library setup
my_data<-readxl::read_xlsx("Dissertation_Data.xlsx")
view(my_data)
[1] "...1"
[2] "Sex"
[3] "Age"
[4] "Occupation"
[5] "Constraints"
[6] "...6"
[7] "Slaughtered for consumption"
[8] "Period of selling"
[9] "Reasons for different periods of sale"
[10] "Breed"
[11] "Reason for keeping the breed"
[12] "Rearing system"
[13] "Type of Housing"
[14] "Source of feed"
[15] "Problems related to feed"
[16] "Common diseases"
[17] "Type of treatment administered"
[18] "Number of turkeys"
[19] "Challenges with veterinary drugs"
[20] "Mortality causes"
Demographics
Sex
plt_df <- my_data %>%
group_by(Sex) %>%
mutate(x.lab=paste0(Sex,
"\n",
"(n=",
n(),
")")) |>
group_by(x.lab) |>
tally() |>
mutate(pct = n/sum(n)*100,
lbl = sprintf("%.1f%%", pct)) |>
mutate(variable="variable")
plt_df %>%
ggplot() +
aes(x = fct_reorder(x.lab,pct),y=pct,fill=variable) +
geom_col(width=0.5) +
geom_text(aes(label=lbl),position=position_stack(vjust=0.5))+
labs(title = "", y = "percentage", x ="",fill="") +
ggthemes::scale_fill_economist() +
ggthemes::theme_tufte() +
theme(legend.position = "none",
axis.text.x = element_text(face="bold",
color="black",
size=8))
Rearing system
plt_df <- my_data %>%
group_by(`Rearing system`) %>%
mutate(x.lab=paste0(`Rearing system`,
"\n",
"(n=",
n(),
")")) |>
group_by(x.lab) |>
tally() |>
mutate(pct = n/sum(n)*100,
lbl = sprintf("%.1f%%", pct)) |>
mutate(variable="variable")
plt_df %>%
ggplot() +
aes(x = fct_reorder(x.lab,pct),y=pct,fill=variable) +
geom_col(width=0.5) +
geom_text(aes(label=lbl),position=position_stack(vjust=0.5))+
labs(title = "", y = "percentage", x ="",fill="") +
ggthemes::scale_fill_economist() +
ggthemes::theme_tufte() +
theme(legend.position = "none",
axis.text.x = element_text(face="bold",
color="black",
size=8))
Exploration
plt_df %>%
ggplot() +
aes(x = fct_reorder(x.lab,pct),y=pct,fill=variable) +
geom_col(width=0.5) +
geom_text(aes(label=lbl),position=position_stack(vjust=0.5))+
labs(title = "", y = "percentage", x ="",fill="") +
ggthemes::scale_fill_gdocs() +
ggthemes::theme_tufte() +
coord_flip()+
theme(legend.position = "none",
plot.title = element_text(face = "bold"),
axis.text.x = element_text(size = 12),
axis.ticks.x = element_blank())
Type of Housing
temp.2 = my_data %>%
group_by(`Type of Housing`) %>%
summarise(count = n()) %>%
mutate(per = round(count/sum(count)*100, 2))
ggplot(data = temp.2,
aes(x = "",
y = count,
fill = `Type of Housing`)) +
geom_col(position = "fill") +
coord_polar("y",
start = 10) +
geom_text(aes(label = paste0(per, "%")),
position = position_fill(vjust = 0.5),
size = 4) +
ggthemes::scale_fill_tableau()+
ggthemes::theme_tufte()+
theme(axis.text.x = element_blank(),
panel.grid = element_blank(),
axis.ticks = element_blank(),
legend.position = "right") +
labs(title = "",
fill = "Type of Housing",
x = NULL,
y = NULL)
Breed
temp.2 = my_data %>%
group_by(Breed) %>%
summarise(count = n()) %>%
mutate(per = round(count/sum(count)*100, 2))
ggplot(data = temp.2,
aes(x = "",
y = count,
fill = Breed)) +
geom_col(position = "fill") +
coord_polar("y",
start = 10) +
geom_text(aes(label = paste0(per, "%")),
position = position_fill(vjust = 0.5),
size = 4) +
ggthemes::scale_fill_tableau()+
ggthemes::theme_tufte()+
theme(axis.text.x = element_blank(),
panel.grid = element_blank(),
axis.ticks = element_blank(),
legend.position = "right") +
labs(title = "",
fill = "breed",
x = NULL,
y = NULL)
Mortality causes
temp.2 = my_data %>%
group_by(`Mortality causes`) %>%
summarise(count = n()) %>%
mutate(per = round(count/sum(count)*100, 2))
ggplot(data = temp.2,
aes(x = "",
y = count,
fill = `Mortality causes`)) +
geom_col(position = "fill") +
coord_polar("y",
start = 10) +
geom_text(aes(label = paste0(per, "%")),
position = position_fill(vjust = 0.5),
size = 4) +
ggthemes::scale_fill_ptol()+
ggthemes::theme_tufte()+
theme(axis.text.x = element_blank(),
panel.grid = element_blank(),
axis.ticks = element_blank(),
legend.position = "right") +
labs(title = "",
fill = "`Mortality causes`",
x = NULL,
y = NULL)
[1] "...1"
[2] "Sex"
[3] "Age"
[4] "Occupation"
[5] "Constraints"
[6] "...6"
[7] "Slaughtered for consumption"
[8] "Period of selling"
[9] "Reasons for different periods of sale"
[10] "Breed"
[11] "Reason for keeping the breed"
[12] "Rearing system"
[13] "Type of Housing"
[14] "Source of feed"
[15] "Problems related to feed"
[16] "Common diseases"
[17] "Type of treatment administered"
[18] "Number of turkeys"
[19] "Challenges with veterinary drugs"
[20] "Mortality causes"
Type of treatment
plt_df <- my_data %>%
group_by(`Type of treatment administered`) %>%
mutate(x.lab=paste0(`Type of treatment administered`,
"\n",
"(n=",
n(),
")")) |>
group_by(x.lab) |>
tally() |>
mutate(pct = n/sum(n)*100,
lbl = sprintf("%.1f%%", pct)) |>
mutate(variable="variable")
plt_df %>%
ggplot() +
aes(x = fct_reorder(x.lab,pct),y=pct,fill=variable) +
geom_col(width=0.5) +
geom_text(aes(label=lbl),position=position_stack(vjust=0.5))+
labs(title = "", y = "percentage", x ="",fill="") +
ggthemes::scale_fill_tableau() +
ggthemes::theme_tufte() +
theme(legend.position = "none",
axis.text.x = element_text(face="bold",
color="black",
size=8))

Common diseases
Characteristic |
N = 20 |
Common diseases |
|
avian influenza |
5.0%(1/20) |
foulpox |
5.0%(1/20) |
foulpox and infectious coryza |
10%(2/20) |
infectious coryza |
50%(10/20) |
new castle disease |
10%(2/20) |
none |
20%(4/20) |
plt_df <- my_data %>%
group_by(`Problems related to feed`) %>%
mutate(x.lab=paste0(`Problems related to feed`,
"\n",
"(n=",
n(),
")")) |>
group_by(x.lab) |>
tally() |>
mutate(pct = n/sum(n)*100,
lbl = sprintf("%.1f%%", pct)) |>
mutate(variable="variable")
plt_df %>%
ggplot() +
aes(x = fct_reorder(x.lab,pct),y=pct,fill=variable) +
geom_col(width=0.5) +
geom_text(aes(label=lbl),position=position_stack(vjust=0.5))+
labs(title = "", y = "percentage", x ="",fill="") +
ggthemes::scale_fill_economist() +
ggthemes::theme_tufte() +
theme(legend.position = "none",
axis.text.x = element_text(face="bold",
color="black",
size=8))
ggsave("problems_related_feed.png")
mod<-aov(`Number of turkeys`~`Common diseases`,data=my_data)
pander::pander(mod)
Analysis of Variance Model
Common diseases |
5 |
647.4 |
129.5 |
2.179 |
0.1152 |
Residuals |
14 |
831.6 |
59.4 |
NA |
NA |
mod<-aov(`Number of turkeys`~Constraints,data=my_data)
pander::pander(mod)
Analysis of Variance Model
Constraints |
3 |
142.9 |
47.64 |
0.5705 |
0.6425 |
Residuals |
16 |
1336 |
83.51 |
NA |
NA |
Characteristic |
diseases, N = 8 |
feed, N = 5 |
grazing fields, N = 4 |
predation, N = 3 |
p-value |
Breed |
|
|
|
|
0.8 |
broad breasted bronze |
0%(0/8) |
20%(1/5) |
0%(0/4) |
0%(0/3) |
|
local |
88%(7/8) |
80%(4/5) |
75%(3/4) |
100%(3/3) |
|
mixed |
13%(1/8) |
0%(0/5) |
25%(1/4) |
0%(0/3) |
|
Rearing system |
|
|
|
|
>0.9 |
intensive |
50%(4/8) |
40%(2/5) |
50%(2/4) |
33%(1/3) |
|
semi intensive |
50%(4/8) |
60%(3/5) |
50%(2/4) |
67%(2/3) |
|
Mortality causes |
|
|
|
|
0.6 |
diseases |
25%(2/8) |
40%(2/5) |
50%(2/4) |
0%(0/3) |
|
none |
38%(3/8) |
0%(0/5) |
25%(1/4) |
0%(0/3) |
|
predation |
25%(2/8) |
20%(1/5) |
0%(0/4) |
67%(2/3) |
|
predation and diseases |
13%(1/8) |
40%(2/5) |
25%(1/4) |
33%(1/3) |
|
Characteristic |
diseases, N = 8 |
feed, N = 5 |
grazing fields, N = 4 |
predation, N = 3 |
p-value |
Problems related to feed |
|
|
|
|
0.5 |
expensive |
75%(6/8) |
60%(3/5) |
50%(2/4) |
67%(2/3) |
|
inadequate knowledge on feed |
25%(2/8) |
40%(2/5) |
50%(2/4) |
0%(0/3) |
|
no problem |
0%(0/8) |
0%(0/5) |
0%(0/4) |
33%(1/3) |
|
Type of Housing |
|
|
|
|
0.2 |
mash wire |
38%(3/8) |
40%(2/5) |
0%(0/4) |
33%(1/3) |
|
mash wire and asbestos |
0%(0/8) |
0%(0/5) |
0%(0/4) |
33%(1/3) |
|
mash wire and bricks |
38%(3/8) |
60%(3/5) |
100%(4/4) |
0%(0/3) |
|
mash wire and old metal |
13%(1/8) |
0%(0/5) |
0%(0/4) |
0%(0/3) |
|
mash wire and wood |
13%(1/8) |
0%(0/5) |
0%(0/4) |
33%(1/3) |
|
Characteristic |
N = 20 |
Sex |
|
female |
70%(14/20) |
male |
30%(6/20) |
Age |
36(10) |
Occupation |
|
family member |
25%(5/20) |
owner |
75%(15/20) |
Characteristic |
N = 20 |
Reason for keeping the breed |
|
adaptability |
10%(2/20) |
affordable |
30%(6/20) |
availability |
25%(5/20) |
fast growth |
5.0%(1/20) |
genetic variation |
5.0%(1/20) |
inadequate knowledge |
5.0%(1/20) |
resistant to diseases |
10%(2/20) |
versatile diet |
10%(2/20) |
mod<-t.test(`Number of turkeys`~`Rearing system`,data=my_data)
pander::pander(mod)
Welch Two Sample t-test: Number of turkeys
by Rearing system
(continued below)
-2.662 |
17.89 |
0.01593 * |
two.sided |
NULL
NicotineL~gender+education+Oscore+Cscore+Impulsive
NicotineL ~ gender + education + Oscore + Cscore + Impulsive