Date: 16:55:31, 20 - 01 - 2024

1 NHIỆM VỤ 2.1

1.1 Đọc dữ liệu từ file CSV

data <- read.csv(file.choose(), header = T)
data
STT Năm CÔNG.TY Y X2 X3
1 1935 GE 33.10 1170.6 97.8
2 1936 GE 45.00 2015.8 104.4
3 1937 GE 77.20 2803.3 118.0
4 1938 GE 44.60 2039.7 156.2
5 1939 GE 48.10 2256.2 172.6
6 1940 GE 74.40 2132.2 186.6
7 1941 GE 113.00 1834.1 220.9
8 1942 GE 91.90 1588.0 287.8
9 1943 GE 61.30 1749.4 319.9
10 1944 GE 56.80 1687.2 321.3
11 1945 GE 93.60 2007.7 319.6
12 1946 GE 159.90 2208.3 346.0
13 1947 GE 147.20 1656.7 456.4
14 1948 GE 146.30 1604.4 543.4
15 1949 GE 98.30 1431.8 618.3
16 1950 GE 93.50 1610.5 647.4
17 1951 GE 135.20 1819.4 671.3
18 1952 GE 157.30 2079.7 726.1
19 1953 GE 179.50 2371.6 800.3
20 1954 GE 189.60 2759.9 888.9
21 1935 US 209.90 1362.4 53.8
22 1936 US 355.30 1807.1 50.5
23 1937 US 469.90 2673.3 118.1
24 1938 US 262.30 1801.9 260.2
25 1939 US 230.40 1957.3 312.7
26 1940 US 361.60 2202.9 254.2
27 1941 US 472.80 2380.5 261.4
28 1942 US 445.60 2168.6 298.7
29 1943 US 361.60 1985.1 301.8
30 1944 US 288.20 1813.9 279.1
31 1945 US 258.70 1850.2 213.8
32 1946 US 420.30 2067.7 232.6
33 1947 US 420.50 1796.3 264.8
34 1948 US 494.50 1625.8 306.9
35 1949 US 405.10 1667.0 351.1
36 1950 US 418.80 1677.4 357.8
37 1951 US 588.20 2289.5 341.1
38 1952 US 645.20 2159.4 444.2
39 1953 US 641.00 2031.3 623.6
40 1954 US 459.30 2115.5 669.7
41 1935 GM 317.60 3078.5 2.8
42 1936 GM 391.80 4661.7 52.6
43 1937 GM 410.60 5387.1 156.9
44 1938 GM 257.70 2792.2 209.2
45 1939 GM 330.80 4313.2 203.4
46 1940 GM 461.20 4643.9 207.2
47 1941 GM 512.00 4551.2 255.2
48 1942 GM 448.00 3244.1 303.7
49 1943 GM 499.60 4053.7 264.1
50 1944 GM 547.50 4379.3 201.6
51 1945 GM 561.20 4840.9 265.0
52 1946 GM 688.10 4900.0 402.0
53 1947 GM 568.90 3526.5 761.5
54 1948 GM 529.20 3245.7 922.4
55 1949 GM 555.10 3700.2 1020.1
56 1950 GM 642.90 3755.6 1099.0
57 1951 GM 755.90 4833.0 1207.7
58 1952 GM 891.20 4926.9 1430.5
59 1953 GM 1304.40 6241.7 1777.3
60 1954 GM 1486.70 5593.6 226.3
61 1935 WEST 12.93 191.5 1.8
62 1936 WEST 25.90 516.0 0.8
63 1937 WEST 35.05 729.0 7.4
64 1938 WEST 22.89 560.4 18.1
65 1939 WEST 18.84 519.9 23.5
66 1940 WEST 28.57 628.5 26.5
67 1941 WEST 48.51 537.1 36.2
68 1942 WEST 43.34 561.2 60.8
69 1943 WEST 37.02 617.2 84.4
70 1944 WEST 37.81 626.7 91.2
71 1945 WEST 39.27 737.2 92.4
72 1946 WEST 53.46 760.5 86.0
73 1947 WEST 55.56 581.4 111.1
74 1948 WEST 49.56 662.3 130.6
75 1949 WEST 32.04 583.8 141.8
76 1950 WEST 32.24 635.2 136.7
77 1951 WEST 54.38 732.8 129.7
78 1952 WEST 71.78 864.1 145.5
79 1953 WEST 90.08 1193.5 174.8
80 1954 WEST 68.60 1188.9 213.5

1.2 Đọc dữ liệu từ file EXCEL

library(xlsx)
Data <- read.xlsx(file.choose(), sheetIndex = 1, header = T)
Data
STT Năm CÔNG.TY Y X2 X3 NA.
1 1935 GE 33.10 1170.6 97.8 NA
2 1936 GE 45.00 2015.8 104.4 NA
3 1937 GE 77.20 2803.3 118.0 NA
4 1938 GE 44.60 2039.7 156.2 NA
5 1939 GE 48.10 2256.2 172.6 NA
6 1940 GE 74.40 2132.2 186.6 NA
7 1941 GE 113.00 1834.1 220.9 NA
8 1942 GE 91.90 1588.0 287.8 NA
9 1943 GE 61.30 1749.4 319.9 NA
10 1944 GE 56.80 1687.2 321.3 NA
11 1945 GE 93.60 2007.7 319.6 NA
12 1946 GE 159.90 2208.3 346.0 NA
13 1947 GE 147.20 1656.7 456.4 NA
14 1948 GE 146.30 1604.4 543.4 NA
15 1949 GE 98.30 1431.8 618.3 NA
16 1950 GE 93.50 1610.5 647.4 NA
17 1951 GE 135.20 1819.4 671.3 NA
18 1952 GE 157.30 2079.7 726.1 NA
19 1953 GE 179.50 2371.6 800.3 NA
20 1954 GE 189.60 2759.9 888.9 NA
21 1935 US 209.90 1362.4 53.8 NA
22 1936 US 355.30 1807.1 50.5 NA
23 1937 US 469.90 2673.3 118.1 NA
24 1938 US 262.30 1801.9 260.2 NA
25 1939 US 230.40 1957.3 312.7 NA
26 1940 US 361.60 2202.9 254.2 NA
27 1941 US 472.80 2380.5 261.4 NA
28 1942 US 445.60 2168.6 298.7 NA
29 1943 US 361.60 1985.1 301.8 NA
30 1944 US 288.20 1813.9 279.1 NA
31 1945 US 258.70 1850.2 213.8 NA
32 1946 US 420.30 2067.7 232.6 NA
33 1947 US 420.50 1796.3 264.8 NA
34 1948 US 494.50 1625.8 306.9 NA
35 1949 US 405.10 1667.0 351.1 NA
36 1950 US 418.80 1677.4 357.8 NA
37 1951 US 588.20 2289.5 341.1 NA
38 1952 US 645.20 2159.4 444.2 NA
39 1953 US 641.00 2031.3 623.6 NA
40 1954 US 459.30 2115.5 669.7 NA
41 1935 GM 317.60 3078.5 2.8 NA
42 1936 GM 391.80 4661.7 52.6 NA
43 1937 GM 410.60 5387.1 156.9 NA
44 1938 GM 257.70 2792.2 209.2 NA
45 1939 GM 330.80 4313.2 203.4 NA
46 1940 GM 461.20 4643.9 207.2 NA
47 1941 GM 512.00 4551.2 255.2 NA
48 1942 GM 448.00 3244.1 303.7 NA
49 1943 GM 499.60 4053.7 264.1 NA
50 1944 GM 547.50 4379.3 201.6 NA
51 1945 GM 561.20 4840.9 265.0 NA
52 1946 GM 688.10 4900.0 402.0 NA
53 1947 GM 568.90 3526.5 761.5 NA
54 1948 GM 529.20 3245.7 922.4 NA
55 1949 GM 555.10 3700.2 1020.1 NA
56 1950 GM 642.90 3755.6 1099.0 NA
57 1951 GM 755.90 4833.0 1207.7 NA
58 1952 GM 891.20 4926.9 1430.5 NA
59 1953 GM 1304.40 6241.7 1777.3 NA
60 1954 GM 1486.70 5593.6 226.3 NA
61 1935 WEST 12.93 191.5 1.8 NA
62 1936 WEST 25.90 516.0 0.8 NA
63 1937 WEST 35.05 729.0 7.4 NA
64 1938 WEST 22.89 560.4 18.1 NA
65 1939 WEST 18.84 519.9 23.5 NA
66 1940 WEST 28.57 628.5 26.5 NA
67 1941 WEST 48.51 537.1 36.2 NA
68 1942 WEST 43.34 561.2 60.8 NA
69 1943 WEST 37.02 617.2 84.4 NA
70 1944 WEST 37.81 626.7 91.2 NA
71 1945 WEST 39.27 737.2 92.4 NA
72 1946 WEST 53.46 760.5 86.0 NA
73 1947 WEST 55.56 581.4 111.1 NA
74 1948 WEST 49.56 662.3 130.6 NA
75 1949 WEST 32.04 583.8 141.8 NA
76 1950 WEST 32.24 635.2 136.7 NA
77 1951 WEST 54.38 732.8 129.7 NA
78 1952 WEST 71.78 864.1 145.5 NA
79 1953 WEST 90.08 1193.5 174.8 NA
80 1954 WEST 68.60 1188.9 213.5 NA

1.3 Sử dụng dữ liệu có sẵn trong R

library(datasets)
data(package = 'datasets')
b <- women
b
height weight
58 115
59 117
60 120
61 123
62 126
63 129
64 132
65 135
66 139
67 142
68 146
69 150
70 154
71 159
72 164
library(ggplot2)
data(package = 'ggplot2')
a <- msleep
a
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake brainwt bodywt
Cheetah Acinonyx carni Carnivora lc 12.1 NA NA 11.90 NA 50.000
Owl monkey Aotus omni Primates NA 17.0 1.8 NA 7.00 0.01550 0.480
Mountain beaver Aplodontia herbi Rodentia nt 14.4 2.4 NA 9.60 NA 1.350
Greater short-tailed shrew Blarina omni Soricomorpha lc 14.9 2.3 0.1333333 9.10 0.00029 0.019
Cow Bos herbi Artiodactyla domesticated 4.0 0.7 0.6666667 20.00 0.42300 600.000
Three-toed sloth Bradypus herbi Pilosa NA 14.4 2.2 0.7666667 9.60 NA 3.850
Northern fur seal Callorhinus carni Carnivora vu 8.7 1.4 0.3833333 15.30 NA 20.490
Vesper mouse Calomys NA Rodentia NA 7.0 NA NA 17.00 NA 0.045
Dog Canis carni Carnivora domesticated 10.1 2.9 0.3333333 13.90 0.07000 14.000
Roe deer Capreolus herbi Artiodactyla lc 3.0 NA NA 21.00 0.09820 14.800
Goat Capri herbi Artiodactyla lc 5.3 0.6 NA 18.70 0.11500 33.500
Guinea pig Cavis herbi Rodentia domesticated 9.4 0.8 0.2166667 14.60 0.00550 0.728
Grivet Cercopithecus omni Primates lc 10.0 0.7 NA 14.00 NA 4.750
Chinchilla Chinchilla herbi Rodentia domesticated 12.5 1.5 0.1166667 11.50 0.00640 0.420
Star-nosed mole Condylura omni Soricomorpha lc 10.3 2.2 NA 13.70 0.00100 0.060
African giant pouched rat Cricetomys omni Rodentia NA 8.3 2.0 NA 15.70 0.00660 1.000
Lesser short-tailed shrew Cryptotis omni Soricomorpha lc 9.1 1.4 0.1500000 14.90 0.00014 0.005
Long-nosed armadillo Dasypus carni Cingulata lc 17.4 3.1 0.3833333 6.60 0.01080 3.500
Tree hyrax Dendrohyrax herbi Hyracoidea lc 5.3 0.5 NA 18.70 0.01230 2.950
North American Opossum Didelphis omni Didelphimorphia lc 18.0 4.9 0.3333333 6.00 0.00630 1.700
Asian elephant Elephas herbi Proboscidea en 3.9 NA NA 20.10 4.60300 2547.000
Big brown bat Eptesicus insecti Chiroptera lc 19.7 3.9 0.1166667 4.30 0.00030 0.023
Horse Equus herbi Perissodactyla domesticated 2.9 0.6 1.0000000 21.10 0.65500 521.000
Donkey Equus herbi Perissodactyla domesticated 3.1 0.4 NA 20.90 0.41900 187.000
European hedgehog Erinaceus omni Erinaceomorpha lc 10.1 3.5 0.2833333 13.90 0.00350 0.770
Patas monkey Erythrocebus omni Primates lc 10.9 1.1 NA 13.10 0.11500 10.000
Western american chipmunk Eutamias herbi Rodentia NA 14.9 NA NA 9.10 NA 0.071
Domestic cat Felis carni Carnivora domesticated 12.5 3.2 0.4166667 11.50 0.02560 3.300
Galago Galago omni Primates NA 9.8 1.1 0.5500000 14.20 0.00500 0.200
Giraffe Giraffa herbi Artiodactyla cd 1.9 0.4 NA 22.10 NA 899.995
Pilot whale Globicephalus carni Cetacea cd 2.7 0.1 NA 21.35 NA 800.000
Gray seal Haliochoerus carni Carnivora lc 6.2 1.5 NA 17.80 0.32500 85.000
Gray hyrax Heterohyrax herbi Hyracoidea lc 6.3 0.6 NA 17.70 0.01227 2.625
Human Homo omni Primates NA 8.0 1.9 1.5000000 16.00 1.32000 62.000
Mongoose lemur Lemur herbi Primates vu 9.5 0.9 NA 14.50 NA 1.670
African elephant Loxodonta herbi Proboscidea vu 3.3 NA NA 20.70 5.71200 6654.000
Thick-tailed opposum Lutreolina carni Didelphimorphia lc 19.4 6.6 NA 4.60 NA 0.370
Macaque Macaca omni Primates NA 10.1 1.2 0.7500000 13.90 0.17900 6.800
Mongolian gerbil Meriones herbi Rodentia lc 14.2 1.9 NA 9.80 NA 0.053
Golden hamster Mesocricetus herbi Rodentia en 14.3 3.1 0.2000000 9.70 0.00100 0.120
Vole Microtus herbi Rodentia NA 12.8 NA NA 11.20 NA 0.035
House mouse Mus herbi Rodentia nt 12.5 1.4 0.1833333 11.50 0.00040 0.022
Little brown bat Myotis insecti Chiroptera NA 19.9 2.0 0.2000000 4.10 0.00025 0.010
Round-tailed muskrat Neofiber herbi Rodentia nt 14.6 NA NA 9.40 NA 0.266
Slow loris Nyctibeus carni Primates NA 11.0 NA NA 13.00 0.01250 1.400
Degu Octodon herbi Rodentia lc 7.7 0.9 NA 16.30 NA 0.210
Northern grasshopper mouse Onychomys carni Rodentia lc 14.5 NA NA 9.50 NA 0.028
Rabbit Oryctolagus herbi Lagomorpha domesticated 8.4 0.9 0.4166667 15.60 0.01210 2.500
Sheep Ovis herbi Artiodactyla domesticated 3.8 0.6 NA 20.20 0.17500 55.500
Chimpanzee Pan omni Primates NA 9.7 1.4 1.4166667 14.30 0.44000 52.200
Tiger Panthera carni Carnivora en 15.8 NA NA 8.20 NA 162.564
Jaguar Panthera carni Carnivora nt 10.4 NA NA 13.60 0.15700 100.000
Lion Panthera carni Carnivora vu 13.5 NA NA 10.50 NA 161.499
Baboon Papio omni Primates NA 9.4 1.0 0.6666667 14.60 0.18000 25.235
Desert hedgehog Paraechinus NA Erinaceomorpha lc 10.3 2.7 NA 13.70 0.00240 0.550
Potto Perodicticus omni Primates lc 11.0 NA NA 13.00 NA 1.100
Deer mouse Peromyscus NA Rodentia NA 11.5 NA NA 12.50 NA 0.021
Phalanger Phalanger NA Diprotodontia NA 13.7 1.8 NA 10.30 0.01140 1.620
Caspian seal Phoca carni Carnivora vu 3.5 0.4 NA 20.50 NA 86.000
Common porpoise Phocoena carni Cetacea vu 5.6 NA NA 18.45 NA 53.180
Potoroo Potorous herbi Diprotodontia NA 11.1 1.5 NA 12.90 NA 1.100
Giant armadillo Priodontes insecti Cingulata en 18.1 6.1 NA 5.90 0.08100 60.000
Rock hyrax Procavia NA Hyracoidea lc 5.4 0.5 NA 18.60 0.02100 3.600
Laboratory rat Rattus herbi Rodentia lc 13.0 2.4 0.1833333 11.00 0.00190 0.320
African striped mouse Rhabdomys omni Rodentia NA 8.7 NA NA 15.30 NA 0.044
Squirrel monkey Saimiri omni Primates NA 9.6 1.4 NA 14.40 0.02000 0.743
Eastern american mole Scalopus insecti Soricomorpha lc 8.4 2.1 0.1666667 15.60 0.00120 0.075
Cotton rat Sigmodon herbi Rodentia NA 11.3 1.1 0.1500000 12.70 0.00118 0.148
Mole rat Spalax NA Rodentia NA 10.6 2.4 NA 13.40 0.00300 0.122
Arctic ground squirrel Spermophilus herbi Rodentia lc 16.6 NA NA 7.40 0.00570 0.920
Thirteen-lined ground squirrel Spermophilus herbi Rodentia lc 13.8 3.4 0.2166667 10.20 0.00400 0.101
Golden-mantled ground squirrel Spermophilus herbi Rodentia lc 15.9 3.0 NA 8.10 NA 0.205
Musk shrew Suncus NA Soricomorpha NA 12.8 2.0 0.1833333 11.20 0.00033 0.048
Pig Sus omni Artiodactyla domesticated 9.1 2.4 0.5000000 14.90 0.18000 86.250
Short-nosed echidna Tachyglossus insecti Monotremata NA 8.6 NA NA 15.40 0.02500 4.500
Eastern american chipmunk Tamias herbi Rodentia NA 15.8 NA NA 8.20 NA 0.112
Brazilian tapir Tapirus herbi Perissodactyla vu 4.4 1.0 0.9000000 19.60 0.16900 207.501
Tenrec Tenrec omni Afrosoricida NA 15.6 2.3 NA 8.40 0.00260 0.900
Tree shrew Tupaia omni Scandentia NA 8.9 2.6 0.2333333 15.10 0.00250 0.104
Bottle-nosed dolphin Tursiops carni Cetacea NA 5.2 NA NA 18.80 NA 173.330
Genet Genetta carni Carnivora NA 6.3 1.3 NA 17.70 0.01750 2.000
Arctic fox Vulpes carni Carnivora NA 12.5 NA NA 11.50 0.04450 3.380
Red fox Vulpes carni Carnivora NA 9.8 2.4 0.3500000 14.20 0.05040 4.230

1.4 Bộ dữ liệu “Data trong bài MP05 của Fulltight”

e <- data
is.data.frame(e)
## [1] TRUE
is.matrix(e)
## [1] FALSE
length(e)
## [1] 6
names(e)
## [1] "STT"     "Năm"     "CÔNG.TY" "Y"       "X2"      "X3"
dim(e)
## [1] 80  6
library(skimr)
skim(e)
Data summary
Name e
Number of rows 80
Number of columns 6
_______________________
Column type frequency:
character 1
numeric 5
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
CÔNG.TY 0 1 2 4 0 4 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
STT 0 1 40.50 23.24 1.00 20.75 40.50 60.25 80.0 ▇▇▇▇▇
Năm 0 1 1944.50 5.80 1935.00 1939.75 1944.50 1949.25 1954.0 ▇▇▇▇▇
Y 0 1 290.92 284.85 12.93 55.26 199.75 459.78 1486.7 ▇▅▁▁▁
X2 0 1 2229.45 1430.01 191.50 1192.35 1971.20 2794.97 6241.7 ▅▇▂▂▁
X3 0 1 333.51 337.71 0.80 118.07 243.40 352.78 1777.3 ▇▁▁▁▁
head(e, 10)
STT Năm CÔNG.TY Y X2 X3
1 1935 GE 33.1 1170.6 97.8
2 1936 GE 45.0 2015.8 104.4
3 1937 GE 77.2 2803.3 118.0
4 1938 GE 44.6 2039.7 156.2
5 1939 GE 48.1 2256.2 172.6
6 1940 GE 74.4 2132.2 186.6
7 1941 GE 113.0 1834.1 220.9
8 1942 GE 91.9 1588.0 287.8
9 1943 GE 61.3 1749.4 319.9
10 1944 GE 56.8 1687.2 321.3
tail(e,12)
STT Năm CÔNG.TY Y X2 X3
69 69 1943 WEST 37.02 617.2 84.4
70 70 1944 WEST 37.81 626.7 91.2
71 71 1945 WEST 39.27 737.2 92.4
72 72 1946 WEST 53.46 760.5 86.0
73 73 1947 WEST 55.56 581.4 111.1
74 74 1948 WEST 49.56 662.3 130.6
75 75 1949 WEST 32.04 583.8 141.8
76 76 1950 WEST 32.24 635.2 136.7
77 77 1951 WEST 54.38 732.8 129.7
78 78 1952 WEST 71.78 864.1 145.5
79 79 1953 WEST 90.08 1193.5 174.8
80 80 1954 WEST 68.60 1188.9 213.5
str(e)
## 'data.frame':    80 obs. of  6 variables:
##  $ STT    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Năm    : int  1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 ...
##  $ CÔNG.TY: chr  "GE" "GE" "GE" "GE" ...
##  $ Y      : num  33.1 45 77.2 44.6 48.1 74.4 113 91.9 61.3 56.8 ...
##  $ X2     : num  1171 2016 2803 2040 2256 ...
##  $ X3     : num  97.8 104.4 118 156.2 172.6 ...
is.na(e)
##         STT   Năm CÔNG.TY     Y    X2    X3
##  [1,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [2,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [3,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [4,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [5,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [6,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [7,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [8,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [9,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [10,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [11,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [12,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [13,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [14,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [15,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [16,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [17,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [18,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [19,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [20,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [21,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [22,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [23,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [24,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [25,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [26,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [27,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [28,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [29,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [30,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [31,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [32,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [33,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [34,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [35,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [36,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [37,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [38,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [39,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [40,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [41,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [42,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [43,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [44,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [45,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [46,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [47,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [48,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [49,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [50,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [51,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [52,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [53,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [54,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [55,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [56,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [57,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [58,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [59,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [60,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [61,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [62,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [63,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [64,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [65,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [66,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [67,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [68,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [69,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [70,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [71,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [72,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [73,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [74,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [75,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [76,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [77,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [78,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [79,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [80,] FALSE FALSE   FALSE FALSE FALSE FALSE
sum(is.na(e))
## [1] 0
which(is.na(e))
## integer(0)

1.5 Rút trích dữ liệu

names(e) <- c('S', 'N', 'CT', 'Y', 'X2', 'X3')
e
S N CT Y X2 X3
1 1935 GE 33.10 1170.6 97.8
2 1936 GE 45.00 2015.8 104.4
3 1937 GE 77.20 2803.3 118.0
4 1938 GE 44.60 2039.7 156.2
5 1939 GE 48.10 2256.2 172.6
6 1940 GE 74.40 2132.2 186.6
7 1941 GE 113.00 1834.1 220.9
8 1942 GE 91.90 1588.0 287.8
9 1943 GE 61.30 1749.4 319.9
10 1944 GE 56.80 1687.2 321.3
11 1945 GE 93.60 2007.7 319.6
12 1946 GE 159.90 2208.3 346.0
13 1947 GE 147.20 1656.7 456.4
14 1948 GE 146.30 1604.4 543.4
15 1949 GE 98.30 1431.8 618.3
16 1950 GE 93.50 1610.5 647.4
17 1951 GE 135.20 1819.4 671.3
18 1952 GE 157.30 2079.7 726.1
19 1953 GE 179.50 2371.6 800.3
20 1954 GE 189.60 2759.9 888.9
21 1935 US 209.90 1362.4 53.8
22 1936 US 355.30 1807.1 50.5
23 1937 US 469.90 2673.3 118.1
24 1938 US 262.30 1801.9 260.2
25 1939 US 230.40 1957.3 312.7
26 1940 US 361.60 2202.9 254.2
27 1941 US 472.80 2380.5 261.4
28 1942 US 445.60 2168.6 298.7
29 1943 US 361.60 1985.1 301.8
30 1944 US 288.20 1813.9 279.1
31 1945 US 258.70 1850.2 213.8
32 1946 US 420.30 2067.7 232.6
33 1947 US 420.50 1796.3 264.8
34 1948 US 494.50 1625.8 306.9
35 1949 US 405.10 1667.0 351.1
36 1950 US 418.80 1677.4 357.8
37 1951 US 588.20 2289.5 341.1
38 1952 US 645.20 2159.4 444.2
39 1953 US 641.00 2031.3 623.6
40 1954 US 459.30 2115.5 669.7
41 1935 GM 317.60 3078.5 2.8
42 1936 GM 391.80 4661.7 52.6
43 1937 GM 410.60 5387.1 156.9
44 1938 GM 257.70 2792.2 209.2
45 1939 GM 330.80 4313.2 203.4
46 1940 GM 461.20 4643.9 207.2
47 1941 GM 512.00 4551.2 255.2
48 1942 GM 448.00 3244.1 303.7
49 1943 GM 499.60 4053.7 264.1
50 1944 GM 547.50 4379.3 201.6
51 1945 GM 561.20 4840.9 265.0
52 1946 GM 688.10 4900.0 402.0
53 1947 GM 568.90 3526.5 761.5
54 1948 GM 529.20 3245.7 922.4
55 1949 GM 555.10 3700.2 1020.1
56 1950 GM 642.90 3755.6 1099.0
57 1951 GM 755.90 4833.0 1207.7
58 1952 GM 891.20 4926.9 1430.5
59 1953 GM 1304.40 6241.7 1777.3
60 1954 GM 1486.70 5593.6 226.3
61 1935 WEST 12.93 191.5 1.8
62 1936 WEST 25.90 516.0 0.8
63 1937 WEST 35.05 729.0 7.4
64 1938 WEST 22.89 560.4 18.1
65 1939 WEST 18.84 519.9 23.5
66 1940 WEST 28.57 628.5 26.5
67 1941 WEST 48.51 537.1 36.2
68 1942 WEST 43.34 561.2 60.8
69 1943 WEST 37.02 617.2 84.4
70 1944 WEST 37.81 626.7 91.2
71 1945 WEST 39.27 737.2 92.4
72 1946 WEST 53.46 760.5 86.0
73 1947 WEST 55.56 581.4 111.1
74 1948 WEST 49.56 662.3 130.6
75 1949 WEST 32.04 583.8 141.8
76 1950 WEST 32.24 635.2 136.7
77 1951 WEST 54.38 732.8 129.7
78 1952 WEST 71.78 864.1 145.5
79 1953 WEST 90.08 1193.5 174.8
80 1954 WEST 68.60 1188.9 213.5
a1 <- e[10,4]
a1
## [1] 56.8
CT <- e$CT
CT
##  [1] "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"  
## [11] "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"  
## [21] "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"  
## [31] "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"  
## [41] "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"  
## [51] "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"  
## [61] "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST"
## [71] "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST"
a2 <- e[3,]
a2
S N CT Y X2 X3
3 3 1937 GE 77.2 2803.3 118
a3 <- e[,c(1,4)]
a3
S Y
1 33.10
2 45.00
3 77.20
4 44.60
5 48.10
6 74.40
7 113.00
8 91.90
9 61.30
10 56.80
11 93.60
12 159.90
13 147.20
14 146.30
15 98.30
16 93.50
17 135.20
18 157.30
19 179.50
20 189.60
21 209.90
22 355.30
23 469.90
24 262.30
25 230.40
26 361.60
27 472.80
28 445.60
29 361.60
30 288.20
31 258.70
32 420.30
33 420.50
34 494.50
35 405.10
36 418.80
37 588.20
38 645.20
39 641.00
40 459.30
41 317.60
42 391.80
43 410.60
44 257.70
45 330.80
46 461.20
47 512.00
48 448.00
49 499.60
50 547.50
51 561.20
52 688.10
53 568.90
54 529.20
55 555.10
56 642.90
57 755.90
58 891.20
59 1304.40
60 1486.70
61 12.93
62 25.90
63 35.05
64 22.89
65 18.84
66 28.57
67 48.51
68 43.34
69 37.02
70 37.81
71 39.27
72 53.46
73 55.56
74 49.56
75 32.04
76 32.24
77 54.38
78 71.78
79 90.08
80 68.60
a4 <- e[c(3,5,7,15,56),]
a4
S N CT Y X2 X3
3 3 1937 GE 77.2 2803.3 118.0
5 5 1939 GE 48.1 2256.2 172.6
7 7 1941 GE 113.0 1834.1 220.9
15 15 1949 GE 98.3 1431.8 618.3
56 56 1950 GM 642.9 3755.6 1099.0
a5 <- e[e$Y <50 & e$X2 <=2000,]
a5
S N CT Y X2 X3
1 1 1935 GE 33.10 1170.6 97.8
61 61 1935 WEST 12.93 191.5 1.8
62 62 1936 WEST 25.90 516.0 0.8
63 63 1937 WEST 35.05 729.0 7.4
64 64 1938 WEST 22.89 560.4 18.1
65 65 1939 WEST 18.84 519.9 23.5
66 66 1940 WEST 28.57 628.5 26.5
67 67 1941 WEST 48.51 537.1 36.2
68 68 1942 WEST 43.34 561.2 60.8
69 69 1943 WEST 37.02 617.2 84.4
70 70 1944 WEST 37.81 626.7 91.2
71 71 1945 WEST 39.27 737.2 92.4
74 74 1948 WEST 49.56 662.3 130.6
75 75 1949 WEST 32.04 583.8 141.8
76 76 1950 WEST 32.24 635.2 136.7
a5 <- e[e$CT =='WEST'| e$X3 >= 50,]
a5
S N CT Y X2 X3
1 1 1935 GE 33.10 1170.6 97.8
2 2 1936 GE 45.00 2015.8 104.4
3 3 1937 GE 77.20 2803.3 118.0
4 4 1938 GE 44.60 2039.7 156.2
5 5 1939 GE 48.10 2256.2 172.6
6 6 1940 GE 74.40 2132.2 186.6
7 7 1941 GE 113.00 1834.1 220.9
8 8 1942 GE 91.90 1588.0 287.8
9 9 1943 GE 61.30 1749.4 319.9
10 10 1944 GE 56.80 1687.2 321.3
11 11 1945 GE 93.60 2007.7 319.6
12 12 1946 GE 159.90 2208.3 346.0
13 13 1947 GE 147.20 1656.7 456.4
14 14 1948 GE 146.30 1604.4 543.4
15 15 1949 GE 98.30 1431.8 618.3
16 16 1950 GE 93.50 1610.5 647.4
17 17 1951 GE 135.20 1819.4 671.3
18 18 1952 GE 157.30 2079.7 726.1
19 19 1953 GE 179.50 2371.6 800.3
20 20 1954 GE 189.60 2759.9 888.9
21 21 1935 US 209.90 1362.4 53.8
22 22 1936 US 355.30 1807.1 50.5
23 23 1937 US 469.90 2673.3 118.1
24 24 1938 US 262.30 1801.9 260.2
25 25 1939 US 230.40 1957.3 312.7
26 26 1940 US 361.60 2202.9 254.2
27 27 1941 US 472.80 2380.5 261.4
28 28 1942 US 445.60 2168.6 298.7
29 29 1943 US 361.60 1985.1 301.8
30 30 1944 US 288.20 1813.9 279.1
31 31 1945 US 258.70 1850.2 213.8
32 32 1946 US 420.30 2067.7 232.6
33 33 1947 US 420.50 1796.3 264.8
34 34 1948 US 494.50 1625.8 306.9
35 35 1949 US 405.10 1667.0 351.1
36 36 1950 US 418.80 1677.4 357.8
37 37 1951 US 588.20 2289.5 341.1
38 38 1952 US 645.20 2159.4 444.2
39 39 1953 US 641.00 2031.3 623.6
40 40 1954 US 459.30 2115.5 669.7
42 42 1936 GM 391.80 4661.7 52.6
43 43 1937 GM 410.60 5387.1 156.9
44 44 1938 GM 257.70 2792.2 209.2
45 45 1939 GM 330.80 4313.2 203.4
46 46 1940 GM 461.20 4643.9 207.2
47 47 1941 GM 512.00 4551.2 255.2
48 48 1942 GM 448.00 3244.1 303.7
49 49 1943 GM 499.60 4053.7 264.1
50 50 1944 GM 547.50 4379.3 201.6
51 51 1945 GM 561.20 4840.9 265.0
52 52 1946 GM 688.10 4900.0 402.0
53 53 1947 GM 568.90 3526.5 761.5
54 54 1948 GM 529.20 3245.7 922.4
55 55 1949 GM 555.10 3700.2 1020.1
56 56 1950 GM 642.90 3755.6 1099.0
57 57 1951 GM 755.90 4833.0 1207.7
58 58 1952 GM 891.20 4926.9 1430.5
59 59 1953 GM 1304.40 6241.7 1777.3
60 60 1954 GM 1486.70 5593.6 226.3
61 61 1935 WEST 12.93 191.5 1.8
62 62 1936 WEST 25.90 516.0 0.8
63 63 1937 WEST 35.05 729.0 7.4
64 64 1938 WEST 22.89 560.4 18.1
65 65 1939 WEST 18.84 519.9 23.5
66 66 1940 WEST 28.57 628.5 26.5
67 67 1941 WEST 48.51 537.1 36.2
68 68 1942 WEST 43.34 561.2 60.8
69 69 1943 WEST 37.02 617.2 84.4
70 70 1944 WEST 37.81 626.7 91.2
71 71 1945 WEST 39.27 737.2 92.4
72 72 1946 WEST 53.46 760.5 86.0
73 73 1947 WEST 55.56 581.4 111.1
74 74 1948 WEST 49.56 662.3 130.6
75 75 1949 WEST 32.04 583.8 141.8
76 76 1950 WEST 32.24 635.2 136.7
77 77 1951 WEST 54.38 732.8 129.7
78 78 1952 WEST 71.78 864.1 145.5
79 79 1953 WEST 90.08 1193.5 174.8
80 80 1954 WEST 68.60 1188.9 213.5
str(e)
## 'data.frame':    80 obs. of  6 variables:
##  $ S : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ N : int  1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 ...
##  $ CT: chr  "GE" "GE" "GE" "GE" ...
##  $ Y : num  33.1 45 77.2 44.6 48.1 74.4 113 91.9 61.3 56.8 ...
##  $ X2: num  1171 2016 2803 2040 2256 ...
##  $ X3: num  97.8 104.4 118 156.2 172.6 ...
head(e,4)
S N CT Y X2 X3
1 1935 GE 33.1 1170.6 97.8
2 1936 GE 45.0 2015.8 104.4
3 1937 GE 77.2 2803.3 118.0
4 1938 GE 44.6 2039.7 156.2
tail(e,7)
S N CT Y X2 X3
74 74 1948 WEST 49.56 662.3 130.6
75 75 1949 WEST 32.04 583.8 141.8
76 76 1950 WEST 32.24 635.2 136.7
77 77 1951 WEST 54.38 732.8 129.7
78 78 1952 WEST 71.78 864.1 145.5
79 79 1953 WEST 90.08 1193.5 174.8
80 80 1954 WEST 68.60 1188.9 213.5
a6 <- e[e$CT =='GE',]
a6
S N CT Y X2 X3
1 1935 GE 33.1 1170.6 97.8
2 1936 GE 45.0 2015.8 104.4
3 1937 GE 77.2 2803.3 118.0
4 1938 GE 44.6 2039.7 156.2
5 1939 GE 48.1 2256.2 172.6
6 1940 GE 74.4 2132.2 186.6
7 1941 GE 113.0 1834.1 220.9
8 1942 GE 91.9 1588.0 287.8
9 1943 GE 61.3 1749.4 319.9
10 1944 GE 56.8 1687.2 321.3
11 1945 GE 93.6 2007.7 319.6
12 1946 GE 159.9 2208.3 346.0
13 1947 GE 147.2 1656.7 456.4
14 1948 GE 146.3 1604.4 543.4
15 1949 GE 98.3 1431.8 618.3
16 1950 GE 93.5 1610.5 647.4
17 1951 GE 135.2 1819.4 671.3
18 1952 GE 157.3 2079.7 726.1
19 1953 GE 179.5 2371.6 800.3
20 1954 GE 189.6 2759.9 888.9
a7 <- e[e$CT != 'WEST',]
a7
S N CT Y X2 X3
1 1935 GE 33.1 1170.6 97.8
2 1936 GE 45.0 2015.8 104.4
3 1937 GE 77.2 2803.3 118.0
4 1938 GE 44.6 2039.7 156.2
5 1939 GE 48.1 2256.2 172.6
6 1940 GE 74.4 2132.2 186.6
7 1941 GE 113.0 1834.1 220.9
8 1942 GE 91.9 1588.0 287.8
9 1943 GE 61.3 1749.4 319.9
10 1944 GE 56.8 1687.2 321.3
11 1945 GE 93.6 2007.7 319.6
12 1946 GE 159.9 2208.3 346.0
13 1947 GE 147.2 1656.7 456.4
14 1948 GE 146.3 1604.4 543.4
15 1949 GE 98.3 1431.8 618.3
16 1950 GE 93.5 1610.5 647.4
17 1951 GE 135.2 1819.4 671.3
18 1952 GE 157.3 2079.7 726.1
19 1953 GE 179.5 2371.6 800.3
20 1954 GE 189.6 2759.9 888.9
21 1935 US 209.9 1362.4 53.8
22 1936 US 355.3 1807.1 50.5
23 1937 US 469.9 2673.3 118.1
24 1938 US 262.3 1801.9 260.2
25 1939 US 230.4 1957.3 312.7
26 1940 US 361.6 2202.9 254.2
27 1941 US 472.8 2380.5 261.4
28 1942 US 445.6 2168.6 298.7
29 1943 US 361.6 1985.1 301.8
30 1944 US 288.2 1813.9 279.1
31 1945 US 258.7 1850.2 213.8
32 1946 US 420.3 2067.7 232.6
33 1947 US 420.5 1796.3 264.8
34 1948 US 494.5 1625.8 306.9
35 1949 US 405.1 1667.0 351.1
36 1950 US 418.8 1677.4 357.8
37 1951 US 588.2 2289.5 341.1
38 1952 US 645.2 2159.4 444.2
39 1953 US 641.0 2031.3 623.6
40 1954 US 459.3 2115.5 669.7
41 1935 GM 317.6 3078.5 2.8
42 1936 GM 391.8 4661.7 52.6
43 1937 GM 410.6 5387.1 156.9
44 1938 GM 257.7 2792.2 209.2
45 1939 GM 330.8 4313.2 203.4
46 1940 GM 461.2 4643.9 207.2
47 1941 GM 512.0 4551.2 255.2
48 1942 GM 448.0 3244.1 303.7
49 1943 GM 499.6 4053.7 264.1
50 1944 GM 547.5 4379.3 201.6
51 1945 GM 561.2 4840.9 265.0
52 1946 GM 688.1 4900.0 402.0
53 1947 GM 568.9 3526.5 761.5
54 1948 GM 529.2 3245.7 922.4
55 1949 GM 555.1 3700.2 1020.1
56 1950 GM 642.9 3755.6 1099.0
57 1951 GM 755.9 4833.0 1207.7
58 1952 GM 891.2 4926.9 1430.5
59 1953 GM 1304.4 6241.7 1777.3
60 1954 GM 1486.7 5593.6 226.3
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
i <- iris
i1 <- filter(i,Sepal.Length >5|Species=='setosa')
i1
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.1 setosa
5.4 3.7 1.5 0.2 setosa
4.8 3.4 1.6 0.2 setosa
4.8 3.0 1.4 0.1 setosa
4.3 3.0 1.1 0.1 setosa
5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
5.4 3.9 1.3 0.4 setosa
5.1 3.5 1.4 0.3 setosa
5.7 3.8 1.7 0.3 setosa
5.1 3.8 1.5 0.3 setosa
5.4 3.4 1.7 0.2 setosa
5.1 3.7 1.5 0.4 setosa
4.6 3.6 1.0 0.2 setosa
5.1 3.3 1.7 0.5 setosa
4.8 3.4 1.9 0.2 setosa
5.0 3.0 1.6 0.2 setosa
5.0 3.4 1.6 0.4 setosa
5.2 3.5 1.5 0.2 setosa
5.2 3.4 1.4 0.2 setosa
4.7 3.2 1.6 0.2 setosa
4.8 3.1 1.6 0.2 setosa
5.4 3.4 1.5 0.4 setosa
5.2 4.1 1.5 0.1 setosa
5.5 4.2 1.4 0.2 setosa
4.9 3.1 1.5 0.2 setosa
5.0 3.2 1.2 0.2 setosa
5.5 3.5 1.3 0.2 setosa
4.9 3.6 1.4 0.1 setosa
4.4 3.0 1.3 0.2 setosa
5.1 3.4 1.5 0.2 setosa
5.0 3.5 1.3 0.3 setosa
4.5 2.3 1.3 0.3 setosa
4.4 3.2 1.3 0.2 setosa
5.0 3.5 1.6 0.6 setosa
5.1 3.8 1.9 0.4 setosa
4.8 3.0 1.4 0.3 setosa
5.1 3.8 1.6 0.2 setosa
4.6 3.2 1.4 0.2 setosa
5.3 3.7 1.5 0.2 setosa
5.0 3.3 1.4 0.2 setosa
7.0 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
5.5 2.3 4.0 1.3 versicolor
6.5 2.8 4.6 1.5 versicolor
5.7 2.8 4.5 1.3 versicolor
6.3 3.3 4.7 1.6 versicolor
6.6 2.9 4.6 1.3 versicolor
5.2 2.7 3.9 1.4 versicolor
5.9 3.0 4.2 1.5 versicolor
6.0 2.2 4.0 1.0 versicolor
6.1 2.9 4.7 1.4 versicolor
5.6 2.9 3.6 1.3 versicolor
6.7 3.1 4.4 1.4 versicolor
5.6 3.0 4.5 1.5 versicolor
5.8 2.7 4.1 1.0 versicolor
6.2 2.2 4.5 1.5 versicolor
5.6 2.5 3.9 1.1 versicolor
5.9 3.2 4.8 1.8 versicolor
6.1 2.8 4.0 1.3 versicolor
6.3 2.5 4.9 1.5 versicolor
6.1 2.8 4.7 1.2 versicolor
6.4 2.9 4.3 1.3 versicolor
6.6 3.0 4.4 1.4 versicolor
6.8 2.8 4.8 1.4 versicolor
6.7 3.0 5.0 1.7 versicolor
6.0 2.9 4.5 1.5 versicolor
5.7 2.6 3.5 1.0 versicolor
5.5 2.4 3.8 1.1 versicolor
5.5 2.4 3.7 1.0 versicolor
5.8 2.7 3.9 1.2 versicolor
6.0 2.7 5.1 1.6 versicolor
5.4 3.0 4.5 1.5 versicolor
6.0 3.4 4.5 1.6 versicolor
6.7 3.1 4.7 1.5 versicolor
6.3 2.3 4.4 1.3 versicolor
5.6 3.0 4.1 1.3 versicolor
5.5 2.5 4.0 1.3 versicolor
5.5 2.6 4.4 1.2 versicolor
6.1 3.0 4.6 1.4 versicolor
5.8 2.6 4.0 1.2 versicolor
5.6 2.7 4.2 1.3 versicolor
5.7 3.0 4.2 1.2 versicolor
5.7 2.9 4.2 1.3 versicolor
6.2 2.9 4.3 1.3 versicolor
5.1 2.5 3.0 1.1 versicolor
5.7 2.8 4.1 1.3 versicolor
6.3 3.3 6.0 2.5 virginica
5.8 2.7 5.1 1.9 virginica
7.1 3.0 5.9 2.1 virginica
6.3 2.9 5.6 1.8 virginica
6.5 3.0 5.8 2.2 virginica
7.6 3.0 6.6 2.1 virginica
7.3 2.9 6.3 1.8 virginica
6.7 2.5 5.8 1.8 virginica
7.2 3.6 6.1 2.5 virginica
6.5 3.2 5.1 2.0 virginica
6.4 2.7 5.3 1.9 virginica
6.8 3.0 5.5 2.1 virginica
5.7 2.5 5.0 2.0 virginica
5.8 2.8 5.1 2.4 virginica
6.4 3.2 5.3 2.3 virginica
6.5 3.0 5.5 1.8 virginica
7.7 3.8 6.7 2.2 virginica
7.7 2.6 6.9 2.3 virginica
6.0 2.2 5.0 1.5 virginica
6.9 3.2 5.7 2.3 virginica
5.6 2.8 4.9 2.0 virginica
7.7 2.8 6.7 2.0 virginica
6.3 2.7 4.9 1.8 virginica
6.7 3.3 5.7 2.1 virginica
7.2 3.2 6.0 1.8 virginica
6.2 2.8 4.8 1.8 virginica
6.1 3.0 4.9 1.8 virginica
6.4 2.8 5.6 2.1 virginica
7.2 3.0 5.8 1.6 virginica
7.4 2.8 6.1 1.9 virginica
7.9 3.8 6.4 2.0 virginica
6.4 2.8 5.6 2.2 virginica
6.3 2.8 5.1 1.5 virginica
6.1 2.6 5.6 1.4 virginica
7.7 3.0 6.1 2.3 virginica
6.3 3.4 5.6 2.4 virginica
6.4 3.1 5.5 1.8 virginica
6.0 3.0 4.8 1.8 virginica
6.9 3.1 5.4 2.1 virginica
6.7 3.1 5.6 2.4 virginica
6.9 3.1 5.1 2.3 virginica
5.8 2.7 5.1 1.9 virginica
6.8 3.2 5.9 2.3 virginica
6.7 3.3 5.7 2.5 virginica
6.7 3.0 5.2 2.3 virginica
6.3 2.5 5.0 1.9 virginica
6.5 3.0 5.2 2.0 virginica
6.2 3.4 5.4 2.3 virginica
5.9 3.0 5.1 1.8 virginica
i2 <- i %>% filter(Petal.Width >= 1.5|Species == 'virginica')
i2
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
6.5 2.8 4.6 1.5 versicolor
6.3 3.3 4.7 1.6 versicolor
5.9 3.0 4.2 1.5 versicolor
5.6 3.0 4.5 1.5 versicolor
6.2 2.2 4.5 1.5 versicolor
5.9 3.2 4.8 1.8 versicolor
6.3 2.5 4.9 1.5 versicolor
6.7 3.0 5.0 1.7 versicolor
6.0 2.9 4.5 1.5 versicolor
6.0 2.7 5.1 1.6 versicolor
5.4 3.0 4.5 1.5 versicolor
6.0 3.4 4.5 1.6 versicolor
6.7 3.1 4.7 1.5 versicolor
6.3 3.3 6.0 2.5 virginica
5.8 2.7 5.1 1.9 virginica
7.1 3.0 5.9 2.1 virginica
6.3 2.9 5.6 1.8 virginica
6.5 3.0 5.8 2.2 virginica
7.6 3.0 6.6 2.1 virginica
4.9 2.5 4.5 1.7 virginica
7.3 2.9 6.3 1.8 virginica
6.7 2.5 5.8 1.8 virginica
7.2 3.6 6.1 2.5 virginica
6.5 3.2 5.1 2.0 virginica
6.4 2.7 5.3 1.9 virginica
6.8 3.0 5.5 2.1 virginica
5.7 2.5 5.0 2.0 virginica
5.8 2.8 5.1 2.4 virginica
6.4 3.2 5.3 2.3 virginica
6.5 3.0 5.5 1.8 virginica
7.7 3.8 6.7 2.2 virginica
7.7 2.6 6.9 2.3 virginica
6.0 2.2 5.0 1.5 virginica
6.9 3.2 5.7 2.3 virginica
5.6 2.8 4.9 2.0 virginica
7.7 2.8 6.7 2.0 virginica
6.3 2.7 4.9 1.8 virginica
6.7 3.3 5.7 2.1 virginica
7.2 3.2 6.0 1.8 virginica
6.2 2.8 4.8 1.8 virginica
6.1 3.0 4.9 1.8 virginica
6.4 2.8 5.6 2.1 virginica
7.2 3.0 5.8 1.6 virginica
7.4 2.8 6.1 1.9 virginica
7.9 3.8 6.4 2.0 virginica
6.4 2.8 5.6 2.2 virginica
6.3 2.8 5.1 1.5 virginica
6.1 2.6 5.6 1.4 virginica
7.7 3.0 6.1 2.3 virginica
6.3 3.4 5.6 2.4 virginica
6.4 3.1 5.5 1.8 virginica
6.0 3.0 4.8 1.8 virginica
6.9 3.1 5.4 2.1 virginica
6.7 3.1 5.6 2.4 virginica
6.9 3.1 5.1 2.3 virginica
5.8 2.7 5.1 1.9 virginica
6.8 3.2 5.9 2.3 virginica
6.7 3.3 5.7 2.5 virginica
6.7 3.0 5.2 2.3 virginica
6.3 2.5 5.0 1.9 virginica
6.5 3.0 5.2 2.0 virginica
6.2 3.4 5.4 2.3 virginica
5.9 3.0 5.1 1.8 virginica
i3 <- i %>% select(Sepal.Length, Petal.Width, Species)
i3
Sepal.Length Petal.Width Species
5.1 0.2 setosa
4.9 0.2 setosa
4.7 0.2 setosa
4.6 0.2 setosa
5.0 0.2 setosa
5.4 0.4 setosa
4.6 0.3 setosa
5.0 0.2 setosa
4.4 0.2 setosa
4.9 0.1 setosa
5.4 0.2 setosa
4.8 0.2 setosa
4.8 0.1 setosa
4.3 0.1 setosa
5.8 0.2 setosa
5.7 0.4 setosa
5.4 0.4 setosa
5.1 0.3 setosa
5.7 0.3 setosa
5.1 0.3 setosa
5.4 0.2 setosa
5.1 0.4 setosa
4.6 0.2 setosa
5.1 0.5 setosa
4.8 0.2 setosa
5.0 0.2 setosa
5.0 0.4 setosa
5.2 0.2 setosa
5.2 0.2 setosa
4.7 0.2 setosa
4.8 0.2 setosa
5.4 0.4 setosa
5.2 0.1 setosa
5.5 0.2 setosa
4.9 0.2 setosa
5.0 0.2 setosa
5.5 0.2 setosa
4.9 0.1 setosa
4.4 0.2 setosa
5.1 0.2 setosa
5.0 0.3 setosa
4.5 0.3 setosa
4.4 0.2 setosa
5.0 0.6 setosa
5.1 0.4 setosa
4.8 0.3 setosa
5.1 0.2 setosa
4.6 0.2 setosa
5.3 0.2 setosa
5.0 0.2 setosa
7.0 1.4 versicolor
6.4 1.5 versicolor
6.9 1.5 versicolor
5.5 1.3 versicolor
6.5 1.5 versicolor
5.7 1.3 versicolor
6.3 1.6 versicolor
4.9 1.0 versicolor
6.6 1.3 versicolor
5.2 1.4 versicolor
5.0 1.0 versicolor
5.9 1.5 versicolor
6.0 1.0 versicolor
6.1 1.4 versicolor
5.6 1.3 versicolor
6.7 1.4 versicolor
5.6 1.5 versicolor
5.8 1.0 versicolor
6.2 1.5 versicolor
5.6 1.1 versicolor
5.9 1.8 versicolor
6.1 1.3 versicolor
6.3 1.5 versicolor
6.1 1.2 versicolor
6.4 1.3 versicolor
6.6 1.4 versicolor
6.8 1.4 versicolor
6.7 1.7 versicolor
6.0 1.5 versicolor
5.7 1.0 versicolor
5.5 1.1 versicolor
5.5 1.0 versicolor
5.8 1.2 versicolor
6.0 1.6 versicolor
5.4 1.5 versicolor
6.0 1.6 versicolor
6.7 1.5 versicolor
6.3 1.3 versicolor
5.6 1.3 versicolor
5.5 1.3 versicolor
5.5 1.2 versicolor
6.1 1.4 versicolor
5.8 1.2 versicolor
5.0 1.0 versicolor
5.6 1.3 versicolor
5.7 1.2 versicolor
5.7 1.3 versicolor
6.2 1.3 versicolor
5.1 1.1 versicolor
5.7 1.3 versicolor
6.3 2.5 virginica
5.8 1.9 virginica
7.1 2.1 virginica
6.3 1.8 virginica
6.5 2.2 virginica
7.6 2.1 virginica
4.9 1.7 virginica
7.3 1.8 virginica
6.7 1.8 virginica
7.2 2.5 virginica
6.5 2.0 virginica
6.4 1.9 virginica
6.8 2.1 virginica
5.7 2.0 virginica
5.8 2.4 virginica
6.4 2.3 virginica
6.5 1.8 virginica
7.7 2.2 virginica
7.7 2.3 virginica
6.0 1.5 virginica
6.9 2.3 virginica
5.6 2.0 virginica
7.7 2.0 virginica
6.3 1.8 virginica
6.7 2.1 virginica
7.2 1.8 virginica
6.2 1.8 virginica
6.1 1.8 virginica
6.4 2.1 virginica
7.2 1.6 virginica
7.4 1.9 virginica
7.9 2.0 virginica
6.4 2.2 virginica
6.3 1.5 virginica
6.1 1.4 virginica
7.7 2.3 virginica
6.3 2.4 virginica
6.4 1.8 virginica
6.0 1.8 virginica
6.9 2.1 virginica
6.7 2.4 virginica
6.9 2.3 virginica
5.8 1.9 virginica
6.8 2.3 virginica
6.7 2.5 virginica
6.7 2.3 virginica
6.3 1.9 virginica
6.5 2.0 virginica
6.2 2.3 virginica
5.9 1.8 virginica
i4 <- i %>% filter(Petal.Length <3| Species =='versicolor') %>% select(Sepal.Length,Petal.Width,Species)
i4
Sepal.Length Petal.Width Species
5.1 0.2 setosa
4.9 0.2 setosa
4.7 0.2 setosa
4.6 0.2 setosa
5.0 0.2 setosa
5.4 0.4 setosa
4.6 0.3 setosa
5.0 0.2 setosa
4.4 0.2 setosa
4.9 0.1 setosa
5.4 0.2 setosa
4.8 0.2 setosa
4.8 0.1 setosa
4.3 0.1 setosa
5.8 0.2 setosa
5.7 0.4 setosa
5.4 0.4 setosa
5.1 0.3 setosa
5.7 0.3 setosa
5.1 0.3 setosa
5.4 0.2 setosa
5.1 0.4 setosa
4.6 0.2 setosa
5.1 0.5 setosa
4.8 0.2 setosa
5.0 0.2 setosa
5.0 0.4 setosa
5.2 0.2 setosa
5.2 0.2 setosa
4.7 0.2 setosa
4.8 0.2 setosa
5.4 0.4 setosa
5.2 0.1 setosa
5.5 0.2 setosa
4.9 0.2 setosa
5.0 0.2 setosa
5.5 0.2 setosa
4.9 0.1 setosa
4.4 0.2 setosa
5.1 0.2 setosa
5.0 0.3 setosa
4.5 0.3 setosa
4.4 0.2 setosa
5.0 0.6 setosa
5.1 0.4 setosa
4.8 0.3 setosa
5.1 0.2 setosa
4.6 0.2 setosa
5.3 0.2 setosa
5.0 0.2 setosa
7.0 1.4 versicolor
6.4 1.5 versicolor
6.9 1.5 versicolor
5.5 1.3 versicolor
6.5 1.5 versicolor
5.7 1.3 versicolor
6.3 1.6 versicolor
4.9 1.0 versicolor
6.6 1.3 versicolor
5.2 1.4 versicolor
5.0 1.0 versicolor
5.9 1.5 versicolor
6.0 1.0 versicolor
6.1 1.4 versicolor
5.6 1.3 versicolor
6.7 1.4 versicolor
5.6 1.5 versicolor
5.8 1.0 versicolor
6.2 1.5 versicolor
5.6 1.1 versicolor
5.9 1.8 versicolor
6.1 1.3 versicolor
6.3 1.5 versicolor
6.1 1.2 versicolor
6.4 1.3 versicolor
6.6 1.4 versicolor
6.8 1.4 versicolor
6.7 1.7 versicolor
6.0 1.5 versicolor
5.7 1.0 versicolor
5.5 1.1 versicolor
5.5 1.0 versicolor
5.8 1.2 versicolor
6.0 1.6 versicolor
5.4 1.5 versicolor
6.0 1.6 versicolor
6.7 1.5 versicolor
6.3 1.3 versicolor
5.6 1.3 versicolor
5.5 1.3 versicolor
5.5 1.2 versicolor
6.1 1.4 versicolor
5.8 1.2 versicolor
5.0 1.0 versicolor
5.6 1.3 versicolor
5.7 1.2 versicolor
5.7 1.3 versicolor
6.2 1.3 versicolor
5.1 1.1 versicolor
5.7 1.3 versicolor

1.6 Tạo dữ liệu mới từ dữ liệu có sẵn

w <- women
tich <- w$height+w$weight
tich
##  [1] 173 176 180 184 188 192 196 200 205 209 214 219 224 230 236
sqrt = sqrt(tich)
sqrt
##  [1] 13.15295 13.26650 13.41641 13.56466 13.71131 13.85641 14.00000 14.14214
##  [9] 14.31782 14.45683 14.62874 14.79865 14.96663 15.16575 15.36229
w1 <- w %>% mutate(sqrt)
w1
height weight sqrt
58 115 13.15295
59 117 13.26650
60 120 13.41641
61 123 13.56466
62 126 13.71131
63 129 13.85641
64 132 14.00000
65 135 14.14214
66 139 14.31782
67 142 14.45683
68 146 14.62874
69 150 14.79865
70 154 14.96663
71 159 15.16575
72 164 15.36229

1.7 Lấy dữ liệu từ World Bank

library(WDI)
ind <- WDIsearch('Total reserves')
ind
indicator name
4340 DT.DOD.DSTC.IR.ZS Short-term debt (% of total reserves)
6593 FI.RES.TOTL.CD Total reserves (includes gold, current US\() | |6594 |FI.RES.TOTL.CD.WB |Total reserves including gold valued at London gold price (current US\))
6595 FI.RES.TOTL.CD.ZS Total reserves includes gold (% of GDP)
6596 FI.RES.TOTL.DT.ZS Total reserves (% of total external debt)
6597 FI.RES.TOTL.MO Total reserves in months of imports
6598 FI.RES.TOTL.MO.WB Total reserves in months of imports of goods and services
6599 FI.RES.XGLD.CD Total reserves minus gold (current US$)
7408 FM.LBL.BMNY.IR.ZS Broad money to total reserves ratio
7416 FM.LBL.MQMY.IR.ZS Money and quasi money (M2) to total reserves ratio
17958 TOTRESV Total Reserves
ind1 <- WDI(indicator = 'FI.RES.TOTL.MO', country = c('VN'), extra = T)
ind1
country iso2c iso3c year FI.RES.TOTL.MO status lastupdated region capital longitude latitude income lending
Viet Nam VN VNM 2022 2.641353 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2021 3.686074 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2020 3.978296 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2019 3.366793 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2018 2.529580 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2017 2.462901 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2016 2.223985 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2015 1.850373 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2014 2.536335 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2013 2.146522 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2012 2.487028 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2011 1.417350 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2010 1.620547 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2009 2.574184 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2008 3.214584 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2007 4.075098 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2006 3.224640 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2005 2.653657 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2004 2.442831 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2003 2.694840 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2002 2.213041 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2001 2.355113 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2000 2.264215 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1999 2.814992 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1998 1.680220 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1997 1.670657 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1996 1.620063 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1995 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1994 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1993 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1992 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1991 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1990 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1989 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1988 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1987 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1986 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1985 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1984 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1983 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1982 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1981 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1980 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1979 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1978 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1977 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1976 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1975 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1974 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1973 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1972 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1971 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1970 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1969 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1968 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1967 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1966 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1965 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1964 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1963 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1962 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1961 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1960 NA 2023-12-18 NA NA NA NA NA NA
se <- ind1 %>% select(year,FI.RES.TOTL.MO)
se
year FI.RES.TOTL.MO
2022 2.641353
2021 3.686074
2020 3.978296
2019 3.366793
2018 2.529580
2017 2.462901
2016 2.223985
2015 1.850373
2014 2.536335
2013 2.146522
2012 2.487028
2011 1.417350
2010 1.620547
2009 2.574184
2008 3.214584
2007 4.075098
2006 3.224640
2005 2.653657
2004 2.442831
2003 2.694840
2002 2.213041
2001 2.355113
2000 2.264215
1999 2.814992
1998 1.680220
1997 1.670657
1996 1.620063
1995 NA
1994 NA
1993 NA
1992 NA
1991 NA
1990 NA
1989 NA
1988 NA
1987 NA
1986 NA
1985 NA
1984 NA
1983 NA
1982 NA
1981 NA
1980 NA
1979 NA
1978 NA
1977 NA
1976 NA
1975 NA
1974 NA
1973 NA
1972 NA
1971 NA
1970 NA
1969 NA
1968 NA
1967 NA
1966 NA
1965 NA
1964 NA
1963 NA
1962 NA
1961 NA
1960 NA
na <- na.omit(se)
na
year FI.RES.TOTL.MO
2022 2.641353
2021 3.686074
2020 3.978296
2019 3.366793
2018 2.529580
2017 2.462901
2016 2.223985
2015 1.850373
2014 2.536335
2013 2.146522
2012 2.487028
2011 1.417350
2010 1.620547
2009 2.574184
2008 3.214584
2007 4.075098
2006 3.224640
2005 2.653657
2004 2.442831
2003 2.694840
2002 2.213041
2001 2.355113
2000 2.264215
1999 2.814992
1998 1.680220
1997 1.670657
1996 1.620063
names(na) <- c('year','DuTru')
na
year DuTru
2022 2.641353
2021 3.686074
2020 3.978296
2019 3.366793
2018 2.529580
2017 2.462901
2016 2.223985
2015 1.850373
2014 2.536335
2013 2.146522
2012 2.487028
2011 1.417350
2010 1.620547
2009 2.574184
2008 3.214584
2007 4.075098
2006 3.224640
2005 2.653657
2004 2.442831
2003 2.694840
2002 2.213041
2001 2.355113
2000 2.264215
1999 2.814992
1998 1.680220
1997 1.670657
1996 1.620063

2 NHIỆM VỤ 2.2

2.1 Đọc dữ liệu từ file CVS

Mục đích của việc đọc dữ liệu là tương tác với cơ sở dữ liệu để phân tích, truy vấn và cập nhật thông tin. Để đọc dữ liệu từ file CSV vào R Markdown, ta sử dụng lệnh read.csv() và thực hiện như ví dụ sau abc <- read.xlsx(file = ‘./data/abc.xlsx’) hoặc abc <- read.csv(file.choose(), header = T)

Covid <- read.csv(file.choose(), header = T)

2.2 Rút trích dữ liệu

Rút trích dữ liệu là bước quan trọng trong quá trình phân tích dữ liệu. Việc này giúp lập trình viên và nhà phân tích dữ liệu trích xuất thông tin quan trọng từ tập dữ liệu lớn để tìm ra các mô hình, xu hướng, và thông tin hữu ích.

2.2.1 Đổi tên cho các biến

Lệnh names() được sử dụng để đặt tên cho các thành phần (cột) của một đối tượng như một vector, một danh sách (list), hoặc một data frame. Việc đổi tên cho các biến giúp người lập trình đọc hiểu dễ dàng, giảm sự nhầm lẫn, tối ưu hiệu suất.

Để đổi tên biến, ta thực hiện names(vidu) <- c(‘A’,‘B’,‘C’)

names(Covid) <- c('D','L','NC','ND','TC','WC','WD','BC','BD')
names(Covid)
##  [1] "D"  "L"  "NC" "ND" "TC" "WC" "WD" "BC" "BD" NA

2.2.2 Rút trích dữ liệu

  • Khi cần lấy ra một giá trị cụ thể nào đó ta dùng lệnh vd <- vidu[10,3]
vd1 <- Covid[26,2]
vd1
## [1] "Afghanistan"

Ở ví dụ trên ta đã rút trích quan sát số 26 và biến số 2, kết quả thu được giá trị là “Afghanistan”

  • Khi cần lấy ra một biến (cột) cụ thể nào đó ta dùng lệnh A <- vidu$A
NC <- Covid$new_cases

Ở ví dụ này ta rút trích cột new_cases

  • Rút trích nhiều hàng (quan sát) không theo thứ tự theo lệnh vd <- vidu[c(3,5,7,21),]
vd2 <- Covid[c(2,5,12,55,66,112,1262),]
vd2
D L NC ND TC WC WD BC BD NA
2 25/02/2020 Afghanistan 0 NA 5 NA NA NA NA NA
5 28/02/2020 Afghanistan 0 NA 5 NA NA NA NA NA
12 06/03/2020 Afghanistan 0 NA 5 NA 0 NA NA NA
55 18/04/2020 Afghanistan 63 0 908 30 387 15 638 25
66 29/04/2020 Afghanistan 124 0 1827 60 735 24 1057 35
112 14/06/2020 Afghanistan 664 20 24852 475 4424 114 9672 221
1262 13/07/2020 Africa 16069 222 611002 13463 120676 1853 217719 3586
  • Rút trích quan sát và biến theo lệnh vd3 <- vidu[c(5,9,55,180),c(5,7)]
vd3 <- Covid[c(3,5,90,446),c(4,7)]
vd3
ND WD
3 NA NA
5 NA NA
90 10 3550
446 9 1900
  • Rút trích các quan sát với các điều kiện vd <- vidu[vidu\(A >=1 &vidu\)A <=10,] hoặc vd <- vidu[vidu\(A == 2|vidu\)A == 8,] hoặc **vd <- vidu[vidu$A != ‘abc’,]
vd4 <- Covid[Covid$weekly_cases >= 6500 & Covid$biweekly_deaths <= 50,]
vd4
D L NC ND TC WC WD BC BD NA
vd5 <- Covid[Covid$location == 'Zimbabwe' | Covid$total_deaths <= 50,]
vd5
D L NC ND TC WC WD BC BD NA
vidu6 <- Covid[Covid$location != 'Afghanistan'& Covid$new_cases <= 10,]
vidu6
D L NC ND TC WC WD BC BD NA

Điểm khác nhau giữa cáccác lệnh này là ‘&’, ‘|’‘!=’

  1. ‘&’ có nghĩa là và

  2. ‘|’ có nghĩa là hoặc

  3. ‘!=’ có nghĩa là khác

  • Xác định số các quan sát và biến str(vidu)
str(Covid)
## 'data.frame':    248346 obs. of  10 variables:
##  $ D : chr  "24/02/2020" "25/02/2020" "26/02/2020" "27/02/2020" ...
##  $ L : chr  "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
##  $ NC: int  5 0 0 0 0 0 0 0 0 0 ...
##  $ ND: int  NA NA NA NA NA NA NA NA NA NA ...
##  $ TC: int  5 5 5 5 5 5 5 5 5 5 ...
##  $ WC: int  NA NA NA NA NA NA NA NA NA NA ...
##  $ WD: int  NA NA NA NA NA 5 5 0 0 0 ...
##  $ BC: int  NA NA NA NA NA NA NA NA NA NA ...
##  $ BD: int  NA NA NA NA NA NA NA NA NA NA ...
##  $ NA: int  NA NA NA NA NA NA NA NA NA NA ...
  • Lấy các quan sát đầu tiên head(vidu,7)
head(Covid,10)
D L NC ND TC WC WD BC BD NA
24/02/2020 Afghanistan 5 NA 5 NA NA NA NA NA
25/02/2020 Afghanistan 0 NA 5 NA NA NA NA NA
26/02/2020 Afghanistan 0 NA 5 NA NA NA NA NA
27/02/2020 Afghanistan 0 NA 5 NA NA NA NA NA
28/02/2020 Afghanistan 0 NA 5 NA NA NA NA NA
29/02/2020 Afghanistan 0 NA 5 NA 5 NA NA NA
01/03/2020 Afghanistan 0 NA 5 NA 5 NA NA NA
02/03/2020 Afghanistan 0 NA 5 NA 0 NA NA NA
03/03/2020 Afghanistan 0 NA 5 NA 0 NA NA NA
04/03/2020 Afghanistan 0 NA 5 NA 0 NA NA NA
  • Lấy các quan sát cuối cùng tail(vidu,8)
tail(Covid,10)
D L NC ND TC WC WD BC BD NA
248337 28/02/2023 Zimbabwe 0 0 263921 5663 279 1 838 4
248338 01/03/2023 Zimbabwe 206 5 264127 5668 206 5 485 6
248339 02/03/2023 Zimbabwe 0 0 264127 5668 206 5 485 6
248340 03/03/2023 Zimbabwe 0 0 264127 5668 206 5 485 6
248341 04/03/2023 Zimbabwe 0 0 264127 5668 206 5 485 6
248342 05/03/2023 Zimbabwe 0 0 264127 5668 206 5 485 6
248343 06/03/2023 Zimbabwe 0 0 264127 5668 206 5 485 6
248344 07/03/2023 Zimbabwe 0 0 264127 5668 206 5 485 6
248345 08/03/2023 Zimbabwe 149 3 264276 5671 149 3 355 8
248346 09/03/2023 Zimbabwe NA 0 264276 5671 NA 3 NA 8

2.3 Tạo dữ liệu mới từ dữ liệu có sẵn

row_indices <- c(2: 666)
tong <- rowSums(Covid[row_indices, 3:ncol(Covid)])
tong
##      2      3      4      5      6      7      8      9     10     11     12 
##     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA 
##     13     14     15     16     17     18     19     20     21     22     23 
##     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA 
##     24     25     26     27     28     29     30     31     32     33     34 
##     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA 
##     35     36     37     38     39     40     41     42     43     44     45 
##     NA     NA     NA     NA     NA     NA    694    797    911    955   1099 
##     46     47     48     49     50     51     52     53     54     55     56 
##   1078   1318   1225   1332   1469   1574   1860   1799   1867   2066   2035 
##     57     58     59     60     61     62     63     64     65     66     67 
##   2183   2154   2218   2454   2437   2752   3139   3157   3722   3862   3622 
##     68     69     70     71     72     73     74     75     76     77     78 
##   4912   5618   5148   5013   4798   7720   7562   7675   7090  10363  10493 
##     79     80     81     82     83     84     85     86     87     88     89 
##  11288  10076  11423  13446  13865  13584  14851  16448  17083  18173  18941 
##     90     91     92     93     94     95     96     97     98     99    100 
##  21009  22068  22693  24235  25213  26325  27012  28392  29261  30338  31330 
##    101    102    103    104    105    106    107    108    109    110    111 
##  32725  33259  35776  35556  36864  37207  36383  38514  39366  39559  39741 
##    112    113    114    115    116    117    118    119    120    121    122 
##  40442  41564  40195  43377  42738  42641  42613  42965  42351  43030  41182 
##    123    124    125    126    127    128    129    130    131    132    133 
##  42012  40582  41028  40904  40534  40279  40483  40137  40467  40775  40742 
##    134    135    136    137    138    139    140    141    142    143    144 
##  40367  41162  41091  40241  42077  41412  41097  40575  41365  41375  41369 
##    145    146    147    148    149    150    151    152    153    154    155 
##  41103  40634  41002  40784  40505  40395  40904  40247  40250  40355  40643 
##    156    157    158    159    160    161    162    163    164    165    166 
##  40526  40469  40291  39947  40531  39997  39845  39800  39888  39804  39817 
##    167    168    169    170    171    172    173    174    175    176    177 
##  39868  39823  39663  40503  40408  40532  40431  40665  40694  40644  40367 
##    178    179    180    181    182    183    184    185    186    187    188 
##  40190  40703  40883  40722  40826  40959  40985  41006  40767  40693  40528 
##    189    190    191    192    193    194    195    196    197    198    199 
##  40416  40444  40493  40608  40554  40398  40421  40734  40966  40864  40842 
##    200    201    202    203    204    205    206    207    208    209    210 
##  40867  40963  41050  41218  41269  41317  41397  41342  41339  41420  41728 
##    211    212    213    214    215    216    217    218    219    220    221 
##  41571  41557  41658  41683  41671  41616  41544  41475  41461  41400  41407 
##    222    223    224    225    226    227    228    229    230    231    232 
##  41382  41377  41378  41626  41761  41888  42053  42279  42225  42535  42627 
##    233    234    235    236    237    238    239    240    241    242    243 
##  42708  42839  42814  42902  43113  43150  43297  43441  43220  43315  43608 
##    244    245    246    247    248    249    250    251    252    253    254 
##  43660  43774  43796  44011  44236  44531  44747  44755  44916  44966  45240 
##    255    256    257    258    259    260    261    262    263    264    265 
##  45395  45489  45663  45566  45587  45911  46134  46462  46684  47065  47474 
##    266    267    268    269    270    271    272    273    274    275    276 
##  47446  48030  48214  48723  49166  50141  50445  50379  50816  51439  51971 
##    277    278    279    280    281    282    283    284    285    286    287 
##  52184  52333  52195  52475  52944  53398  53520  53985  54263  54158  54893 
##    288    289    290    291    292    293    294    295    296    297    298 
##  55227  55421  55556  55553  55755  55594  55649  56310  56282  56571  56809 
##    299    300    301    302    303    304    305    306    307    308    309 
##  57201  57728  57449  57398  57659  57745  58352  58511  58650  58610  58706 
##    310    311    312    313    314    315    316    317    318    319    320 
##  58703  58868  58130  58373  58069  58327  58697  58547  58454  58489  58452 
##    321    322    323    324    325    326    327    328    329    330    331 
##  58358  58464  58222  58137  58239  58379  58228  58480  58322  58332  58410 
##    332    333    334    335    336    337    338    339    340    341    342 
##  58694  58883  58902  58937  58871  59024  59127  59203  59054  59056  59088 
##    343    344    345    346    347    348    349    350    351    352    353 
##  58988  58967  59015  58919  58918  58859  58940  58846  58823  58755  58659 
##    354    355    356    357    358    359    360    361    362    363    364 
##  58610  58627  58585  58608  58610  58519  58526  58503  58492  58397  58470 
##    365    366    367    368    369    370    371    372    373    374    375 
##  58451  58530  58531  58546  58560  58552  58523  58560  58616  58591  58563 
##    376    377    378    379    380    381    382    383    384    385    386 
##  58740  58720  58702  58785  58695  58737  58788  58870  58800  58902  58830 
##    387    388    389    390    391    392    393    394    395    396    397 
##  58844  58888  58959  58929  58987  58971  59131  59173  59168  59240  59247 
##    398    399    400    401    402    403    404    405    406    407    408 
##  59347  59289  59351  59548  59758  59887  60010  59983  60271  60316  60436 
##    409    410    411    412    413    414    415    416    417    418    419 
##  60653  60752  60913  61270  61122  61384  61650  61880  61779  61914  62137 
##    420    421    422    423    424    425    426    427    428    429    430 
##  62214  62448  62716  63089  63195  63868  64176  64385  64788  65206  65306 
##    431    432    433    434    435    436    437    438    439    440    441 
##  65855  66032  66348  66709  66958  67493  67841  68786  69209  69752  69490 
##    442    443    444    445    446    447    448    449    450    451    452 
##  69967  70657  71179  71613  72076  71487  71472  71443  71613  72084  72912 
##    453    454    455    456    457    458    459    460    461    462    463 
##  73888  74667  75088  76714  78186  80338  81229  82862  85606  86954  90018 
##    464    465    466    467    468    469    470    471    472    473    474 
##  92709  94700  96997 100758 103284 106199 109874 112591 116212 120249 123557 
##    475    476    477    478    479    480    481    482    483    484    485 
## 123551 125314 128082 131223 126541 137120 139475 142280 143804 147342 149519 
##    486    487    488    489    490    491    492    493    494    495    496 
## 154924 153992 156664 158021 158346 159867 160330 162874 162825 164859 164895 
##    497    498    499    500    501    502    503    504    505    506    507 
## 166298 166335 168082 169067 168762 169683 170203 169976 170773 171732 170560 
##    508    509    510    511    512    513    514    515    516    517    518 
## 172010 172305 173158 171425 172435 172446 170538 169551 167406 165703 165074 
##    519    520    521    522    523    524    525    526    527    528    529 
## 164596 164912 165372 164971 165270 165867 166045 166324 166542 166516 167012 
##    530    531    532    533    534    535    536    537    538    539    540 
## 167535 167938 167793 167969 167283 167204 167099 166640 166035 165661 165141 
##    541    542    543    544    545    546    547    548    549    550    551 
## 164579 164312 163650 163091 162658 162342 162174 162065 161830 161839 162057 
##    552    553    554    555    556    557    558    559    560    561    562 
## 161866 161823 162088 162071 161976 161976 162012 161918 161974 162222 162324 
##    563    564    565    566    567    568    569    570    571    572    573 
## 162583 162753 162944 162837 162782 162956 163033 163207 163289 163520 163347 
##    574    575    576    577    578    579    580    581    582    583    584 
## 163307 163525 163739 163569 163499 163838 163655 163647 163882 163642 163621 
##    585    586    587    588    589    590    591    592    593    594    595 
## 163637 163378 163359 163359 163543 163388 163589 163623 163470 163523 163689 
##    596    597    598    599    600    601    602    603    604    605    606 
## 163568 163731 163683 163791 163718 163898 163921 163814 163818 163915 163884 
##    607    608    609    610    611    612    613    614    615    616    617 
## 163997 163925 163863 164211 164155 164260 164286 164317 164293 164432 164408 
##    618    619    620    621    622    623    624    625    626    627    628 
## 164406 164344 164407 164409 164373 164314 164194 164142 164136 164206 164227 
##    629    630    631    632    633    634    635    636    637    638    639 
## 164266 164367 164521 164597 164888 164713 164953 165066 165105 165068 165435 
##    640    641    642    643    644    645    646    647    648    649    650 
## 165291 165682 165571 165547 165562 165628 165556 165701 165633 165606 165586 
##    651    652    653    654    655    656    657    658    659    660    661 
## 165596 165712 165568 165613 165615 165601 165576 165616 165560 165558 165466 
##    662    663    664    665    666 
## 165629 165557 165567 165683 165615

Ở chunk trên dùng để tính tổng các quan sát bằng lệnh tong <- rowSums(vidu[row_indices, 3:ncol(vidu)]), các quan sát được tính từ biến thứ 3 đến biến cuối cùng.

row_indices <- c(2: 666) là chỉ số của các quan sát muốn tính tổng, cụ thể là từ quan sát thứ 2 đến quan sát thứ 666

LS0tDQp0aXRsZTogIk5oaeG7h20gVuG7pSAyIg0KYXV0aG9yOiAiTmd1eeG7hW4gVGjDunkgVnkiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIHRvYzogdHJ1ZQ0KICAgIHRoZW1lOiB1bml0ZWQNCiAgICBkZl9wcmludDoga2FibGUNCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgY29kZV9mb2xkaW5nOiBzaG93IA0KZWRpdG9yX29wdGlvbnM6DQogIGNodW5rX291dHB1dF90eXBlOiBjb25zb2xlDQogIHBkZl9kb2N1bWVudDogDQogICAgbGF0ZXhfZW5naW5lOiB4ZWxhdGV4DQogIHdvcmRfZG9jdW1lbnQ6IGRlZmF1bHQNCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkNCmBgYA0KDQpEYXRlOiBgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVIOiVNOiVTLCAlZCAtICVtIC0gJVknKWANCg0KIyBOSEnhu4ZNIFbhu6QgMi4xDQoNCiMjIMSQ4buNYyBk4buvIGxp4buHdSB04burIGZpbGUgQ1NWDQoNCmBgYHtyfQ0KZGF0YSA8LSByZWFkLmNzdihmaWxlLmNob29zZSgpLCBoZWFkZXIgPSBUKQ0KZGF0YQ0KYGBgDQoNCiMjIMSQ4buNYyBk4buvIGxp4buHdSB04burIGZpbGUgRVhDRUwNCg0KYGBge3J9DQpsaWJyYXJ5KHhsc3gpDQpEYXRhIDwtIHJlYWQueGxzeChmaWxlLmNob29zZSgpLCBzaGVldEluZGV4ID0gMSwgaGVhZGVyID0gVCkNCkRhdGENCmBgYA0KDQojIyBT4butIGThu6VuZyBk4buvIGxp4buHdSBjw7Mgc+G6tW4gdHJvbmcgUg0KDQpgYGB7cn0NCmxpYnJhcnkoZGF0YXNldHMpDQpkYXRhKHBhY2thZ2UgPSAnZGF0YXNldHMnKQ0KYiA8LSB3b21lbg0KYg0KYGBgDQoNCg0KYGBge3J9DQpsaWJyYXJ5KGdncGxvdDIpDQpkYXRhKHBhY2thZ2UgPSAnZ2dwbG90MicpDQphIDwtIG1zbGVlcA0KYQ0KYGBgDQoNCg0KIyMgQuG7mSBk4buvIGxp4buHdSAiRGF0YSB0cm9uZyBiYcyAaSBNUDA1IGPhu6dhIEZ1bGx0aWdodCINCg0KYGBge3J9DQplIDwtIGRhdGENCmlzLmRhdGEuZnJhbWUoZSkNCmlzLm1hdHJpeChlKQ0KbGVuZ3RoKGUpDQpuYW1lcyhlKQ0KZGltKGUpDQpsaWJyYXJ5KHNraW1yKQ0Kc2tpbShlKQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZChlLCAxMCkNCmBgYA0KYGBge3J9DQp0YWlsKGUsMTIpDQpgYGANCg0KYGBge3J9DQpzdHIoZSkNCmBgYA0KYGBge3J9DQppcy5uYShlKQ0KYGBgDQpgYGB7cn0NCnN1bShpcy5uYShlKSkNCmBgYA0KYGBge3J9DQp3aGljaChpcy5uYShlKSkNCmBgYA0KDQojIyBSw7p0IHRyw61jaCBk4buvIGxp4buHdQ0KDQpgYGB7cn0NCm5hbWVzKGUpIDwtIGMoJ1MnLCAnTicsICdDVCcsICdZJywgJ1gyJywgJ1gzJykNCmUNCmBgYA0KDQpgYGB7cn0NCmExIDwtIGVbMTAsNF0NCmExDQpgYGANCmBgYHtyfQ0KQ1QgPC0gZSRDVA0KQ1QNCmBgYA0KDQpgYGB7cn0NCmEyIDwtIGVbMyxdDQphMg0KYGBgDQoNCmBgYHtyfQ0KYTMgPC0gZVssYygxLDQpXQ0KYTMNCmBgYA0KDQpgYGB7cn0NCmE0IDwtIGVbYygzLDUsNywxNSw1NiksXQ0KYTQNCmBgYA0KDQpgYGB7cn0NCmE1IDwtIGVbZSRZIDw1MCAmIGUkWDIgPD0yMDAwLF0NCmE1DQpgYGANCg0KYGBge3J9DQphNSA8LSBlW2UkQ1QgPT0nV0VTVCd8IGUkWDMgPj0gNTAsXQ0KYTUNCmBgYA0KDQpgYGB7cn0NCnN0cihlKQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZChlLDQpDQpgYGANCg0KYGBge3J9DQp0YWlsKGUsNykNCmBgYA0KDQpgYGB7cn0NCmE2IDwtIGVbZSRDVCA9PSdHRScsXQ0KYTYNCmBgYA0KDQoNCmBgYHtyfQ0KYTcgPC0gZVtlJENUICE9ICdXRVNUJyxdDQphNw0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQppIDwtIGlyaXMNCmkxIDwtIGZpbHRlcihpLFNlcGFsLkxlbmd0aCA+NXxTcGVjaWVzPT0nc2V0b3NhJykNCmkxDQpgYGANCg0KYGBge3J9DQppMiA8LSBpICU+JSBmaWx0ZXIoUGV0YWwuV2lkdGggPj0gMS41fFNwZWNpZXMgPT0gJ3ZpcmdpbmljYScpDQppMg0KYGBgDQoNCmBgYHtyfQ0KaTMgPC0gaSAlPiUgc2VsZWN0KFNlcGFsLkxlbmd0aCwgUGV0YWwuV2lkdGgsIFNwZWNpZXMpDQppMw0KYGBgDQoNCmBgYHtyfQ0KaTQgPC0gaSAlPiUgZmlsdGVyKFBldGFsLkxlbmd0aCA8M3wgU3BlY2llcyA9PSd2ZXJzaWNvbG9yJykgJT4lIHNlbGVjdChTZXBhbC5MZW5ndGgsUGV0YWwuV2lkdGgsU3BlY2llcykNCmk0DQpgYGANCg0KIyMgVOG6oW8gZOG7ryBsaeG7h3UgbeG7m2kgdOG7qyBk4buvIGxp4buHdSBjw7Mgc+G6tW4NCg0KYGBge3J9DQp3IDwtIHdvbWVuDQp0aWNoIDwtIHckaGVpZ2h0K3ckd2VpZ2h0DQp0aWNoDQpgYGANCg0KYGBge3J9DQpzcXJ0ID0gc3FydCh0aWNoKQ0Kc3FydA0KYGBgDQoNCmBgYHtyfQ0KdzEgPC0gdyAlPiUgbXV0YXRlKHNxcnQpDQp3MQ0KYGBgDQoNCiMjIEzhuqV5IGThu68gbGnhu4d1IHThu6sgV29ybGQgQmFuaw0KDQpgYGB7cn0NCmxpYnJhcnkoV0RJKQ0KaW5kIDwtIFdESXNlYXJjaCgnVG90YWwgcmVzZXJ2ZXMnKQ0KaW5kDQpgYGANCg0KYGBge3J9DQppbmQxIDwtIFdESShpbmRpY2F0b3IgPSAnRkkuUkVTLlRPVEwuTU8nLCBjb3VudHJ5ID0gYygnVk4nKSwgZXh0cmEgPSBUKQ0KaW5kMQ0KYGBgDQoNCmBgYHtyfQ0Kc2UgPC0gaW5kMSAlPiUgc2VsZWN0KHllYXIsRkkuUkVTLlRPVEwuTU8pDQpzZQ0KYGBgDQoNCmBgYHtyfQ0KbmEgPC0gbmEub21pdChzZSkNCm5hDQpgYGANCg0KYGBge3J9DQpuYW1lcyhuYSkgPC0gYygneWVhcicsJ0R1VHJ1JykNCm5hDQpgYGANCg0KIyBOSEnhu4ZNIFbhu6QgMi4yDQoNCiMjIMSQ4buNYyBk4buvIGxp4buHdSB04burIGZpbGUgQ1ZTDQoNCk3hu6VjIMSRw61jaCBj4bunYSB2aeG7h2MgxJHhu41jIGThu68gbGnhu4d1IGzDoCB0xrDGoW5nIHTDoWMgduG7m2kgY8ahIHPhu58gZOG7ryBsaeG7h3UgxJHhu4MgcGjDom4gdMOtY2gsIHRydXkgduG6pW4gdsOgIGPhuq1wIG5o4bqtdCB0aMO0bmcgdGluLg0KxJDhu4MgxJHhu41jIGThu68gbGnhu4d1IHThu6sgZmlsZSBDU1YgdsOgbyBSIE1hcmtkb3duLCB0YSBz4butIGThu6VuZyBs4buHbmggKipyZWFkLmNzdigpKiogdsOgIHRo4buxYyBoaeG7h24gbmjGsCB2w60gZOG7pSBzYXUgKiphYmMgPC0gcmVhZC54bHN4KGZpbGUgPSAnLi9kYXRhL2FiYy54bHN4JykqKiBob+G6t2MgKiphYmMgPC0gcmVhZC5jc3YoZmlsZS5jaG9vc2UoKSwgaGVhZGVyID0gVCkqKg0KDQpgYGB7cn0NCkNvdmlkIDwtIHJlYWQuY3N2KGZpbGUuY2hvb3NlKCksIGhlYWRlciA9IFQpDQpgYGANCg0KIyMgUsO6dCB0csOtY2ggZOG7ryBsaeG7h3UNCg0KUsO6dCB0csOtY2ggZOG7ryBsaeG7h3UgbMOgIGLGsOG7m2MgcXVhbiB0cuG7jW5nIHRyb25nIHF1w6EgdHLDrG5oIHBow6JuIHTDrWNoIGThu68gbGnhu4d1LiBWaeG7h2MgbsOgeSBnacO6cCBs4bqtcCB0csOsbmggdmnDqm4gdsOgIG5ow6AgcGjDom4gdMOtY2ggZOG7ryBsaeG7h3UgdHLDrWNoIHh14bqldCB0aMO0bmcgdGluIHF1YW4gdHLhu41uZyB04burIHThuq1wIGThu68gbGnhu4d1IGzhu5tuIMSR4buDIHTDrG0gcmEgY8OhYyBtw7QgaMOsbmgsIHh1IGjGsOG7m25nLCB2w6AgdGjDtG5nIHRpbiBo4buvdSDDrWNoLiANCg0KIyMjIMSQ4buVaSB0w6puIGNobyBjw6FjIGJp4bq/bg0KDQpM4buHbmggKipuYW1lcygpKiogxJHGsOG7o2Mgc+G7rSBk4bulbmcgxJHhu4MgxJHhurd0IHTDqm4gY2hvIGPDoWMgdGjDoG5oIHBo4bqnbiAoY+G7mXQpIGPhu6dhIG3hu5l0IMSR4buRaSB0xrDhu6NuZyBuaMawIG3hu5l0IHZlY3RvciwgbeG7mXQgZGFuaCBzw6FjaCAobGlzdCksIGhv4bq3YyBt4buZdCBkYXRhIGZyYW1lLiBWaeG7h2MgxJHhu5VpIHTDqm4gY2hvIGPDoWMgYmnhur9uIGdpw7pwIG5nxrDhu51pIGzhuq1wIHRyw6xuaCDEkeG7jWMgaGnhu4N1IGThu4UgZMOgbmcsIGdp4bqjbSBz4buxIG5o4bqnbSBs4bqrbiwgdOG7kWkgxrB1IGhp4buHdSBzdeG6pXQuDQoNCsSQ4buDIMSR4buVaSB0w6puIGJp4bq/biwgdGEgdGjhu7FjIGhp4buHbiAqKm5hbWVzKHZpZHUpIDwtIGMoJ0EnLCdCJywnQycpKioNCg0KYGBge3J9DQpuYW1lcyhDb3ZpZCkgPC0gYygnRCcsJ0wnLCdOQycsJ05EJywnVEMnLCdXQycsJ1dEJywnQkMnLCdCRCcpDQpuYW1lcyhDb3ZpZCkNCmBgYA0KDQojIyMgUsO6dCB0csOtY2ggZOG7ryBsaeG7h3UNCg0KKiBLaGkgY+G6p24gbOG6pXkgcmEgbeG7mXQgZ2nDoSB0cuG7iyBj4bulIHRo4buDIG7DoG8gxJHDsyB0YSBkw7luZyBs4buHbmggKip2ZCA8LSB2aWR1WzEwLDNdKioNCg0KYGBge3J9DQp2ZDEgPC0gQ292aWRbMjYsMl0NCnZkMQ0KYGBgDQoNCuG7niB2w60gZOG7pSB0csOqbiB0YSDEkcOjIHLDunQgdHLDrWNoIHF1YW4gc8OhdCBz4buRICoqMjYqKiB2w6AgYmnhur9uIHPhu5EgKioyKiosIGvhur90IHF14bqjIHRodSDEkcaw4bujYyBnacOhIHRy4buLIGzDoCAqKl8iQWZnaGFuaXN0YW4iXyoqDQoNCg0KKiBLaGkgY+G6p24gbOG6pXkgcmEgbeG7mXQgYmnhur9uIChj4buZdCkgY+G7pSB0aOG7gyBuw6BvIMSRw7MgdGEgZMO5bmcgbOG7h25oICoqQSA8LSB2aWR1JEEqKg0KDQpgYGB7cn0NCk5DIDwtIENvdmlkJG5ld19jYXNlcw0KYGBgDQogDQrhu54gdsOtIGThu6UgbsOgeSB0YSByw7p0IHRyw61jaCBj4buZdCAqbmV3X2Nhc2VzKg0KDQoNCiogUsO6dCB0csOtY2ggbmhp4buBdSBow6BuZyAocXVhbiBzw6F0KSBraMO0bmcgdGhlbyB0aOG7qSB04buxIHRoZW8gbOG7h25oICoqdmQgPC0gdmlkdVtjKDMsNSw3LDIxKSxdKioNCg0KYGBge3J9DQp2ZDIgPC0gQ292aWRbYygyLDUsMTIsNTUsNjYsMTEyLDEyNjIpLF0NCnZkMg0KYGBgDQoNCiogUsO6dCB0csOtY2ggcXVhbiBzw6F0IHbDoCBiaeG6v24gdGhlbyBs4buHbmggdmQzIDwtIHZpZHVbYyg1LDksNTUsMTgwKSxjKDUsNyldDQoNCmBgYHtyfQ0KdmQzIDwtIENvdmlkW2MoMyw1LDkwLDQ0NiksYyg0LDcpXQ0KdmQzDQpgYGANCg0KKiBSw7p0IHRyw61jaCBjw6FjIHF1YW4gc8OhdCB24bubaSBjw6FjIMSRaeG7gXUga2nhu4duICoqdmQgPC0gdmlkdVt2aWR1JEEgPj0xICZ2aWR1JEEgIDw9MTAsXSoqIGhv4bq3YyAqKnZkIDwtIHZpZHVbdmlkdSRBID09IDJ8dmlkdSRBID09IDgsXSoqIGhv4bq3YyAqKnZkIDwtIHZpZHVbdmlkdSRBICE9ICdhYmMnLF0NCg0KYGBge3J9DQp2ZDQgPC0gQ292aWRbQ292aWQkd2Vla2x5X2Nhc2VzID49IDY1MDAgJiBDb3ZpZCRiaXdlZWtseV9kZWF0aHMgPD0gNTAsXQ0KdmQ0DQpgYGANCg0KYGBge3J9DQp2ZDUgPC0gQ292aWRbQ292aWQkbG9jYXRpb24gPT0gJ1ppbWJhYndlJyB8IENvdmlkJHRvdGFsX2RlYXRocyA8PSA1MCxdDQp2ZDUNCmBgYA0KDQpgYGB7cn0NCnZpZHU2IDwtIENvdmlkW0NvdmlkJGxvY2F0aW9uICE9ICdBZmdoYW5pc3RhbicmIENvdmlkJG5ld19jYXNlcyA8PSAxMCxdDQp2aWR1Ng0KYGBgDQoNCsSQaeG7g20ga2jDoWMgbmhhdSBnaeG7r2EgY8OhY2PDoWMgbOG7h25oIG7DoHkgbMOgICoqJyYnKiosICoqJ3wnKiogdsOgICoqJyE9JyoqDQoNCiAxLiAqKl8nJidfKiogY8OzIG5naMSpYSBsw6AgdsOgDQogDQogMi4gKipfJ3wnXyoqIGPDsyBuZ2jEqWEgbMOgIGhv4bq3Yw0KIA0KIDMuICoqXychPSdfKiogY8OzIG5naMSpYSBsw6Aga2jDoWMNCiANCiANCiogWMOhYyDEkeG7i25oIHPhu5EgY8OhYyBxdWFuIHPDoXQgdsOgIGJp4bq/biAqKnN0cih2aWR1KSoqDQoNCmBgYHtyfQ0Kc3RyKENvdmlkKQ0KYGBgDQoNCiogTOG6pXkgY8OhYyBxdWFuIHPDoXQgxJHhuqd1IHRpw6puICoqaGVhZCh2aWR1LDcpKioNCg0KYGBge3J9DQpoZWFkKENvdmlkLDEwKQ0KYGBgDQoNCiogTOG6pXkgY8OhYyBxdWFuIHPDoXQgY3Xhu5FpIGPDuW5nICoqdGFpbCh2aWR1LDgpKioNCg0KYGBge3J9DQp0YWlsKENvdmlkLDEwKQ0KYGBgDQoNCiMjIFThuqFvIGThu68gbGnhu4d1IG3hu5tpIHThu6sgZOG7ryBsaeG7h3UgY8OzIHPhurVuDQoNCmBgYHtyfQ0Kcm93X2luZGljZXMgPC0gYygyOiA2NjYpDQp0b25nIDwtIHJvd1N1bXMoQ292aWRbcm93X2luZGljZXMsIDM6bmNvbChDb3ZpZCldKQ0KdG9uZw0KYGBgDQoNCuG7niBjaHVuayB0csOqbiBkw7luZyDEkeG7gyB0w61uaCB04buVbmcgY8OhYyBxdWFuIHPDoXQgYuG6sW5nIGzhu4duaCAqdG9uZyA8LSByb3dTdW1zKHZpZHVbcm93X2luZGljZXMsIDM6bmNvbCh2aWR1KV0pKiwgY8OhYyBxdWFuIHPDoXQgxJHGsOG7o2MgdMOtbmggdOG7qyBiaeG6v24gdGjhu6kgMyDEkeG6v24gYmnhur9uIGN14buRaSBjw7luZy4NCg0KKipyb3dfaW5kaWNlcyA8LSBjKDI6IDY2NikqKiBsw6AgY2jhu4kgc+G7kSBj4bunYSBjw6FjIHF1YW4gc8OhdCBtdeG7kW4gdMOtbmggdOG7lW5nLCBj4bulIHRo4buDIGzDoCB04burDQpxdWFuIHPDoXQgdGjhu6kgMiDEkeG6v24gcXVhbiBzw6F0IHRo4bupIDY2Ng0KDQoNCg==