1 Nhiệm vụ 2.1

1.1 Tóm tắt

Thao tác một số lệnh cơ bản và rút trích dữ liệu trên file excel “bwt_co_dieu_chinh.xlsx”, file này phân tích Trọng lượng lúc sinh của phụ nữ từ năm 1925 - 2004 thông qua các tiêu chí

  • id: Khu vực (có 8 khu vực)

  • year: Năm lấy số liệu

  • bwt: Trọng lượng lúc sinh (tính bằng ounces, 1 ounce = 28.3495 gram)

  • gestation: Thời gian mang thai (tính bằng ngày)

  • parity: Số lần sinh (có hai giá trị, 1 = sinh lần đầu, 0 = không phải lần đầu)

  • age: Tuổi của mẹ

  • height: Chiều cao của mẹ (tính bằng inches, 1 inch = 2.54 cm)

  • weight: Cân nặng của bà mẹ khi mang thai (tính bằng pounds, 1 pound = 0.453592 kg)

  • smoke: Hút thuốc lúc mang thai (1 = có, 0 = không)

File này có 9 cột tưởng đương với 9 biến

Có 640 hàng tương đương với 640 quan sát

1.2 Đọc dữ liệu từ file excel

#Để vừa chạy dữ liệu, vừa hiển thị chữ ta nhấn tổ hợp phím Ctrl+Alt+I sau đó nhập {r message=TRUE, warning=FALSE}

#Load gói xlsx bằng câu lệnh
library(xlsx)

#Gán dữ liệu của file excel vào object bwt, sau đó đọc dữ liệu từ file excel bằng câu lệnh
bwt <- read.xlsx(file.choose(), sheetIndex = 1, header = T) #SheetIndex = 1 là lấy dữ liệu từ sheet 1 của file excel, header = T là lấy dữ liệu từ dòng đầu tiên của file excel 

1.3 Thông tin tổng quan và mở rộng của bộ dữ liệu

#Kiểm tra bwt có phải là khung dữ liệu hay không bằng câu lệnh
is.data.frame(bwt) #True chứng tỏ bwt là khung dữ liệu, False thì ngược lại
## [1] TRUE
#Hiển thị số cột của bwt bằng câu lệnh
length(bwt)
## [1] 9
#Hiển thị tên các cột của bwt bằng câu lệnh 
names(bwt)
## [1] "id"        "year"      "bwt"       "gestation" "parity"    "age"      
## [7] "height"    "weight"    "smoke"
#Hiển thị số hàng và số cột của bwt bằng câu lệnh
dim(bwt)
## [1] 640   9
#Hiển thị 10 dòng đầu tiên của bwt bằng câu lệnh 
head(bwt, 15)
##    id year bwt gestation parity age height weight smoke
## 1   1 1925 120       284      0  27     62    100     0
## 2   2 1925 112       267      1  22     62    138     0
## 3   3 1925 119       286      0  26     64    123     1
## 4   4 1925 124       287      0  27     62    105     1
## 5   5 1925 105       276      0  22     67    130     0
## 6   6 1925 120       289      1  31     59    102     0
## 7   7 1925  82       274      0  31     64    101     1
## 8   8 1925 111       278      0  29     65    145     1
## 9   1 1926 113       282      0  33     64    135     0
## 10  2 1926 134       297      0  27     67    170     1
## 11  3 1926  97       279      0  29     68    178     1
## 12  4 1926 125       292      0  22     65    122     0
## 13  5 1926  93       246      0  37     65    130     0
## 14  6 1926 146       280      0  23     61    145     0
## 15  7 1926 100       274      0  24     63    113     0
#Hiển thị 10 dòng cuối cùng của bwt bằng câu lệnh 
tail(bwt, 15)
##     id year bwt gestation parity age height weight smoke
## 626  2 2003 158       295      1  37     70    137     0
## 627  3 2003  78       258      1  24     66    115     1
## 628  4 2003 133       292      0  30     65    112     1
## 629  5 2003 140       251      0  28     63    210     0
## 630  6 2003 114       286      1  22     64    116     1
## 631  7 2003 100       264      0  29     64    120     1
## 632  8 2003 123       277      0  24     66    122     0
## 633  1 2004 139       292      0  25     68    135     0
## 634  2 2004 112       275      1  21     68    143     1
## 635  3 2004 114       289      0  36     60    115     0
## 636  4 2004 110       277      0  25     61    130     0
## 637  5 2004 120       271      1  17     64    142     1
## 638  6 2004 110       280      0  29     62    110     1
## 639  7 2004 160       271      0  32     67    215     0
## 640  8 2004 100       281      0  24     61    115     0
#Hiển thị cấu trúc của bwt bằng câu lệnh 
str(bwt)
## 'data.frame':    640 obs. of  9 variables:
##  $ id       : num  1 2 3 4 5 6 7 8 1 2 ...
##  $ year     : num  1925 1925 1925 1925 1925 ...
##  $ bwt      : num  120 112 119 124 105 120 82 111 113 134 ...
##  $ gestation: num  284 267 286 287 276 289 274 278 282 297 ...
##  $ parity   : num  0 1 0 0 0 1 0 0 0 0 ...
##  $ age      : num  27 22 26 27 22 31 31 29 33 27 ...
##  $ height   : num  62 62 64 62 67 59 64 65 64 67 ...
##  $ weight   : num  100 138 123 105 130 102 101 145 135 170 ...
##  $ smoke    : num  0 0 1 1 0 0 1 1 0 1 ...
 #dùng để tạo ra một bảng tóm tắt các thông tin cơ bản về bwt
library(skimr) 
skim(bwt)
Data summary
Name bwt
Number of rows 640
Number of columns 9
_______________________
Column type frequency:
numeric 9
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
id 0 1 4.50 2.29 1 2.75 4.5 6.25 8 ▇▃▇▃▇
year 0 1 1964.50 23.11 1925 1944.75 1964.5 1984.25 2004 ▇▇▇▇▇
bwt 0 1 118.89 18.14 55 107.75 120.0 131.00 169 ▁▂▇▆▁
gestation 0 1 279.33 15.80 181 273.00 280.0 288.00 351 ▁▁▇▅▁
parity 0 1 0.31 0.46 0 0.00 0.0 1.00 1 ▇▁▁▁▃
age 0 1 27.28 5.86 15 23.00 26.0 31.00 45 ▃▇▅▂▁
height 0 1 64.10 2.50 53 62.00 64.0 66.00 71 ▁▁▅▇▁
weight 0 1 128.22 19.49 87 115.00 126.0 137.00 217 ▃▇▃▁▁
smoke 0 1 0.40 0.49 0 0.00 0.0 1.00 1 ▇▁▁▁▆

Giải thích ý nghĩa:

  • n_missing: số ô dữ liệu bị miss(trống)

  • complete_rate: tỷ lệ ô có dữ liệu

  • mean: trung bình

  • sd: độ lệch chuẩn

  • p0: giá trị nhỏ nhất

  • p25: Phân vị thứ nhất

  • p50: Phân vị thứ hai cũng chính là trung vị

  • p75: phân vị thứ ba

  • p100: giá trị lớn nhất

  • hist: biểu đồ Histogram ## Kiểm tra tính hoàn chỉnh của dữ liệu

# để tìm ô trống trong bwt dùng
is.na(bwt)
##           id  year   bwt gestation parity   age height weight smoke
##   [1,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##   [2,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##   [3,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##   [4,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##   [5,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##   [6,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##   [7,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##   [8,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##   [9,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [10,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [11,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [12,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [13,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [14,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [15,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [16,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [17,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [18,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [19,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [20,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [21,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [22,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [23,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [24,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [25,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [26,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [27,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [28,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [29,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [30,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [31,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [32,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [33,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [34,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [35,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [36,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [37,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [38,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [39,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [40,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [41,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [42,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [43,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [44,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [45,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [46,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [47,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [48,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [49,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [50,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [51,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [52,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [53,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [54,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [55,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [56,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [57,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [58,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [59,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [60,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [61,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [62,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [63,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [64,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [65,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [66,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [67,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [68,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [69,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [70,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [71,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [72,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [73,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [74,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [75,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [76,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [77,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [78,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [79,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [80,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [81,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [82,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [83,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [84,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [85,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [86,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [87,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [88,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [89,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [90,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [91,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [92,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [93,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [94,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [95,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [96,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [97,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [98,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
##  [99,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [100,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [101,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [102,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [103,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [104,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [105,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [106,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [107,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [108,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [109,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [110,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [111,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [112,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [113,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [114,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [115,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [116,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [117,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [118,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [119,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [120,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [121,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [122,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [123,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [124,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [125,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [126,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [127,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [128,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [129,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [130,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [131,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [132,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [133,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [134,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [135,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [136,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [137,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [138,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [139,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [140,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [141,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [142,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [143,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [144,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [145,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [146,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [147,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [148,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [149,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [150,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [151,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [152,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [153,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [154,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [155,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [156,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [157,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [158,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [159,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [160,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [161,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [162,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [163,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [164,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [165,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [166,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [167,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [168,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [169,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [170,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [171,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [172,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [173,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [174,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [175,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [176,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [177,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [178,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [179,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [180,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [181,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [182,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [183,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [184,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [185,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [186,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [187,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [188,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [189,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [190,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [191,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [192,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [193,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [194,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [195,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [196,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [197,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [198,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [199,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [200,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [201,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [202,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [203,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [204,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [205,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [206,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [207,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [208,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [209,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [210,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [211,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [212,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [213,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [214,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [215,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [216,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [217,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [218,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [219,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [220,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [221,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [222,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [223,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [224,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [225,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [226,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [227,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [228,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [229,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [230,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [231,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [232,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [233,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [234,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [235,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [236,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [237,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [238,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [239,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [240,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [241,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [242,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [243,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [244,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [245,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [246,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [247,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [248,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [249,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [250,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [251,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [252,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [253,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [254,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [255,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [256,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [257,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [258,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [259,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [260,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [261,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [262,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [263,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [264,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [265,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [266,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [267,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [268,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [269,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [270,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [271,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [272,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [273,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [274,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [275,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [276,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [277,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [278,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [279,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [280,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [281,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [282,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [283,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [284,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [285,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [286,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [287,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [288,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [289,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [290,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [291,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [292,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [293,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [294,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [295,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [296,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [297,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [298,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [299,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [300,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [301,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [302,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [303,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [304,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [305,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [306,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [307,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [308,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [309,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [310,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [311,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [312,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [313,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [314,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [315,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [316,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [317,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [318,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [319,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [320,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [321,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [322,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [323,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [324,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [325,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [326,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [327,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [328,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [329,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [330,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [331,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [332,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [333,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [334,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [335,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [336,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [337,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [338,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [339,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [340,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [341,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [342,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [343,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [344,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [345,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [346,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [347,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [348,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [349,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [350,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [351,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [352,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [353,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [354,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [355,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [356,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [357,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [358,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [359,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [360,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [361,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [362,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [363,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [364,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [365,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [366,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [367,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [368,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [369,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [370,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [371,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [372,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [373,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [374,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [375,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [376,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [377,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [378,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [379,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [380,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [381,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [382,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [383,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [384,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [385,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [386,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [387,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [388,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [389,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [390,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [391,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [392,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [393,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [394,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [395,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [396,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [397,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [398,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [399,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [400,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [401,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [402,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [403,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [404,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [405,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [406,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [407,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [408,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [409,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [410,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [411,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [412,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [413,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [414,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [415,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [416,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [417,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [418,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [419,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [420,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [421,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [422,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [423,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [424,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [425,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [426,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [427,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [428,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [429,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [430,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [431,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [432,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [433,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [434,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [435,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [436,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [437,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [438,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [439,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [440,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [441,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [442,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [443,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [444,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [445,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [446,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [447,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [448,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [449,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [450,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [451,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [452,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [453,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [454,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [455,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [456,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [457,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [458,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [459,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [460,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [461,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [462,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [463,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [464,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [465,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [466,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [467,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [468,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [469,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [470,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [471,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [472,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [473,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [474,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [475,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [476,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [477,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [478,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [479,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [480,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [481,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [482,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [483,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [484,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [485,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [486,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [487,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [488,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [489,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [490,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [491,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [492,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [493,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [494,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [495,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [496,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [497,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [498,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [499,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [500,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [501,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [502,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [503,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [504,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [505,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [506,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [507,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [508,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [509,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [510,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [511,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [512,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [513,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [514,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [515,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [516,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [517,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [518,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [519,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [520,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [521,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [522,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [523,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [524,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [525,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [526,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [527,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [528,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [529,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [530,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [531,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [532,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [533,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [534,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [535,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [536,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [537,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [538,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [539,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [540,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [541,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [542,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [543,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [544,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [545,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [546,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [547,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [548,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [549,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [550,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [551,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [552,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [553,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [554,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [555,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [556,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [557,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [558,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [559,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [560,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [561,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [562,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [563,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [564,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [565,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [566,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [567,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [568,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [569,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [570,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [571,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [572,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [573,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [574,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [575,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [576,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [577,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [578,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [579,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [580,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [581,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [582,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [583,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [584,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [585,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [586,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [587,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [588,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [589,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [590,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [591,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [592,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [593,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [594,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [595,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [596,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [597,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [598,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [599,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [600,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [601,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [602,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [603,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [604,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [605,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [606,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [607,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [608,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [609,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [610,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [611,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [612,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [613,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [614,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [615,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [616,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [617,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [618,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [619,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [620,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [621,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [622,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [623,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [624,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [625,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [626,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [627,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [628,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [629,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [630,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [631,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [632,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [633,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [634,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [635,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [636,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [637,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [638,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [639,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
## [640,] FALSE FALSE FALSE     FALSE  FALSE FALSE  FALSE  FALSE FALSE
# để xác định tổng các ô trống trong bwt dùng
sum(is.na(bwt))
## [1] 0
# tìm vị trí ô trrongs trong bwt dùng
which(is.na(bwt))
## integer(0)

1.4 Rút trích dữ liệu

Để rút trích dữ liệu ta có thể thực hiện các câu lệnh sau

#Đổi tên các biến của bwt bằng câu lệnh 
names(bwt) <- c('I','Y','B','G','P','A','H','W','S')
names(bwt)
## [1] "I" "Y" "B" "G" "P" "A" "H" "W" "S"
#Gán a cho giá trị của hàng 7 và cột 5 của bwt bằng câu lệnh
a <- bwt[7,5]
str(a)
##  num 0
#Gán H cho toàn bộ giá trị của cột height của bwt bằng câu lệnh
H <- bwt$H
str(H)
##  num [1:640] 62 62 64 62 67 59 64 65 64 67 ...
#Gán b cho toàn bộ giá trị của cột year và tất cả các hàng của bwt bằng câu lệnh 
b <- bwt[ ,2]
str(b)
##  num [1:640] 1925 1925 1925 1925 1925 ...
#Gán c cho giá trị của hàng 4 và tất cả các cột của bwt bằng câu lệnh
c <- bwt[4, ]
str(c)
## 'data.frame':    1 obs. of  9 variables:
##  $ I: num 4
##  $ Y: num 1925
##  $ B: num 124
##  $ G: num 287
##  $ P: num 0
##  $ A: num 27
##  $ H: num 62
##  $ W: num 105
##  $ S: num 1
#Gán bwt1 cho giá trị của cột id và cột bwt và tất cả các hàng của bwt bằng câu lệnh 
bwt1 <- bwt[ ,c(1,3)]
str(bwt1)
## 'data.frame':    640 obs. of  2 variables:
##  $ I: num  1 2 3 4 5 6 7 8 1 2 ...
##  $ B: num  120 112 119 124 105 120 82 111 113 134 ...
#Gán bwt2 cho giá trị từ hàng 3 đến hàng 9 và tất cả các cột của bwt bằng câu lệnh 
bwt2 <- bwt[3:9, ]
str(bwt2)
## 'data.frame':    7 obs. of  9 variables:
##  $ I: num  3 4 5 6 7 8 1
##  $ Y: num  1925 1925 1925 1925 1925 ...
##  $ B: num  119 124 105 120 82 111 113
##  $ G: num  286 287 276 289 274 278 282
##  $ P: num  0 0 0 1 0 0 0
##  $ A: num  26 27 22 31 31 29 33
##  $ H: num  64 62 67 59 64 65 64
##  $ W: num  123 105 130 102 101 145 135
##  $ S: num  1 1 0 0 1 1 0
#Gán bwt3 cho giá trị của các hàng 3,5,7,21 và tất cả các cột của bwt bằng câu lệnh 
bwt3 <- bwt[c(3,5,7,21), ] 
str(bwt3)
## 'data.frame':    4 obs. of  9 variables:
##  $ I: num  3 5 7 5
##  $ Y: num  1925 1925 1925 1927
##  $ B: num  119 105 82 122
##  $ G: num  286 276 274 281
##  $ P: num  0 0 0 0
##  $ A: num  26 22 31 42
##  $ H: num  64 67 64 63
##  $ W: num  123 130 101 103
##  $ S: num  1 0 1 1
#Gán bwt4 cho giá trị của hàng 2,3,6,18 và cột 2,3 của bwt bằng câu lệnh 
bwt4 <- bwt[c(2,3,6,18), c(2,3)]
str(bwt4)
## 'data.frame':    4 obs. of  2 variables:
##  $ Y: num  1925 1925 1925 1927
##  $ B: num  112 119 120 145
#Gán bwt5 cho giá trị các hàng height có dữ liệu >= 65 và tất cả các cột của bwt bằng câu lệnh 
bwt5  <- bwt[bwt$H >= 65, ]
str(bwt5)
## 'data.frame':    292 obs. of  9 variables:
##  $ I: num  5 8 2 3 4 5 4 1 2 3 ...
##  $ Y: num  1925 1925 1926 1926 1926 ...
##  $ B: num  105 111 134 97 125 93 110 108 116 115 ...
##  $ G: num  276 278 297 279 292 246 262 282 295 264 ...
##  $ P: num  0 0 0 0 0 0 0 0 0 1 ...
##  $ A: num  22 29 27 29 22 37 25 23 32 23 ...
##  $ H: num  67 65 67 68 65 65 66 67 65 67 ...
##  $ W: num  130 145 170 178 122 130 140 125 120 134 ...
##  $ S: num  0 1 1 1 0 0 0 1 0 1 ...
#Gán bwt6 cho giá trị của các hàng height >= 60 và <= 65 và tất cả các cột của bwt bằng câu lệnh
bwt6 <- bwt[bwt$H >= 60 & bwt$H <= 65, ]
str(bwt6)
## 'data.frame':    428 obs. of  9 variables:
##  $ I: num  1 2 3 4 7 8 1 4 5 6 ...
##  $ Y: num  1925 1925 1925 1925 1925 ...
##  $ B: num  120 112 119 124 82 111 113 125 93 146 ...
##  $ G: num  284 267 286 287 274 278 282 292 246 280 ...
##  $ P: num  0 1 0 0 0 0 0 0 0 0 ...
##  $ A: num  27 22 26 27 31 29 33 22 37 23 ...
##  $ H: num  62 62 64 62 64 65 64 65 65 61 ...
##  $ W: num  100 138 123 105 101 145 135 122 130 145 ...
##  $ S: num  0 0 1 1 1 1 0 0 0 0 ...
#Gán bwt7 cho giá trị của hàng height 66 hoặc giá trị của hàng 67 và tất cả các cột của bwt bằng câu lệnh 
bwt7 <- bwt[bwt$H == 66 | bwt$H == 67, ]
str(bwt7)
## 'data.frame':    154 obs. of  9 variables:
##  $ I: num  5 2 4 1 3 5 8 4 6 4 ...
##  $ Y: num  1925 1926 1927 1928 1928 ...
##  $ B: num  105 134 110 108 115 130 169 142 128 102 ...
##  $ G: num  276 297 262 282 264 296 296 284 292 280 ...
##  $ P: num  0 0 0 0 1 1 0 0 0 0 ...
##  $ A: num  22 27 25 23 23 22 33 39 32 38 ...
##  $ H: num  67 67 66 67 67 66 67 66 66 67 ...
##  $ W: num  130 170 140 125 134 117 185 132 130 140 ...
##  $ S: num  0 1 0 1 1 1 0 0 0 0 ...

1.5 Rút trích dữ liệu với filter và select

Để rút trích dữ liệu với filter và select ta có thể thực hiện các câu lệnh sau

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
#Gán bwt8 để trích dữ liệu year >= 1925 và weight <= 150 bằng câu lệnh 
bwt8 <- filter(bwt, bwt$Y >= 1925 & bwt$W <= 150) 
str(bwt8)
## 'data.frame':    575 obs. of  9 variables:
##  $ I: num  1 2 3 4 5 6 7 8 1 4 ...
##  $ Y: num  1925 1925 1925 1925 1925 ...
##  $ B: num  120 112 119 124 105 120 82 111 113 125 ...
##  $ G: num  284 267 286 287 276 289 274 278 282 292 ...
##  $ P: num  0 1 0 0 0 1 0 0 0 0 ...
##  $ A: num  27 22 26 27 22 31 31 29 33 22 ...
##  $ H: num  62 62 64 62 67 59 64 65 64 65 ...
##  $ W: num  100 138 123 105 130 102 101 145 135 122 ...
##  $ S: num  0 0 1 1 0 0 1 1 0 0 ...
#Gán bwt9 để lấy 3 cột year, age, height 
bwt9 <- select(bwt,Y,A,H)
str(bwt9)
## 'data.frame':    640 obs. of  3 variables:
##  $ Y: num  1925 1925 1925 1925 1925 ...
##  $ A: num  27 22 26 27 22 31 31 29 33 27 ...
##  $ H: num  62 62 64 62 67 59 64 65 64 67 ...
#Gán bwt10 để trích dữ liệu age>27, weight>150 và chỉ lấy 5 cột id, year, bwt, age, weight   
bwt10 <- filter(bwt, A>27 & W>150) %>% select(I,Y,B,A,W)
str(bwt10)
## 'data.frame':    41 obs. of  5 variables:
##  $ I: num  3 8 1 2 3 3 4 5 4 1 ...
##  $ Y: num  1926 1929 1930 1933 1933 ...
##  $ B: num  97 169 138 136 89 129 127 116 119 114 ...
##  $ A: num  29 33 33 41 34 43 35 40 42 30 ...
##  $ W: num  178 185 178 191 170 160 165 159 156 154 ...

1.6 Tạo dữ liệu mới từ dữ liệu cũ

Để Tạo dữ liệu mới từ dữ liệu cũ ta có thể thực hiện các câu lệnh sau

#Gán bwt11 để thêm cột chiều cao với đơn vị là cm và cân nặng với đơn vị là kg 
bwt11 <- mutate(bwt, cm = H*2.54) %>% mutate( ,kg=W*0.453592) 
str(bwt11)
## 'data.frame':    640 obs. of  11 variables:
##  $ I : num  1 2 3 4 5 6 7 8 1 2 ...
##  $ Y : num  1925 1925 1925 1925 1925 ...
##  $ B : num  120 112 119 124 105 120 82 111 113 134 ...
##  $ G : num  284 267 286 287 276 289 274 278 282 297 ...
##  $ P : num  0 1 0 0 0 1 0 0 0 0 ...
##  $ A : num  27 22 26 27 22 31 31 29 33 27 ...
##  $ H : num  62 62 64 62 67 59 64 65 64 67 ...
##  $ W : num  100 138 123 105 130 102 101 145 135 170 ...
##  $ S : num  0 0 1 1 0 0 1 1 0 1 ...
##  $ cm: num  157 157 163 157 170 ...
##  $ kg: num  45.4 62.6 55.8 47.6 59 ...

1.7 Mã hóa dữ liệu

Để mã hóa dữ liệu ta có thể thực hiện các câu lệnh sau

#Thêm một cột xác định cân nặng có đạt tiêu chuẩn hay không
bwt11$cannang <- ifelse(bwt11$kg >= 58.5,'đạt tiêu chuẩn', 'không đạt tiêu chuẩn') #nếu cột kg có giá trị >= 58.5 thì cột cân nặng sẽ có giá trị là đạt tiêu chuẩn và ngược lại
str(bwt11)
## 'data.frame':    640 obs. of  12 variables:
##  $ I      : num  1 2 3 4 5 6 7 8 1 2 ...
##  $ Y      : num  1925 1925 1925 1925 1925 ...
##  $ B      : num  120 112 119 124 105 120 82 111 113 134 ...
##  $ G      : num  284 267 286 287 276 289 274 278 282 297 ...
##  $ P      : num  0 1 0 0 0 1 0 0 0 0 ...
##  $ A      : num  27 22 26 27 22 31 31 29 33 27 ...
##  $ H      : num  62 62 64 62 67 59 64 65 64 67 ...
##  $ W      : num  100 138 123 105 130 102 101 145 135 170 ...
##  $ S      : num  0 0 1 1 0 0 1 1 0 1 ...
##  $ cm     : num  157 157 163 157 170 ...
##  $ kg     : num  45.4 62.6 55.8 47.6 59 ...
##  $ cannang: chr  "không đạt tiêu chuẩn" "đạt tiêu chuẩn" "không đạt tiêu chuẩn" "không đạt tiêu chuẩn" ...

2 Nhiệm vụ 2.2

2.1 Tóm tắt

Thao tác một số lệnh cơ bản và rút trích dữ liệu trên file excel ‘data2.xlsl’ ,file này phân tích thu nhập của người Mỹ

  • Age : tuổi

  • Workclass : lớp học nghề

  • education : giáo dục

  • educational-num : số giáo dục

  • marital-status : tình trạng hôn nhân

  • occupation : nghề nghiệp

  • relationship : mối quan hệ

  • gender : giới tính

  • capital-gain : tăng vốn

  • hours-per-week: giờ làm mỗi tuần

  • native-country: quốc gia

  • income : thu nhập

File này có 12 cột tưởng đương với 12 biến

Có 1211 hàng tương đương với 1211 quan sát

2.2 Đọc dữ liệu từ file excel

#Để vừa chạy dữ liệu, vừa hiển thị chữ ta nhấn tổ hợp phím Ctrl+Alt+I sau đó nhập {r message=TRUE, warning=FALSE}

#Load gói xlsx bằng câu lệnh
library(xlsx)

#Gán dữ liệu của file excel vào object data2, sau đó đọc dữ liệu từ file excel bằng câu lệnh
data2 <- read.xlsx(file.choose(), sheetIndex = 1, header = T)  

2.3 Thông tin tổng quan và mở rộng của bộ dữ liệu

#Kiểm tra bwt có phải là khung dữ liệu hay không bằng câu lệnh
is.data.frame(data2) #True chứng tỏ data2 là khung dữ liệu, False thì ngược lại
## [1] TRUE
#Hiển thị số cột của data2 bằng câu lệnh
length(data2)
## [1] 14
#Hiển thị tên các cột của data2 bằng câu lệnh 
names(data2)
##  [1] "age"             "workclass"       "education"       "educational.num"
##  [5] "marital.status"  "occupation"      "relationship"    "race"           
##  [9] "gender"          "capital.gain"    "capital.loss"    "hours.per.week" 
## [13] "native.country"  "income"
#Hiển thị số hàng và số cột của data2 bằng câu lệnh
dim(data2)
## [1] 1210   14
#Hiển thị 10 dòng đầu tiên của data2 bằng câu lệnh 
head(bwt, 10)
##    I    Y   B   G P  A  H   W S
## 1  1 1925 120 284 0 27 62 100 0
## 2  2 1925 112 267 1 22 62 138 0
## 3  3 1925 119 286 0 26 64 123 1
## 4  4 1925 124 287 0 27 62 105 1
## 5  5 1925 105 276 0 22 67 130 0
## 6  6 1925 120 289 1 31 59 102 0
## 7  7 1925  82 274 0 31 64 101 1
## 8  8 1925 111 278 0 29 65 145 1
## 9  1 1926 113 282 0 33 64 135 0
## 10 2 1926 134 297 0 27 67 170 1
#Hiển thị 10 dòng cuối cùng của data2 bằng câu lệnh 
tail(data2, 10)
##      age workclass    education educational.num     marital.status
## 1201  20   Private Some-college              10      Never-married
## 1202  49   Private         10th               6      Never-married
## 1203  31   Private  Prof-school              15 Married-civ-spouse
## 1204  41   Private Some-college              10      Never-married
## 1205  35   Private      HS-grad               9 Married-civ-spouse
## 1206  20         ? Some-college              10      Never-married
## 1207  35   Private    Assoc-voc              11 Married-civ-spouse
## 1208  46   Private      Masters              14           Divorced
## 1209  35   Private      HS-grad               9           Divorced
## 1210  21   Private Some-college              10      Never-married
##             occupation  relationship  race gender capital.gain capital.loss
## 1201             Sales     Own-child White Female          594            0
## 1202 Machine-op-inspct Not-in-family Black Female            0            0
## 1203    Prof-specialty       Husband White   Male            0            0
## 1204             Sales Not-in-family White   Male            0            0
## 1205   Exec-managerial       Husband White   Male            0            0
## 1206                 ?     Own-child White   Male            0            0
## 1207      Craft-repair       Husband White   Male         4386            0
## 1208   Exec-managerial     Unmarried White Female            0            0
## 1209 Machine-op-inspct     Unmarried White Female            0            0
## 1210      Tech-support     Own-child White   Male            0            0
##      hours.per.week native.country income
## 1201             24  United-States  <=50K
## 1202             40  United-States  <=50K
## 1203             50  United-States   >50K
## 1204             40  United-States  <=50K
## 1205             60  United-States   >50K
## 1206             30  United-States  <=50K
## 1207             42  United-States   >50K
## 1208              8  United-States  <=50K
## 1209             60  United-States  <=50K
## 1210             20  United-States  <=50K
#Hiển thị cấu trúc của bwt bằng câu lệnh 
str(data2)
## 'data.frame':    1210 obs. of  14 variables:
##  $ age            : num  25 38 28 44 18 34 29 63 24 55 ...
##  $ workclass      : chr  "Private" "Private" "Local-gov" "Private" ...
##  $ education      : chr  "11th" "HS-grad" "Assoc-acdm" "Some-college" ...
##  $ educational.num: num  7 9 12 10 10 6 9 15 10 4 ...
##  $ marital.status : chr  "Never-married" "Married-civ-spouse" "Married-civ-spouse" "Married-civ-spouse" ...
##  $ occupation     : chr  "Machine-op-inspct" "Farming-fishing" "Protective-serv" "Machine-op-inspct" ...
##  $ relationship   : chr  "Own-child" "Husband" "Husband" "Husband" ...
##  $ race           : chr  "Black" "White" "White" "Black" ...
##  $ gender         : chr  "Male" "Male" "Male" "Male" ...
##  $ capital.gain   : num  0 0 0 7688 0 ...
##  $ capital.loss   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ hours.per.week : num  40 50 40 40 30 30 40 32 40 10 ...
##  $ native.country : chr  "United-States" "United-States" "United-States" "United-States" ...
##  $ income         : chr  "<=50K" "<=50K" ">50K" ">50K" ...
 #dùng để tạo ra một bảng tóm tắt các thông tin cơ bản về data2
library(skimr) 
skim(data2)
Data summary
Name data2
Number of rows 1210
Number of columns 14
_______________________
Column type frequency:
character 9
numeric 5
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
workclass 0 1 1 16 0 7 0
education 0 1 3 12 0 16 0
marital.status 0 1 7 21 0 7 0
occupation 0 1 1 17 0 15 0
relationship 0 1 4 14 0 6 0
race 0 1 5 18 0 5 0
gender 0 1 4 6 0 2 0
native.country 0 1 1 18 0 31 0
income 0 1 4 5 0 2 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age 0 1 38.54 13.75 17 27 37 48 90 ▇▇▅▂▁
educational.num 0 1 10.00 2.70 1 9 10 13 16 ▁▂▇▃▁
capital.gain 0 1 1588.03 9815.22 0 0 0 0 99999 ▇▁▁▁▁
capital.loss 0 1 86.87 400.45 0 0 0 0 3004 ▇▁▁▁▁
hours.per.week 0 1 40.62 12.29 1 40 40 45 99 ▁▇▃▁▁

Giải thích ý nghĩa:

  • n_missing: số ô dữ liệu bị miss(trống)

  • complete_rate: tỷ lệ ô có dữ liệu

  • mean: trung bình

  • sd: độ lệch chuẩn

  • p0: giá trị nhỏ nhất

  • p25: Phân vị thứ nhất

  • p50: Phân vị thứ hai cũng chính là trung vị

  • p75: phân vị thứ ba

  • p100: giá trị lớn nhất

  • hist: biểu đồ Histogram

2.4 Kiểm tra tính hoàn chỉnh của dữ liệu

# để tìm ô trống trong bwt dùng
is.na(bwt)
##            I     Y     B     G     P     A     H     W     S
##   [1,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [2,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [3,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [4,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [5,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [6,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [7,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [8,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [9,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [10,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [11,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [12,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [13,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [14,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [15,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [16,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [17,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [18,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [19,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [20,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [21,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [22,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [23,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [24,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [25,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [26,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [27,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [28,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [29,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [30,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [31,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [32,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [33,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [34,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [35,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [36,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [37,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [38,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [39,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [40,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [41,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [42,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [43,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [44,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [45,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [46,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [47,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [48,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [49,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [50,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [51,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [52,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [53,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [54,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [55,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [56,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [57,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [58,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [59,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [60,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [61,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [62,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [63,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [64,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [65,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [66,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [67,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [68,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [69,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [70,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [71,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [72,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [73,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [74,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [75,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [76,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [77,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [78,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [79,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [80,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [81,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [82,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [83,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [84,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [85,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [86,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [87,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [88,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [89,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [90,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [91,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [92,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [93,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [94,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [95,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [96,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [97,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [98,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [99,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [100,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [101,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [102,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [103,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [104,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [105,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [106,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [107,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [108,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [110,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [111,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [112,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [113,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [114,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [115,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [116,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [117,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [118,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [119,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [120,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [122,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [123,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [124,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [125,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [126,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [127,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [128,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [129,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [130,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [131,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [132,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [134,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [135,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [136,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [137,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [138,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [139,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [140,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [141,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [142,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [143,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [144,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [146,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [147,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [148,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [149,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [150,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [151,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [152,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [153,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [154,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [155,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [156,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [157,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [158,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [159,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [160,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [161,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [162,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [163,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [164,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [165,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [166,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [167,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [168,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [169,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [170,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [171,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [172,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [173,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [174,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [175,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [176,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [177,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [178,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [179,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [180,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [181,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [182,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [183,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [184,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [185,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [186,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [187,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [188,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [189,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [190,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [191,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [192,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [193,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [194,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [195,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [196,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [197,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [198,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [199,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [200,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [201,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [202,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [203,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [204,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [205,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [206,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [207,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [208,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [209,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [210,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [211,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [212,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [213,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [214,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [215,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [216,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [217,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [218,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [219,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [220,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [221,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [222,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [223,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [224,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [225,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [226,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [227,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [228,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [229,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [230,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [231,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [232,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [233,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [234,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [235,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [236,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [237,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [238,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [239,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [240,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [241,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [242,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [243,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [244,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [245,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [246,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [247,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [248,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [249,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [250,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [251,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [252,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [253,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [254,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [255,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [256,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [257,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [258,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [259,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [260,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [261,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [262,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [263,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [264,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [265,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [266,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [267,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [268,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [269,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [270,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [271,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [272,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [273,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [274,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [275,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [276,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [277,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [278,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [279,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [280,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [281,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [282,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [283,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [284,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [285,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [286,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [287,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [288,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [289,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [290,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [291,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [292,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [293,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [294,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [295,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [296,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [297,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [298,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [299,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [300,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [301,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [302,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [303,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [304,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [305,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [306,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [307,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [308,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [309,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [310,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [311,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [312,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [313,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [314,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [315,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [316,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [317,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [318,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [319,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [320,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [321,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [322,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [323,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [324,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [325,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [326,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [327,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [328,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [329,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [330,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [331,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [332,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [333,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [334,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [335,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [336,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [337,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [338,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [339,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [340,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [341,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [342,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [343,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [344,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [345,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [346,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [347,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [348,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [349,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [350,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [351,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [352,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [353,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [354,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [355,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [356,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [357,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [358,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [359,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [360,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [361,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [362,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [363,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [364,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [365,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [366,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [367,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [368,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [369,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [370,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [371,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [372,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [373,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [374,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [375,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [376,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [377,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [378,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [379,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [380,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [381,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [382,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [383,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [384,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [385,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [386,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [387,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [388,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [389,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [390,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [391,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [392,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [393,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [394,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [395,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [396,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [397,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [398,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [399,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [400,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [401,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [402,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [403,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [404,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [405,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [406,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [407,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [408,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [409,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [410,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [411,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [412,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [413,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [414,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [415,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [416,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [417,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [418,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [419,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [420,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [421,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [422,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [423,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [424,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [425,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [426,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [427,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [428,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [429,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [430,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [431,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [432,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [433,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [434,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [435,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [436,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [437,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [438,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [439,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [440,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [441,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [442,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [443,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [444,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [445,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [446,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [447,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [448,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [449,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [450,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [451,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [452,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [453,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [454,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [455,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [456,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [457,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [458,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [459,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [460,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [461,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [462,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [463,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [464,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [465,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [466,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [467,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [468,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [469,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [470,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [471,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [472,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [473,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [474,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [475,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [476,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [477,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [478,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [479,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [480,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [481,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [482,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [483,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [484,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [485,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [486,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [487,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [488,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [489,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [490,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [491,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [492,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [493,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [494,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [495,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [496,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [497,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [498,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [499,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [500,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [501,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [502,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [503,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [504,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [505,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [506,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [507,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [508,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [509,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [510,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [511,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [512,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [513,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [514,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [515,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [516,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [517,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [518,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [519,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [520,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [521,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [522,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [523,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [524,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [525,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [526,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [527,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [528,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [529,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [530,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [531,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [532,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [533,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [534,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [535,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [536,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [537,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [538,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [539,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [540,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [541,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [542,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [543,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [544,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [545,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [546,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [547,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [548,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [549,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [550,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [551,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [552,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [553,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [554,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [555,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [556,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [557,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [558,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [559,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [560,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [561,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [562,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [563,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [564,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [565,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [566,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [567,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [568,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [569,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [570,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [571,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [572,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [573,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [574,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [575,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [576,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [577,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [578,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [579,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [580,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [581,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [582,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [583,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [584,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [585,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [586,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [587,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [588,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [589,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [590,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [591,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [592,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [593,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [594,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [595,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [596,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [597,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [598,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [599,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [600,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [601,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [602,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [603,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [604,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [605,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [606,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [607,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [608,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [609,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [610,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [611,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [612,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [613,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [614,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [615,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [616,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [617,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [618,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [619,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [620,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [621,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [622,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [623,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [624,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [625,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [626,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [627,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [628,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [629,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [630,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [631,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [632,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [633,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [634,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [635,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [636,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [637,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [638,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [639,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [640,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
# để xác định tổng các ô trống trong bwt dùng
sum(is.na(bwt))
## [1] 0
# tìm vị trí ô trrongs trong bwt dùng
which(is.na(bwt))
## integer(0)

2.5 Rút trích dữ liệu

Để rút trích dữ liệu ta có thể thực hiện các câu lệnh sau

#Đổi tên các biến của data2 bằng câu lệnh 
names(data2) <- c('A','Wo','Ed','Edn','Ms','Oc','Re','Ge','cg','Hp','Nc','In','Na')
names(data2)
##  [1] "A"   "Wo"  "Ed"  "Edn" "Ms"  "Oc"  "Re"  "Ge"  "cg"  "Hp"  "Nc"  "In" 
## [13] "Na"  NA
#Gán a để hiển thị giá trị của hàng 5 và cột 3 của data2 bằng câu lệnh
a <- data2[5,3]
str(a)
##  chr "Some-college"
#Gán T để hiển thị toàn bộ giá trị của cột age  của data2 bằng câu lệnh
T <- data2$A
str(T)
##  num [1:1210] 25 38 28 44 18 34 29 63 24 55 ...
#Gán b để hiển thị toàn bộ giá trị của cột marital-status

b <- data2[ ,5]
str(b)
##  chr [1:1210] "Never-married" "Married-civ-spouse" "Married-civ-spouse" ...
#Gán c để hiển thị giá trị của hàng 4 và tất cả các cột của data2 bằng câu lệnh
c <- data2[4, ]
str(c)
## 'data.frame':    1 obs. of  14 variables:
##  $ A  : num 44
##  $ Wo : chr "Private"
##  $ Ed : chr "Some-college"
##  $ Edn: num 10
##  $ Ms : chr "Married-civ-spouse"
##  $ Oc : chr "Machine-op-inspct"
##  $ Re : chr "Husband"
##  $ Ge : chr "Black"
##  $ cg : chr "Male"
##  $ Hp : num 7688
##  $ Nc : num 0
##  $ In : num 40
##  $ Na : chr "United-States"
##  $ NA : chr ">50K"
#Gán data21 cho giá trị của cột workclass và education

data21 <- data2[ ,c(2,3)]
str(data21)
## 'data.frame':    1210 obs. of  2 variables:
##  $ Wo: chr  "Private" "Private" "Local-gov" "Private" ...
##  $ Ed: chr  "11th" "HS-grad" "Assoc-acdm" "Some-college" ...
#Gán data22 cho giá trị từ hàng 3 đến hàng 9 
data22 <- data2[3:9, ]
str(data22)
## 'data.frame':    7 obs. of  14 variables:
##  $ A  : num  28 44 18 34 29 63 24
##  $ Wo : chr  "Local-gov" "Private" "?" "Private" ...
##  $ Ed : chr  "Assoc-acdm" "Some-college" "Some-college" "10th" ...
##  $ Edn: num  12 10 10 6 9 15 10
##  $ Ms : chr  "Married-civ-spouse" "Married-civ-spouse" "Never-married" "Never-married" ...
##  $ Oc : chr  "Protective-serv" "Machine-op-inspct" "?" "Other-service" ...
##  $ Re : chr  "Husband" "Husband" "Own-child" "Not-in-family" ...
##  $ Ge : chr  "White" "Black" "White" "White" ...
##  $ cg : chr  "Male" "Male" "Female" "Male" ...
##  $ Hp : num  0 7688 0 0 0 ...
##  $ Nc : num  0 0 0 0 0 0 0
##  $ In : num  40 40 30 30 40 32 40
##  $ Na : chr  "United-States" "United-States" "United-States" "United-States" ...
##  $ NA : chr  ">50K" ">50K" "<=50K" "<=50K" ...
#Gán data23 cho giá trị của các hàng 3,5,7,21 
data23 <- data2[c(3,5,7,21), ] 
str(data23)
## 'data.frame':    4 obs. of  14 variables:
##  $ A  : num  28 18 29 34
##  $ Wo : chr  "Local-gov" "?" "?" "Private"
##  $ Ed : chr  "Assoc-acdm" "Some-college" "HS-grad" "Bachelors"
##  $ Edn: num  12 10 9 13
##  $ Ms : chr  "Married-civ-spouse" "Never-married" "Never-married" "Married-civ-spouse"
##  $ Oc : chr  "Protective-serv" "?" "?" "Tech-support"
##  $ Re : chr  "Husband" "Own-child" "Unmarried" "Husband"
##  $ Ge : chr  "White" "White" "Black" "White"
##  $ cg : chr  "Male" "Female" "Male" "Male"
##  $ Hp : num  0 0 0 0
##  $ Nc : num  0 0 0 0
##  $ In : num  40 30 40 47
##  $ Na : chr  "United-States" "United-States" "United-States" "United-States"
##  $ NA : chr  ">50K" "<=50K" "<=50K" ">50K"
#Gán data24 cho giá trị của hàng 2,3,6,18 và cột 2,3 
data24 <- data2[c(2,3,6,18), c(2,3)]
str(data24)
## 'data.frame':    4 obs. of  2 variables:
##  $ Wo: chr  "Private" "Local-gov" "Private" "Private"
##  $ Ed: chr  "HS-grad" "Assoc-acdm" "10th" "HS-grad"
#Gán data25 để hiển thị gía trị Private của workclass

data25  <- data2[data2$Wo == 'Private', ]
str(data25)
## 'data.frame':    810 obs. of  14 variables:
##  $ A  : num  25 38 44 34 24 55 65 26 48 43 ...
##  $ Wo : chr  "Private" "Private" "Private" "Private" ...
##  $ Ed : chr  "11th" "HS-grad" "Some-college" "10th" ...
##  $ Edn: num  7 9 10 6 10 4 9 9 9 14 ...
##  $ Ms : chr  "Never-married" "Married-civ-spouse" "Married-civ-spouse" "Never-married" ...
##  $ Oc : chr  "Machine-op-inspct" "Farming-fishing" "Machine-op-inspct" "Other-service" ...
##  $ Re : chr  "Own-child" "Husband" "Husband" "Not-in-family" ...
##  $ Ge : chr  "Black" "White" "Black" "White" ...
##  $ cg : chr  "Male" "Male" "Male" "Male" ...
##  $ Hp : num  0 0 7688 0 0 ...
##  $ Nc : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ In : num  40 50 40 30 40 10 40 39 48 50 ...
##  $ Na : chr  "United-States" "United-States" "United-States" "United-States" ...
##  $ NA : chr  "<=50K" "<=50K" ">50K" "<=50K" ...
#Gán data26 để hiển thị giá trị của age >= 15 và <= 43 
data26 <- data2[data2$A >= 15 & data2$A <= 43, ]
str(data26)
## 'data.frame':    795 obs. of  14 variables:
##  $ A  : num  25 38 28 18 34 29 24 36 26 43 ...
##  $ Wo : chr  "Private" "Private" "Local-gov" "?" ...
##  $ Ed : chr  "11th" "HS-grad" "Assoc-acdm" "Some-college" ...
##  $ Edn: num  7 9 12 10 6 9 10 13 9 14 ...
##  $ Ms : chr  "Never-married" "Married-civ-spouse" "Married-civ-spouse" "Never-married" ...
##  $ Oc : chr  "Machine-op-inspct" "Farming-fishing" "Protective-serv" "?" ...
##  $ Re : chr  "Own-child" "Husband" "Husband" "Own-child" ...
##  $ Ge : chr  "Black" "White" "White" "White" ...
##  $ cg : chr  "Male" "Male" "Male" "Female" ...
##  $ Hp : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Nc : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ In : num  40 50 40 30 30 40 40 40 39 50 ...
##  $ Na : chr  "United-States" "United-States" "United-States" "United-States" ...
##  $ NA : chr  "<=50K" "<=50K" ">50K" "<=50K" ...
#Gán data27 để hiển thị giá trị của age = 16 hoặc = 43 
data27 <- data2[data2$A == 16 | data2$A == 43, ]
str(data27)
## 'data.frame':    21 obs. of  14 variables:
##  $ A  : num  43 43 43 43 43 43 43 43 43 43 ...
##  $ Wo : chr  "Private" "Private" "Private" "Private" ...
##  $ Ed : chr  "Masters" "HS-grad" "HS-grad" "HS-grad" ...
##  $ Edn: num  14 9 9 9 13 9 10 15 10 9 ...
##  $ Ms : chr  "Married-civ-spouse" "Married-civ-spouse" "Married-civ-spouse" "Separated" ...
##  $ Oc : chr  "Exec-managerial" "Adm-clerical" "Sales" "Machine-op-inspct" ...
##  $ Re : chr  "Husband" "Wife" "Husband" "Not-in-family" ...
##  $ Ge : chr  "White" "White" "White" "White" ...
##  $ cg : chr  "Male" "Female" "Male" "Female" ...
##  $ Hp : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Nc : num  0 0 0 0 0 ...
##  $ In : num  50 30 48 44 40 45 60 25 70 40 ...
##  $ Na : chr  "United-States" "United-States" "United-States" "United-States" ...
##  $ NA : chr  ">50K" "<=50K" "<=50K" "<=50K" ...

2.6 Rút trích dữ liệu với filter và select

Để rút trích dữ liệu với filter và select ta có thể thực hiện các câu lệnh sau

library(dplyr)

#Gán data29 để lấy 4 cột age, workclass, education,occupation

data29 <- select(data2, A,Wo,Ed,Oc)
str(data29)
## 'data.frame':    1210 obs. of  4 variables:
##  $ A : num  25 38 28 44 18 34 29 63 24 55 ...
##  $ Wo: chr  "Private" "Private" "Local-gov" "Private" ...
##  $ Ed: chr  "11th" "HS-grad" "Assoc-acdm" "Some-college" ...
##  $ Oc: chr  "Machine-op-inspct" "Farming-fishing" "Protective-serv" "Machine-op-inspct" ...
LS0tDQp0aXRsZTogIk5oaeG7h20gduG7pSAyIg0KYXV0aG9yOiAibmhoYW8iDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy50aW1lKCksICclSDolTTolUywgJWQgLSAlbSAtICVZJylgIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIHRoZW1lOiAiZGVmYXVsdCINCiAgICB0b2NfZGVwdGg6IDINCiAgICB0b2NfZmxvYXQ6IHRydWUNCiAgICB0b2M6IHRydWUNCiAgd29yZF9kb2N1bWVudDoNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZGVwdGg6ICcyJw0KICBwZGZfZG9jdW1lbnQ6IA0KICAgIGxhdGV4X2VuZ2luZTogeGVsYXRleA0KLS0tDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQ0KYGBgDQoNCiMgTmhp4buHbSB24bulIDIuMSANCg0KIyMgVMOzbSB04bqvdA0KVGhhbyB0w6FjIG3hu5l0IHPhu5EgbOG7h25oIGPGoSBi4bqjbiB2w6AgcsO6dCB0csOtY2ggZOG7ryBsaeG7h3UgdHLDqm4gZmlsZSBleGNlbCAiYnd0X2NvX2RpZXVfY2hpbmgueGxzeCIsIGZpbGUgbsOgeSBwaMOibiB0w61jaCBUcuG7jW5nIGzGsOG7o25nIGzDumMgc2luaCBj4bunYSBwaOG7pSBu4buvIHThu6sgbsSDbSAxOTI1IC0gMjAwNCB0aMO0bmcgcXVhIGPDoWMgdGnDqnUgY2jDrSANCg0KICAtIGlkOiBLaHUgduG7sWMgKGPDsyA4IGtodSB24buxYykNCg0KICAtIHllYXI6IE7Eg20gbOG6pXkgc+G7kSBsaeG7h3UNCg0KICAtIGJ3dDogIFRy4buNbmcgbMaw4bujbmcgbMO6YyBzaW5oICh0w61uaCBi4bqxbmcgb3VuY2VzLCAxIG91bmNlID0gMjguMzQ5NSBncmFtKQ0KDQogIC0gZ2VzdGF0aW9uOiAgVGjhu51pIGdpYW4gbWFuZyB0aGFpICh0w61uaCBi4bqxbmcgbmfDoHkpDQoNCiAgLSBwYXJpdHk6ICBT4buRIGzhuqduIHNpbmggKGPDsyBoYWkgZ2nDoSB0cuG7iywgMSA9IHNpbmggbOG6p24gxJHhuqd1LCAwID0ga2jDtG5nIHBo4bqjaSBs4bqnbiDEkeG6p3UpDQoNCiAgLSBhZ2U6ICBUdeG7lWkgY+G7p2EgbeG6uQ0KDQogIC0gaGVpZ2h0OiAgQ2hp4buBdSBjYW8gY+G7p2EgbeG6uSAodMOtbmggYuG6sW5nIGluY2hlcywgMSBpbmNoID0gMi41NCBjbSkNCg0KICAtIHdlaWdodDogIEPDom4gbuG6t25nIGPhu6dhIGLDoCBt4bq5IGtoaSBtYW5nIHRoYWkgKHTDrW5oIGLhurFuZyBwb3VuZHMsIDEgcG91bmQgPSAwLjQ1MzU5MiBrZykNCg0KICAtIHNtb2tlOiAgSMO6dCB0aHXhu5FjIGzDumMgbWFuZyB0aGFpICgxID0gY8OzLCAwID0ga2jDtG5nKQ0KICANCkZpbGUgbsOgeSBjw7MgOSBj4buZdCB0xrDhu59uZyDEkcawxqFuZyB24bubaSA5IGJp4bq/bg0KDQpDw7MgNjQwIGjDoG5nIHTGsMahbmcgxJHGsMahbmcgduG7m2kgNjQwIHF1YW4gc8OhdA0KDQojIyDEkOG7jWMgZOG7ryBsaeG7h3UgdOG7qyBmaWxlIGV4Y2VsIA0KYGBge3IgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPUZBTFNFfQ0KI8SQ4buDIHbhu6thIGNo4bqheSBk4buvIGxp4buHdSwgduG7q2EgaGnhu4NuIHRo4buLIGNo4buvIHRhIG5o4bqlbiB04buVIGjhu6NwIHBow61tIEN0cmwrQWx0K0kgc2F1IMSRw7Mgbmjhuq1wIHtyIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1GQUxTRX0NCg0KI0xvYWQgZ8OzaSB4bHN4IGLhurFuZyBjw6J1IGzhu4duaA0KbGlicmFyeSh4bHN4KQ0KDQojR8OhbiBk4buvIGxp4buHdSBj4bunYSBmaWxlIGV4Y2VsIHbDoG8gb2JqZWN0IGJ3dCwgc2F1IMSRw7MgxJHhu41jIGThu68gbGnhu4d1IHThu6sgZmlsZSBleGNlbCBi4bqxbmcgY8OidSBs4buHbmgNCmJ3dCA8LSByZWFkLnhsc3goZmlsZS5jaG9vc2UoKSwgc2hlZXRJbmRleCA9IDEsIGhlYWRlciA9IFQpICNTaGVldEluZGV4ID0gMSBsw6AgbOG6pXkgZOG7ryBsaeG7h3UgdOG7qyBzaGVldCAxIGPhu6dhIGZpbGUgZXhjZWwsIGhlYWRlciA9IFQgbMOgIGzhuqV5IGThu68gbGnhu4d1IHThu6sgZMOybmcgxJHhuqd1IHRpw6puIGPhu6dhIGZpbGUgZXhjZWwgDQpgYGANCg0KIyMgVGjDtG5nIHRpbiB04buVbmcgcXVhbiB2w6AgbeG7nyBy4buZbmcgY+G7p2EgYuG7mSBk4buvIGxp4buHdQ0KYGBge3IgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPUZBTFNFfQ0KI0tp4buDbSB0cmEgYnd0IGPDsyBwaOG6o2kgbMOgIGtodW5nIGThu68gbGnhu4d1IGhheSBraMO0bmcgYuG6sW5nIGPDonUgbOG7h25oDQppcy5kYXRhLmZyYW1lKGJ3dCkgI1RydWUgY2jhu6luZyB04buPIGJ3dCBsw6Aga2h1bmcgZOG7ryBsaeG7h3UsIEZhbHNlIHRow6wgbmfGsOG7o2MgbOG6oWkNCg0KI0hp4buDbiB0aOG7iyBz4buRIGPhu5l0IGPhu6dhIGJ3dCBi4bqxbmcgY8OidSBs4buHbmgNCmxlbmd0aChid3QpDQoNCiNIaeG7g24gdGjhu4sgdMOqbiBjw6FjIGPhu5l0IGPhu6dhIGJ3dCBi4bqxbmcgY8OidSBs4buHbmggDQpuYW1lcyhid3QpDQoNCiNIaeG7g24gdGjhu4sgc+G7kSBow6BuZyB2w6Agc+G7kSBj4buZdCBj4bunYSBid3QgYuG6sW5nIGPDonUgbOG7h25oDQpkaW0oYnd0KQ0KDQojSGnhu4NuIHRo4buLIDEwIGTDsm5nIMSR4bqndSB0acOqbiBj4bunYSBid3QgYuG6sW5nIGPDonUgbOG7h25oIA0KaGVhZChid3QsIDE1KQ0KDQojSGnhu4NuIHRo4buLIDEwIGTDsm5nIGN14buRaSBjw7luZyBj4bunYSBid3QgYuG6sW5nIGPDonUgbOG7h25oIA0KdGFpbChid3QsIDE1KQ0KDQojSGnhu4NuIHRo4buLIGPhuqV1IHRyw7pjIGPhu6dhIGJ3dCBi4bqxbmcgY8OidSBs4buHbmggDQpzdHIoYnd0KQ0KICNkw7luZyDEkeG7gyB04bqhbyByYSBt4buZdCBi4bqjbmcgdMOzbSB04bqvdCBjw6FjIHRow7RuZyB0aW4gY8ahIGLhuqNuIHbhu4EgYnd0DQpsaWJyYXJ5KHNraW1yKSANCnNraW0oYnd0KQ0KYGBgIA0KDQpHaeG6o2kgdGjDrWNoIMO9IG5naMSpYTogDQoNCi0gbl9taXNzaW5nOiBz4buRIMO0IGThu68gbGnhu4d1IGLhu4sgbWlzcyh0cuG7kW5nKQ0KDQotIGNvbXBsZXRlX3JhdGU6IHThu7cgbOG7hyDDtCBjw7MgZOG7ryBsaeG7h3UNCg0KLSBtZWFuOiB0cnVuZyBiw6xuaA0KDQotIHNkOiDEkeG7mSBs4buHY2ggY2h14bqpbg0KDQotIHAwOiBnacOhIHRy4buLIG5o4buPIG5o4bqldA0KDQotIHAyNTogUGjDom4gduG7iyB0aOG7qSBuaOG6pXQNCg0KLSBwNTA6IFBow6JuIHbhu4sgdGjhu6kgaGFpIGPFqW5nIGNow61uaCBsw6AgdHJ1bmcgduG7iw0KDQotIHA3NTogcGjDom4gduG7iyB0aOG7qSBiYQ0KDQotIHAxMDA6IGdpw6EgdHLhu4sgbOG7m24gbmjhuqV0DQoNCi0gaGlzdDogYmnhu4N1IMSR4buTIEhpc3RvZ3JhbQ0KIyMgS2nhu4NtIHRyYSB0w61uaCBob8OgbiBjaOG7iW5oIGPhu6dhIGThu68gbGnhu4d1DQpgYGB7ciBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9RkFMU0V9DQojIMSR4buDIHTDrG0gw7QgdHLhu5FuZyB0cm9uZyBid3QgZMO5bmcNCmlzLm5hKGJ3dCkNCiMgxJHhu4MgeMOhYyDEkeG7i25oIHThu5VuZyBjw6FjIMO0IHRy4buRbmcgdHJvbmcgYnd0IGTDuW5nDQpzdW0oaXMubmEoYnd0KSkNCiMgdMOsbSB24buLIHRyw60gw7QgdHJyb25ncyB0cm9uZyBid3QgZMO5bmcNCndoaWNoKGlzLm5hKGJ3dCkpDQoNCmBgYA0KDQojIyBSw7p0IHRyw61jaCBk4buvIGxp4buHdSANCg0KxJDhu4MgcsO6dCB0csOtY2ggZOG7ryBsaeG7h3UgdGEgY8OzIHRo4buDIHRo4buxYyBoaeG7h24gY8OhYyBjw6J1IGzhu4duaCBzYXUNCg0KYGBge3IgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPUZBTFNFfQ0KI8SQ4buVaSB0w6puIGPDoWMgYmnhur9uIGPhu6dhIGJ3dCBi4bqxbmcgY8OidSBs4buHbmggDQpuYW1lcyhid3QpIDwtIGMoJ0knLCdZJywnQicsJ0cnLCdQJywnQScsJ0gnLCdXJywnUycpDQpuYW1lcyhid3QpDQoNCiNHw6FuIGEgY2hvIGdpw6EgdHLhu4sgY+G7p2EgaMOgbmcgNyB2w6AgY+G7mXQgNSBj4bunYSBid3QgYuG6sW5nIGPDonUgbOG7h25oDQphIDwtIGJ3dFs3LDVdDQpzdHIoYSkNCg0KI0fDoW4gSCBjaG8gdG/DoG4gYuG7mSBnacOhIHRy4buLIGPhu6dhIGPhu5l0IGhlaWdodCBj4bunYSBid3QgYuG6sW5nIGPDonUgbOG7h25oDQpIIDwtIGJ3dCRIDQpzdHIoSCkNCg0KI0fDoW4gYiBjaG8gdG/DoG4gYuG7mSBnacOhIHRy4buLIGPhu6dhIGPhu5l0IHllYXIgdsOgIHThuqV0IGPhuqMgY8OhYyBow6BuZyBj4bunYSBid3QgYuG6sW5nIGPDonUgbOG7h25oIA0KYiA8LSBid3RbICwyXQ0Kc3RyKGIpDQoNCiNHw6FuIGMgY2hvIGdpw6EgdHLhu4sgY+G7p2EgaMOgbmcgNCB2w6AgdOG6pXQgY+G6oyBjw6FjIGPhu5l0IGPhu6dhIGJ3dCBi4bqxbmcgY8OidSBs4buHbmgNCmMgPC0gYnd0WzQsIF0NCnN0cihjKQ0KDQojR8OhbiBid3QxIGNobyBnacOhIHRy4buLIGPhu6dhIGPhu5l0IGlkIHbDoCBj4buZdCBid3QgdsOgIHThuqV0IGPhuqMgY8OhYyBow6BuZyBj4bunYSBid3QgYuG6sW5nIGPDonUgbOG7h25oIA0KYnd0MSA8LSBid3RbICxjKDEsMyldDQpzdHIoYnd0MSkNCg0KI0fDoW4gYnd0MiBjaG8gZ2nDoSB0cuG7iyB04burIGjDoG5nIDMgxJHhur9uIGjDoG5nIDkgdsOgIHThuqV0IGPhuqMgY8OhYyBj4buZdCBj4bunYSBid3QgYuG6sW5nIGPDonUgbOG7h25oIA0KYnd0MiA8LSBid3RbMzo5LCBdDQpzdHIoYnd0MikNCg0KI0fDoW4gYnd0MyBjaG8gZ2nDoSB0cuG7iyBj4bunYSBjw6FjIGjDoG5nIDMsNSw3LDIxIHbDoCB04bqldCBj4bqjIGPDoWMgY+G7mXQgY+G7p2EgYnd0IGLhurFuZyBjw6J1IGzhu4duaCANCmJ3dDMgPC0gYnd0W2MoMyw1LDcsMjEpLCBdIA0Kc3RyKGJ3dDMpDQoNCiNHw6FuIGJ3dDQgY2hvIGdpw6EgdHLhu4sgY+G7p2EgaMOgbmcgMiwzLDYsMTggdsOgIGPhu5l0IDIsMyBj4bunYSBid3QgYuG6sW5nIGPDonUgbOG7h25oIA0KYnd0NCA8LSBid3RbYygyLDMsNiwxOCksIGMoMiwzKV0NCnN0cihid3Q0KQ0KDQojR8OhbiBid3Q1IGNobyBnacOhIHRy4buLIGPDoWMgaMOgbmcgaGVpZ2h0IGPDsyBk4buvIGxp4buHdSA+PSA2NSB2w6AgdOG6pXQgY+G6oyBjw6FjIGPhu5l0IGPhu6dhIGJ3dCBi4bqxbmcgY8OidSBs4buHbmggDQpid3Q1ICA8LSBid3RbYnd0JEggPj0gNjUsIF0NCnN0cihid3Q1KQ0KDQojR8OhbiBid3Q2IGNobyBnacOhIHRy4buLIGPhu6dhIGPDoWMgaMOgbmcgaGVpZ2h0ID49IDYwIHbDoCA8PSA2NSB2w6AgdOG6pXQgY+G6oyBjw6FjIGPhu5l0IGPhu6dhIGJ3dCBi4bqxbmcgY8OidSBs4buHbmgNCmJ3dDYgPC0gYnd0W2J3dCRIID49IDYwICYgYnd0JEggPD0gNjUsIF0NCnN0cihid3Q2KQ0KDQojR8OhbiBid3Q3IGNobyBnacOhIHRy4buLIGPhu6dhIGjDoG5nIGhlaWdodCA2NiBob+G6t2MgZ2nDoSB0cuG7iyBj4bunYSBow6BuZyA2NyB2w6AgdOG6pXQgY+G6oyBjw6FjIGPhu5l0IGPhu6dhIGJ3dCBi4bqxbmcgY8OidSBs4buHbmggDQpid3Q3IDwtIGJ3dFtid3QkSCA9PSA2NiB8IGJ3dCRIID09IDY3LCBdDQpzdHIoYnd0NykNCmBgYA0KDQojIyBSw7p0IHRyw61jaCBk4buvIGxp4buHdSB24bubaSBmaWx0ZXIgdsOgIHNlbGVjdA0KDQrEkOG7gyByw7p0IHRyw61jaCBk4buvIGxp4buHdSB24bubaSBmaWx0ZXIgdsOgIHNlbGVjdCB0YSBjw7MgdGjhu4MgdGjhu7FjIGhp4buHbiBjw6FjIGPDonUgbOG7h25oIHNhdQ0KDQpgYGB7ciBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9RkFMU0V9DQpsaWJyYXJ5KGRwbHlyKQ0KDQojR8OhbiBid3Q4IMSR4buDIHRyw61jaCBk4buvIGxp4buHdSB5ZWFyID49IDE5MjUgdsOgIHdlaWdodCA8PSAxNTAgYuG6sW5nIGPDonUgbOG7h25oIA0KYnd0OCA8LSBmaWx0ZXIoYnd0LCBid3QkWSA+PSAxOTI1ICYgYnd0JFcgPD0gMTUwKSANCnN0cihid3Q4KQ0KDQojR8OhbiBid3Q5IMSR4buDIGzhuqV5IDMgY+G7mXQgeWVhciwgYWdlLCBoZWlnaHQgDQpid3Q5IDwtIHNlbGVjdChid3QsWSxBLEgpDQpzdHIoYnd0OSkNCg0KI0fDoW4gYnd0MTAgxJHhu4MgdHLDrWNoIGThu68gbGnhu4d1IGFnZT4yNywgd2VpZ2h0PjE1MCB2w6AgY2jhu4kgbOG6pXkgNSBj4buZdCBpZCwgeWVhciwgYnd0LCBhZ2UsIHdlaWdodCAgIA0KYnd0MTAgPC0gZmlsdGVyKGJ3dCwgQT4yNyAmIFc+MTUwKSAlPiUgc2VsZWN0KEksWSxCLEEsVykNCnN0cihid3QxMCkNCmBgYA0KDQojIyBU4bqhbyBk4buvIGxp4buHdSBt4bubaSB04burIGThu68gbGnhu4d1IGPFqSANCg0KxJDhu4MgVOG6oW8gZOG7ryBsaeG7h3UgbeG7m2kgdOG7qyBk4buvIGxp4buHdSBjxakgdGEgY8OzIHRo4buDIHRo4buxYyBoaeG7h24gY8OhYyBjw6J1IGzhu4duaCBzYXUgDQoNCmBgYHtyIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1GQUxTRX0NCiNHw6FuIGJ3dDExIMSR4buDIHRow6ptIGPhu5l0IGNoaeG7gXUgY2FvIHbhu5tpIMSRxqFuIHbhu4sgbMOgIGNtIHbDoCBjw6JuIG7hurduZyB24bubaSDEkcahbiB24buLIGzDoCBrZyANCmJ3dDExIDwtIG11dGF0ZShid3QsIGNtID0gSCoyLjU0KSAlPiUgbXV0YXRlKCAsa2c9VyowLjQ1MzU5MikgDQpzdHIoYnd0MTEpDQpgYGANCg0KIyMgTcOjIGjDs2EgZOG7ryBsaeG7h3UNCg0KxJDhu4MgbcOjIGjDs2EgZOG7ryBsaeG7h3UgdGEgY8OzIHRo4buDIHRo4buxYyBoaeG7h24gY8OhYyBjw6J1IGzhu4duaCBzYXUgDQoNCmBgYHtyIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1GQUxTRX0NCiNUaMOqbSBt4buZdCBj4buZdCB4w6FjIMSR4buLbmggY8OibiBu4bq3bmcgY8OzIMSR4bqhdCB0acOqdSBjaHXhuqluIGhheSBraMO0bmcNCmJ3dDExJGNhbm5hbmcgPC0gaWZlbHNlKGJ3dDExJGtnID49IDU4LjUsJ8SR4bqhdCB0acOqdSBjaHXhuqluJywgJ2tow7RuZyDEkeG6oXQgdGnDqnUgY2h14bqpbicpICNu4bq/dSBj4buZdCBrZyBjw7MgZ2nDoSB0cuG7iyA+PSA1OC41IHRow6wgY+G7mXQgY8OibiBu4bq3bmcgc+G6vSBjw7MgZ2nDoSB0cuG7iyBsw6AgxJHhuqF0IHRpw6p1IGNodeG6qW4gdsOgIG5nxrDhu6NjIGzhuqFpDQpzdHIoYnd0MTEpDQpgYGANCiMgTmhp4buHbSB24bulIDIuMg0KDQojIyBUw7NtIHThuq90DQpUaGFvIHTDoWMgbeG7mXQgc+G7kSBs4buHbmggY8ahIGLhuqNuIHbDoCByw7p0IHRyw61jaCBk4buvIGxp4buHdSB0csOqbiBmaWxlIGV4Y2VsICdkYXRhMi54bHNsJyAsZmlsZSBuw6B5IHBow6JuIHTDrWNoIHRodSBuaOG6rXAgY+G7p2EgbmfGsOG7nWkgTeG7uQ0KDQotIEFnZSA6IHR14buVaQ0KDQotIFdvcmtjbGFzcyA6IGzhu5twIGjhu41jIG5naOG7gQ0KDQotIGVkdWNhdGlvbiA6IGdpw6FvIGThu6VjDQoNCi0gZWR1Y2F0aW9uYWwtbnVtIDogc+G7kSBnacOhbyBk4bulYw0KDQotIG1hcml0YWwtc3RhdHVzIDogdMOsbmggdHLhuqFuZyBow7RuIG5ow6JuDQoNCi0gb2NjdXBhdGlvbiA6IG5naOG7gSBuZ2hp4buHcA0KDQotIHJlbGF0aW9uc2hpcCA6IG3hu5FpIHF1YW4gaOG7hw0KDQotIGdlbmRlciA6IGdp4bubaSB0w61uaA0KDQotIGNhcGl0YWwtZ2FpbiA6IHTEg25nIHbhu5FuDQoNCi0gaG91cnMtcGVyLXdlZWs6IGdp4budIGzDoG0gbeG7l2kgdHXhuqduDQoNCi0gbmF0aXZlLWNvdW50cnk6IHF14buRYyBnaWENCg0KLSBpbmNvbWUgOiB0aHUgbmjhuq1wDQoNCkZpbGUgbsOgeSBjw7MgMTIgY+G7mXQgdMaw4bufbmcgxJHGsMahbmcgduG7m2kgMTIgYmnhur9uDQoNCkPDsyAxMjExIGjDoG5nIHTGsMahbmcgxJHGsMahbmcgduG7m2kgMTIxMSBxdWFuIHPDoXQNCg0KIyMgxJDhu41jIGThu68gbGnhu4d1IHThu6sgZmlsZSBleGNlbCANCmBgYHtyIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1GQUxTRX0NCiPEkOG7gyB24burYSBjaOG6oXkgZOG7ryBsaeG7h3UsIHbhu6thIGhp4buDbiB0aOG7iyBjaOG7ryB0YSBuaOG6pW4gdOG7lSBo4bujcCBwaMOtbSBDdHJsK0FsdCtJIHNhdSDEkcOzIG5o4bqtcCB7ciBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9RkFMU0V9DQoNCiNMb2FkIGfDs2kgeGxzeCBi4bqxbmcgY8OidSBs4buHbmgNCmxpYnJhcnkoeGxzeCkNCg0KI0fDoW4gZOG7ryBsaeG7h3UgY+G7p2EgZmlsZSBleGNlbCB2w6BvIG9iamVjdCBkYXRhMiwgc2F1IMSRw7MgxJHhu41jIGThu68gbGnhu4d1IHThu6sgZmlsZSBleGNlbCBi4bqxbmcgY8OidSBs4buHbmgNCmRhdGEyIDwtIHJlYWQueGxzeChmaWxlLmNob29zZSgpLCBzaGVldEluZGV4ID0gMSwgaGVhZGVyID0gVCkgIA0KDQpgYGANCg0KIyMgVGjDtG5nIHRpbiB04buVbmcgcXVhbiB2w6AgbeG7nyBy4buZbmcgY+G7p2EgYuG7mSBk4buvIGxp4buHdQ0KYGBge3IgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPUZBTFNFfQ0KI0tp4buDbSB0cmEgYnd0IGPDsyBwaOG6o2kgbMOgIGtodW5nIGThu68gbGnhu4d1IGhheSBraMO0bmcgYuG6sW5nIGPDonUgbOG7h25oDQppcy5kYXRhLmZyYW1lKGRhdGEyKSAjVHJ1ZSBjaOG7qW5nIHThu48gZGF0YTIgbMOgIGtodW5nIGThu68gbGnhu4d1LCBGYWxzZSB0aMOsIG5nxrDhu6NjIGzhuqFpDQoNCiNIaeG7g24gdGjhu4sgc+G7kSBj4buZdCBj4bunYSBkYXRhMiBi4bqxbmcgY8OidSBs4buHbmgNCmxlbmd0aChkYXRhMikNCg0KI0hp4buDbiB0aOG7iyB0w6puIGPDoWMgY+G7mXQgY+G7p2EgZGF0YTIgYuG6sW5nIGPDonUgbOG7h25oIA0KbmFtZXMoZGF0YTIpDQoNCiNIaeG7g24gdGjhu4sgc+G7kSBow6BuZyB2w6Agc+G7kSBj4buZdCBj4bunYSBkYXRhMiBi4bqxbmcgY8OidSBs4buHbmgNCmRpbShkYXRhMikNCg0KI0hp4buDbiB0aOG7iyAxMCBkw7JuZyDEkeG6p3UgdGnDqm4gY+G7p2EgZGF0YTIgYuG6sW5nIGPDonUgbOG7h25oIA0KaGVhZChid3QsIDEwKQ0KDQojSGnhu4NuIHRo4buLIDEwIGTDsm5nIGN14buRaSBjw7luZyBj4bunYSBkYXRhMiBi4bqxbmcgY8OidSBs4buHbmggDQp0YWlsKGRhdGEyLCAxMCkNCg0KI0hp4buDbiB0aOG7iyBj4bqldSB0csO6YyBj4bunYSBid3QgYuG6sW5nIGPDonUgbOG7h25oIA0Kc3RyKGRhdGEyKQ0KICNkw7luZyDEkeG7gyB04bqhbyByYSBt4buZdCBi4bqjbmcgdMOzbSB04bqvdCBjw6FjIHRow7RuZyB0aW4gY8ahIGLhuqNuIHbhu4EgZGF0YTINCmxpYnJhcnkoc2tpbXIpIA0Kc2tpbShkYXRhMikNCmBgYCANCg0KR2nhuqNpIHRow61jaCDDvSBuZ2jEqWE6IA0KDQotIG5fbWlzc2luZzogc+G7kSDDtCBk4buvIGxp4buHdSBi4buLIG1pc3ModHLhu5FuZykNCg0KLSBjb21wbGV0ZV9yYXRlOiB04bu3IGzhu4cgw7QgY8OzIGThu68gbGnhu4d1DQoNCi0gbWVhbjogdHJ1bmcgYsOsbmgNCg0KLSBzZDogxJHhu5kgbOG7h2NoIGNodeG6qW4NCg0KLSBwMDogZ2nDoSB0cuG7iyBuaOG7jyBuaOG6pXQNCg0KLSBwMjU6IFBow6JuIHbhu4sgdGjhu6kgbmjhuqV0DQoNCi0gcDUwOiBQaMOibiB24buLIHRo4bupIGhhaSBjxaluZyBjaMOtbmggbMOgIHRydW5nIHbhu4sNCg0KLSBwNzU6IHBow6JuIHbhu4sgdGjhu6kgYmENCg0KLSBwMTAwOiBnacOhIHRy4buLIGzhu5tuIG5o4bqldA0KDQotIGhpc3Q6IGJp4buDdSDEkeG7kyBIaXN0b2dyYW0NCg0KIyMgS2nhu4NtIHRyYSB0w61uaCBob8OgbiBjaOG7iW5oIGPhu6dhIGThu68gbGnhu4d1DQpgYGB7ciBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9RkFMU0V9DQojIMSR4buDIHTDrG0gw7QgdHLhu5FuZyB0cm9uZyBid3QgZMO5bmcNCmlzLm5hKGJ3dCkNCiMgxJHhu4MgeMOhYyDEkeG7i25oIHThu5VuZyBjw6FjIMO0IHRy4buRbmcgdHJvbmcgYnd0IGTDuW5nDQpzdW0oaXMubmEoYnd0KSkNCiMgdMOsbSB24buLIHRyw60gw7QgdHJyb25ncyB0cm9uZyBid3QgZMO5bmcNCndoaWNoKGlzLm5hKGJ3dCkpDQoNCmBgYA0KIyMgUsO6dCB0csOtY2ggZOG7ryBsaeG7h3UgDQoNCsSQ4buDIHLDunQgdHLDrWNoIGThu68gbGnhu4d1IHRhIGPDsyB0aOG7gyB0aOG7sWMgaGnhu4duIGPDoWMgY8OidSBs4buHbmggc2F1DQoNCmBgYHtyIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1GQUxTRX0NCiPEkOG7lWkgdMOqbiBjw6FjIGJp4bq/biBj4bunYSBkYXRhMiBi4bqxbmcgY8OidSBs4buHbmggDQpuYW1lcyhkYXRhMikgPC0gYygnQScsJ1dvJywnRWQnLCdFZG4nLCdNcycsJ09jJywnUmUnLCdHZScsJ2NnJywnSHAnLCdOYycsJ0luJywnTmEnKQ0KbmFtZXMoZGF0YTIpDQoNCiNHw6FuIGEgxJHhu4MgaGnhu4NuIHRo4buLIGdpw6EgdHLhu4sgY+G7p2EgaMOgbmcgNSB2w6AgY+G7mXQgMyBj4bunYSBkYXRhMiBi4bqxbmcgY8OidSBs4buHbmgNCmEgPC0gZGF0YTJbNSwzXQ0Kc3RyKGEpDQoNCiNHw6FuIFQgxJHhu4MgaGnhu4NuIHRo4buLIHRvw6BuIGLhu5kgZ2nDoSB0cuG7iyBj4bunYSBj4buZdCBhZ2UgIGPhu6dhIGRhdGEyIGLhurFuZyBjw6J1IGzhu4duaA0KVCA8LSBkYXRhMiRBDQpzdHIoVCkNCg0KI0fDoW4gYiDEkeG7gyBoaeG7g24gdGjhu4sgdG/DoG4gYuG7mSBnacOhIHRy4buLIGPhu6dhIGPhu5l0IG1hcml0YWwtc3RhdHVzDQoNCmIgPC0gZGF0YTJbICw1XQ0Kc3RyKGIpDQoNCiNHw6FuIGMgxJHhu4MgaGnhu4NuIHRo4buLIGdpw6EgdHLhu4sgY+G7p2EgaMOgbmcgNCB2w6AgdOG6pXQgY+G6oyBjw6FjIGPhu5l0IGPhu6dhIGRhdGEyIGLhurFuZyBjw6J1IGzhu4duaA0KYyA8LSBkYXRhMls0LCBdDQpzdHIoYykNCg0KI0fDoW4gZGF0YTIxIGNobyBnacOhIHRy4buLIGPhu6dhIGPhu5l0IHdvcmtjbGFzcyB2w6AgZWR1Y2F0aW9uDQoNCmRhdGEyMSA8LSBkYXRhMlsgLGMoMiwzKV0NCnN0cihkYXRhMjEpDQoNCiNHw6FuIGRhdGEyMiBjaG8gZ2nDoSB0cuG7iyB04burIGjDoG5nIDMgxJHhur9uIGjDoG5nIDkgDQpkYXRhMjIgPC0gZGF0YTJbMzo5LCBdDQpzdHIoZGF0YTIyKQ0KDQojR8OhbiBkYXRhMjMgY2hvIGdpw6EgdHLhu4sgY+G7p2EgY8OhYyBow6BuZyAzLDUsNywyMSANCmRhdGEyMyA8LSBkYXRhMltjKDMsNSw3LDIxKSwgXSANCnN0cihkYXRhMjMpDQoNCiNHw6FuIGRhdGEyNCBjaG8gZ2nDoSB0cuG7iyBj4bunYSBow6BuZyAyLDMsNiwxOCB2w6AgY+G7mXQgMiwzIA0KZGF0YTI0IDwtIGRhdGEyW2MoMiwzLDYsMTgpLCBjKDIsMyldDQpzdHIoZGF0YTI0KQ0KDQojR8OhbiBkYXRhMjUgxJHhu4MgaGnhu4NuIHRo4buLIGfDrWEgdHLhu4sgUHJpdmF0ZSBj4bunYSB3b3JrY2xhc3MNCg0KZGF0YTI1ICA8LSBkYXRhMltkYXRhMiRXbyA9PSAnUHJpdmF0ZScsIF0NCnN0cihkYXRhMjUpDQoNCiNHw6FuIGRhdGEyNiDEkeG7gyBoaeG7g24gdGjhu4sgZ2nDoSB0cuG7iyBj4bunYSBhZ2UgPj0gMTUgdsOgIDw9IDQzIA0KZGF0YTI2IDwtIGRhdGEyW2RhdGEyJEEgPj0gMTUgJiBkYXRhMiRBIDw9IDQzLCBdDQpzdHIoZGF0YTI2KQ0KDQojR8OhbiBkYXRhMjcgxJHhu4MgaGnhu4NuIHRo4buLIGdpw6EgdHLhu4sgY+G7p2EgYWdlID0gMTYgaG/hurdjID0gNDMgDQpkYXRhMjcgPC0gZGF0YTJbZGF0YTIkQSA9PSAxNiB8IGRhdGEyJEEgPT0gNDMsIF0NCnN0cihkYXRhMjcpDQpgYGANCiMjIFLDunQgdHLDrWNoIGThu68gbGnhu4d1IHbhu5tpIGZpbHRlciB2w6Agc2VsZWN0DQoNCsSQ4buDIHLDunQgdHLDrWNoIGThu68gbGnhu4d1IHbhu5tpIGZpbHRlciB2w6Agc2VsZWN0IHRhIGPDsyB0aOG7gyB0aOG7sWMgaGnhu4duIGPDoWMgY8OidSBs4buHbmggc2F1DQoNCmBgYHtyIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1GQUxTRX0NCmxpYnJhcnkoZHBseXIpDQoNCiNHw6FuIGRhdGEyOSDEkeG7gyBs4bqleSA0IGPhu5l0IGFnZSwgd29ya2NsYXNzLCBlZHVjYXRpb24sb2NjdXBhdGlvbg0KDQpkYXRhMjkgPC0gc2VsZWN0KGRhdGEyLCBBLFdvLEVkLE9jKQ0Kc3RyKGRhdGEyOSkNCg0KYGBgDQoNCg0KDQoNCg0KDQo=