2.487028 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2011 | 1.417350 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2010 | 1.620547 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2009 | 2.574184 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2008 | 3.214584 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2007 | 4.075098 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2006 | 3.224640 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2005 | 2.653657 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2004 | 2.442831 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2003 | 2.694840 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2002 | 2.213041 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2001 | 2.355113 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 2000 | 2.264215 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1999 | 2.814992 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1998 | 1.680220 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1997 | 1.670657 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1996 | 1.620063 | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1995 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1994 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1993 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1992 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1991 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1990 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1989 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1988 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1987 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1986 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1985 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1984 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1983 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1982 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1981 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1980 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1979 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1978 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1977 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1976 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1975 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1974 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1973 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1972 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1971 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1970 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1969 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1968 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1967 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1966 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1965 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1964 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1963 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1962 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1961 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA | |
Viet Nam | VN | VNM | 1960 | NA | 2023-12-18 | NA | NA | NA | NA | NA | NA |
se <- ind1 %>% select(year,FI.RES.TOTL.MO)
se
year | FI.RES.TOTL.MO |
---|---|
2022 | 2.641353 |
2021 | 3.686074 |
2020 | 3.978296 |
2019 | 3.366793 |
2018 | 2.529580 |
2017 | 2.462901 |
2016 | 2.223985 |
2015 | 1.850373 |
2014 | 2.536335 |
2013 | 2.146522 |
2012 | 2.487028 |
2011 | 1.417350 |
2010 | 1.620547 |
2009 | 2.574184 |
2008 | 3.214584 |
2007 | 4.075098 |
2006 | 3.224640 |
2005 | 2.653657 |
2004 | 2.442831 |
2003 | 2.694840 |
2002 | 2.213041 |
2001 | 2.355113 |
2000 | 2.264215 |
1999 | 2.814992 |
1998 | 1.680220 |
1997 | 1.670657 |
1996 | 1.620063 |
1995 | NA |
1994 | NA |
1993 | NA |
1992 | NA |
1991 | NA |
1990 | NA |
1989 | NA |
1988 | NA |
1987 | NA |
1986 | NA |
1985 | NA |
1984 | NA |
1983 | NA |
1982 | NA |
1981 | NA |
1980 | NA |
1979 | NA |
1978 | NA |
1977 | NA |
1976 | NA |
1975 | NA |
1974 | NA |
1973 | NA |
1972 | NA |
1971 | NA |
1970 | NA |
1969 | NA |
1968 | NA |
1967 | NA |
1966 | NA |
1965 | NA |
1964 | NA |
1963 | NA |
1962 | NA |
1961 | NA |
1960 | NA |
na <- na.omit(se)
na
year | FI.RES.TOTL.MO |
---|---|
2022 | 2.641353 |
2021 | 3.686074 |
2020 | 3.978296 |
2019 | 3.366793 |
2018 | 2.529580 |
2017 | 2.462901 |
2016 | 2.223985 |
2015 | 1.850373 |
2014 | 2.536335 |
2013 | 2.146522 |
2012 | 2.487028 |
2011 | 1.417350 |
2010 | 1.620547 |
2009 | 2.574184 |
2008 | 3.214584 |
2007 | 4.075098 |
2006 | 3.224640 |
2005 | 2.653657 |
2004 | 2.442831 |
2003 | 2.694840 |
2002 | 2.213041 |
2001 | 2.355113 |
2000 | 2.264215 |
1999 | 2.814992 |
1998 | 1.680220 |
1997 | 1.670657 |
1996 | 1.620063 |
names(na) <- c('year','DuTru')
na
year | DuTru |
---|---|
2022 | 2.641353 |
2021 | 3.686074 |
2020 | 3.978296 |
2019 | 3.366793 |
2018 | 2.529580 |
2017 | 2.462901 |
2016 | 2.223985 |
2015 | 1.850373 |
2014 | 2.536335 |
2013 | 2.146522 |
2012 | 2.487028 |
2011 | 1.417350 |
2010 | 1.620547 |
2009 | 2.574184 |
2008 | 3.214584 |
2007 | 4.075098 |
2006 | 3.224640 |
2005 | 2.653657 |
2004 | 2.442831 |
2003 | 2.694840 |
2002 | 2.213041 |
2001 | 2.355113 |
2000 | 2.264215 |
1999 | 2.814992 |
1998 | 1.680220 |
1997 | 1.670657 |
1996 | 1.620063 |
Mục đích của việc đọc dữ liệu là tương tác với cơ sở dữ liệu để phân tích, truy vấn và cập nhật thông tin. Để đọc dữ liệu từ file CSV vào R Markdown, ta sử dụng lệnh read.csv() và thực hiện như ví dụ sau abc <- read.xlsx(file = ‘./data/abc.xlsx’) hoặc abc <- read.csv(file.choose(), header = T)
Covid <- read.csv(file.choose(), header = T)
Rút trích dữ liệu là bước quan trọng trong quá trình phân tích dữ liệu. Việc này giúp lập trình viên và nhà phân tích dữ liệu trích xuất thông tin quan trọng từ tập dữ liệu lớn để tìm ra các mô hình, xu hướng, và thông tin hữu ích.
Lệnh names() được sử dụng để đặt tên cho các thành phần (cột) của một đối tượng như một vector, một danh sách (list), hoặc một data frame. Việc đổi tên cho các biến giúp người lập trình đọc hiểu dễ dàng, giảm sự nhầm lẫn, tối ưu hiệu suất.
Để đổi tên biến, ta thực hiện names(vidu) <- c(‘A’,‘B’,‘C’)
names(Covid) <- c('D','L','NC','ND','TC','WC','WD','BC','BD')
names(Covid)
## [1] "D" "L" "NC" "ND" "TC" "WC" "WD" "BC" "BD" NA
vd1 <- Covid[26,2]
vd1
## [1] "Afghanistan"
Ở ví dụ trên ta đã rút trích quan sát số 26 và biến số 2, kết quả thu được giá trị là “Afghanistan”
NC <- Covid$new_cases
Ở ví dụ này ta rút trích cột new_cases
vd2 <- Covid[c(2,5,12,55,66,112,1262),]
vd2
D | L | NC | ND | TC | WC | WD | BC | BD | NA | |
---|---|---|---|---|---|---|---|---|---|---|
2 | 25/02/2020 | Afghanistan | 0 | NA | 5 | NA | NA | NA | NA | NA |
5 | 28/02/2020 | Afghanistan | 0 | NA | 5 | NA | NA | NA | NA | NA |
12 | 06/03/2020 | Afghanistan | 0 | NA | 5 | NA | 0 | NA | NA | NA |
55 | 18/04/2020 | Afghanistan | 63 | 0 | 908 | 30 | 387 | 15 | 638 | 25 |
66 | 29/04/2020 | Afghanistan | 124 | 0 | 1827 | 60 | 735 | 24 | 1057 | 35 |
112 | 14/06/2020 | Afghanistan | 664 | 20 | 24852 | 475 | 4424 | 114 | 9672 | 221 |
1262 | 13/07/2020 | Africa | 16069 | 222 | 611002 | 13463 | 120676 | 1853 | 217719 | 3586 |
vd3 <- Covid[c(3,5,90,446),c(4,7)]
vd3
ND | WD | |
---|---|---|
3 | NA | NA |
5 | NA | NA |
90 | 10 | 3550 |
446 | 9 | 1900 |
vd4 <- Covid[Covid$weekly_cases >= 6500 & Covid$biweekly_deaths <= 50,]
vd4
D | L | NC | ND | TC | WC | WD | BC | BD | NA |
---|
vd5 <- Covid[Covid$location == 'Zimbabwe' | Covid$total_deaths <= 50,]
vd5
D | L | NC | ND | TC | WC | WD | BC | BD | NA |
---|
vidu6 <- Covid[Covid$location != 'Afghanistan'& Covid$new_cases <= 10,]
vidu6
D | L | NC | ND | TC | WC | WD | BC | BD | NA |
---|
Điểm khác nhau giữa cáccác lệnh này là ‘&’, ‘|’ và ‘!=’
‘&’ có nghĩa là và
‘|’ có nghĩa là hoặc
‘!=’ có nghĩa là khác
str(Covid)
## 'data.frame': 248346 obs. of 10 variables:
## $ D : chr "24/02/2020" "25/02/2020" "26/02/2020" "27/02/2020" ...
## $ L : chr "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
## $ NC: int 5 0 0 0 0 0 0 0 0 0 ...
## $ ND: int NA NA NA NA NA NA NA NA NA NA ...
## $ TC: int 5 5 5 5 5 5 5 5 5 5 ...
## $ WC: int NA NA NA NA NA NA NA NA NA NA ...
## $ WD: int NA NA NA NA NA 5 5 0 0 0 ...
## $ BC: int NA NA NA NA NA NA NA NA NA NA ...
## $ BD: int NA NA NA NA NA NA NA NA NA NA ...
## $ NA: int NA NA NA NA NA NA NA NA NA NA ...
head(Covid,10)
D | L | NC | ND | TC | WC | WD | BC | BD | NA |
---|---|---|---|---|---|---|---|---|---|
24/02/2020 | Afghanistan | 5 | NA | 5 | NA | NA | NA | NA | NA |
25/02/2020 | Afghanistan | 0 | NA | 5 | NA | NA | NA | NA | NA |
26/02/2020 | Afghanistan | 0 | NA | 5 | NA | NA | NA | NA | NA |
27/02/2020 | Afghanistan | 0 | NA | 5 | NA | NA | NA | NA | NA |
28/02/2020 | Afghanistan | 0 | NA | 5 | NA | NA | NA | NA | NA |
29/02/2020 | Afghanistan | 0 | NA | 5 | NA | 5 | NA | NA | NA |
01/03/2020 | Afghanistan | 0 | NA | 5 | NA | 5 | NA | NA | NA |
02/03/2020 | Afghanistan | 0 | NA | 5 | NA | 0 | NA | NA | NA |
03/03/2020 | Afghanistan | 0 | NA | 5 | NA | 0 | NA | NA | NA |
04/03/2020 | Afghanistan | 0 | NA | 5 | NA | 0 | NA | NA | NA |
tail(Covid,10)
D | L | NC | ND | TC | WC | WD | BC | BD | NA | |
---|---|---|---|---|---|---|---|---|---|---|
248337 | 28/02/2023 | Zimbabwe | 0 | 0 | 263921 | 5663 | 279 | 1 | 838 | 4 |
248338 | 01/03/2023 | Zimbabwe | 206 | 5 | 264127 | 5668 | 206 | 5 | 485 | 6 |
248339 | 02/03/2023 | Zimbabwe | 0 | 0 | 264127 | 5668 | 206 | 5 | 485 | 6 |
248340 | 03/03/2023 | Zimbabwe | 0 | 0 | 264127 | 5668 | 206 | 5 | 485 | 6 |
248341 | 04/03/2023 | Zimbabwe | 0 | 0 | 264127 | 5668 | 206 | 5 | 485 | 6 |
248342 | 05/03/2023 | Zimbabwe | 0 | 0 | 264127 | 5668 | 206 | 5 | 485 | 6 |
248343 | 06/03/2023 | Zimbabwe | 0 | 0 | 264127 | 5668 | 206 | 5 | 485 | 6 |
248344 | 07/03/2023 | Zimbabwe | 0 | 0 | 264127 | 5668 | 206 | 5 | 485 | 6 |
248345 | 08/03/2023 | Zimbabwe | 149 | 3 | 264276 | 5671 | 149 | 3 | 355 | 8 |
248346 | 09/03/2023 | Zimbabwe | NA | 0 | 264276 | 5671 | NA | 3 | NA | 8 |
row_indices <- c(2: 666)
tong <- rowSums(Covid[row_indices, 3:ncol(Covid)])
tong
## 2 3 4 5 6 7 8 9 10 11 12
## NA NA NA NA NA NA NA NA NA NA NA
## 13 14 15 16 17 18 19 20 21 22 23
## NA NA NA NA NA NA NA NA NA NA NA
## 24 25 26 27 28 29 30 31 32 33 34
## NA NA NA NA NA NA NA NA NA NA NA
## 35 36 37 38 39 40 41 42 43 44 45
## NA NA NA NA NA NA 694 797 911 955 1099
## 46 47 48 49 50 51 52 53 54 55 56
## 1078 1318 1225 1332 1469 1574 1860 1799 1867 2066 2035
## 57 58 59 60 61 62 63 64 65 66 67
## 2183 2154 2218 2454 2437 2752 3139 3157 3722 3862 3622
## 68 69 70 71 72 73 74 75 76 77 78
## 4912 5618 5148 5013 4798 7720 7562 7675 7090 10363 10493
## 79 80 81 82 83 84 85 86 87 88 89
## 11288 10076 11423 13446 13865 13584 14851 16448 17083 18173 18941
## 90 91 92 93 94 95 96 97 98 99 100
## 21009 22068 22693 24235 25213 26325 27012 28392 29261 30338 31330
## 101 102 103 104 105 106 107 108 109 110 111
## 32725 33259 35776 35556 36864 37207 36383 38514 39366 39559 39741
## 112 113 114 115 116 117 118 119 120 121 122
## 40442 41564 40195 43377 42738 42641 42613 42965 42351 43030 41182
## 123 124 125 126 127 128 129 130 131 132 133
## 42012 40582 41028 40904 40534 40279 40483 40137 40467 40775 40742
## 134 135 136 137 138 139 140 141 142 143 144
## 40367 41162 41091 40241 42077 41412 41097 40575 41365 41375 41369
## 145 146 147 148 149 150 151 152 153 154 155
## 41103 40634 41002 40784 40505 40395 40904 40247 40250 40355 40643
## 156 157 158 159 160 161 162 163 164 165 166
## 40526 40469 40291 39947 40531 39997 39845 39800 39888 39804 39817
## 167 168 169 170 171 172 173 174 175 176 177
## 39868 39823 39663 40503 40408 40532 40431 40665 40694 40644 40367
## 178 179 180 181 182 183 184 185 186 187 188
## 40190 40703 40883 40722 40826 40959 40985 41006 40767 40693 40528
## 189 190 191 192 193 194 195 196 197 198 199
## 40416 40444 40493 40608 40554 40398 40421 40734 40966 40864 40842
## 200 201 202 203 204 205 206 207 208 209 210
## 40867 40963 41050 41218 41269 41317 41397 41342 41339 41420 41728
## 211 212 213 214 215 216 217 218 219 220 221
## 41571 41557 41658 41683 41671 41616 41544 41475 41461 41400 41407
## 222 223 224 225 226 227 228 229 230 231 232
## 41382 41377 41378 41626 41761 41888 42053 42279 42225 42535 42627
## 233 234 235 236 237 238 239 240 241 242 243
## 42708 42839 42814 42902 43113 43150 43297 43441 43220 43315 43608
## 244 245 246 247 248 249 250 251 252 253 254
## 43660 43774 43796 44011 44236 44531 44747 44755 44916 44966 45240
## 255 256 257 258 259 260 261 262 263 264 265
## 45395 45489 45663 45566 45587 45911 46134 46462 46684 47065 47474
## 266 267 268 269 270 271 272 273 274 275 276
## 47446 48030 48214 48723 49166 50141 50445 50379 50816 51439 51971
## 277 278 279 280 281 282 283 284 285 286 287
## 52184 52333 52195 52475 52944 53398 53520 53985 54263 54158 54893
## 288 289 290 291 292 293 294 295 296 297 298
## 55227 55421 55556 55553 55755 55594 55649 56310 56282 56571 56809
## 299 300 301 302 303 304 305 306 307 308 309
## 57201 57728 57449 57398 57659 57745 58352 58511 58650 58610 58706
## 310 311 312 313 314 315 316 317 318 319 320
## 58703 58868 58130 58373 58069 58327 58697 58547 58454 58489 58452
## 321 322 323 324 325 326 327 328 329 330 331
## 58358 58464 58222 58137 58239 58379 58228 58480 58322 58332 58410
## 332 333 334 335 336 337 338 339 340 341 342
## 58694 58883 58902 58937 58871 59024 59127 59203 59054 59056 59088
## 343 344 345 346 347 348 349 350 351 352 353
## 58988 58967 59015 58919 58918 58859 58940 58846 58823 58755 58659
## 354 355 356 357 358 359 360 361 362 363 364
## 58610 58627 58585 58608 58610 58519 58526 58503 58492 58397 58470
## 365 366 367 368 369 370 371 372 373 374 375
## 58451 58530 58531 58546 58560 58552 58523 58560 58616 58591 58563
## 376 377 378 379 380 381 382 383 384 385 386
## 58740 58720 58702 58785 58695 58737 58788 58870 58800 58902 58830
## 387 388 389 390 391 392 393 394 395 396 397
## 58844 58888 58959 58929 58987 58971 59131 59173 59168 59240 59247
## 398 399 400 401 402 403 404 405 406 407 408
## 59347 59289 59351 59548 59758 59887 60010 59983 60271 60316 60436
## 409 410 411 412 413 414 415 416 417 418 419
## 60653 60752 60913 61270 61122 61384 61650 61880 61779 61914 62137
## 420 421 422 423 424 425 426 427 428 429 430
## 62214 62448 62716 63089 63195 63868 64176 64385 64788 65206 65306
## 431 432 433 434 435 436 437 438 439 440 441
## 65855 66032 66348 66709 66958 67493 67841 68786 69209 69752 69490
## 442 443 444 445 446 447 448 449 450 451 452
## 69967 70657 71179 71613 72076 71487 71472 71443 71613 72084 72912
## 453 454 455 456 457 458 459 460 461 462 463
## 73888 74667 75088 76714 78186 80338 81229 82862 85606 86954 90018
## 464 465 466 467 468 469 470 471 472 473 474
## 92709 94700 96997 100758 103284 106199 109874 112591 116212 120249 123557
## 475 476 477 478 479 480 481 482 483 484 485
## 123551 125314 128082 131223 126541 137120 139475 142280 143804 147342 149519
## 486 487 488 489 490 491 492 493 494 495 496
## 154924 153992 156664 158021 158346 159867 160330 162874 162825 164859 164895
## 497 498 499 500 501 502 503 504 505 506 507
## 166298 166335 168082 169067 168762 169683 170203 169976 170773 171732 170560
## 508 509 510 511 512 513 514 515 516 517 518
## 172010 172305 173158 171425 172435 172446 170538 169551 167406 165703 165074
## 519 520 521 522 523 524 525 526 527 528 529
## 164596 164912 165372 164971 165270 165867 166045 166324 166542 166516 167012
## 530 531 532 533 534 535 536 537 538 539 540
## 167535 167938 167793 167969 167283 167204 167099 166640 166035 165661 165141
## 541 542 543 544 545 546 547 548 549 550 551
## 164579 164312 163650 163091 162658 162342 162174 162065 161830 161839 162057
## 552 553 554 555 556 557 558 559 560 561 562
## 161866 161823 162088 162071 161976 161976 162012 161918 161974 162222 162324
## 563 564 565 566 567 568 569 570 571 572 573
## 162583 162753 162944 162837 162782 162956 163033 163207 163289 163520 163347
## 574 575 576 577 578 579 580 581 582 583 584
## 163307 163525 163739 163569 163499 163838 163655 163647 163882 163642 163621
## 585 586 587 588 589 590 591 592 593 594 595
## 163637 163378 163359 163359 163543 163388 163589 163623 163470 163523 163689
## 596 597 598 599 600 601 602 603 604 605 606
## 163568 163731 163683 163791 163718 163898 163921 163814 163818 163915 163884
## 607 608 609 610 611 612 613 614 615 616 617
## 163997 163925 163863 164211 164155 164260 164286 164317 164293 164432 164408
## 618 619 620 621 622 623 624 625 626 627 628
## 164406 164344 164407 164409 164373 164314 164194 164142 164136 164206 164227
## 629 630 631 632 633 634 635 636 637 638 639
## 164266 164367 164521 164597 164888 164713 164953 165066 165105 165068 165435
## 640 641 642 643 644 645 646 647 648 649 650
## 165291 165682 165571 165547 165562 165628 165556 165701 165633 165606 165586
## 651 652 653 654 655 656 657 658 659 660 661
## 165596 165712 165568 165613 165615 165601 165576 165616 165560 165558 165466
## 662 663 664 665 666
## 165629 165557 165567 165683 165615
Ở chunk trên dùng để tính tổng các quan sát bằng lệnh tong <- rowSums(vidu[row_indices, 3:ncol(vidu)]), các quan sát được tính từ biến thứ 3 đến biến cuối cùng.
row_indices <- c(2: 666) là chỉ số của các quan sát muốn tính tổng, cụ thể là từ quan sát thứ 2 đến quan sát thứ 666