Parcial 3
<>
1. IPC Alimentos y Bebidas no Alcohólicas
Carga de datos
library(ggplot2)
library(forecast)
library(readxl)
ipc_sv_a <- read_excel("IPC_SV_nov_2021.xlsx")
data = ipc_sv_a$`Alimentos y Bebidas no Alcohólicas` %>% ts(start = c(2009, 1), frequency = 12) ->
ipc
print(ipc)## Jan Feb Mar Apr May Jun Jul Aug Sep Oct
## 2009 107.31 106.37 105.72 104.56 104.31 103.21 102.64 101.80 102.07 101.38
## 2010 101.33 102.03 103.55 102.84 102.27 104.50 104.48 103.47 104.58 107.46
## 2011 108.16 108.53 109.61 112.17 112.63 113.74 114.31 113.58 112.10 111.64
## 2012 111.39 111.43 111.36 112.40 112.11 112.19 112.12 111.67 112.00 112.07
## 2013 113.46 114.44 115.50 114.75 114.26 115.10 114.91 114.73 114.67 114.71
## 2014 115.65 115.77 115.75 115.48 116.24 117.88 119.81 121.60 120.97 121.22
## 2015 119.31 119.23 119.81 120.30 120.62 120.31 120.35 119.92 119.68 119.85
## 2016 121.82 121.17 120.60 120.03 119.98 119.63 119.25 118.69 117.62 117.80
## 2017 117.70 118.59 119.13 119.53 119.55 120.10 120.78 119.62 119.15 119.20
## 2018 119.82 120.00 119.93 119.68 119.50 119.26 119.89 120.81 120.84 120.22
## 2019 120.81 121.12 121.39 121.71 122.29 122.61 121.82 120.79 120.64 121.08
## 2020 122.35 122.22 122.68 124.24 125.06 126.14 125.84 123.33 122.36 121.89
## 2021 122.50 123.12 124.09 124.19 123.97 124.85 125.76 125.93 127.18 129.29
## Nov Dec
## 2009 100.76 100.00
## 2010 108.44 107.88
## 2011 111.98 111.29
## 2012 112.45 112.52
## 2013 114.56 114.70
## 2014 120.36 118.95
## 2015 119.86 119.95
## 2016 117.40 117.08
## 2017 120.01 120.00
## 2018 120.56 120.44
## 2019 121.48 121.88
## 2020 122.24 122.33
## 2021 131.31
autoplot(ipc,xlab = "años",ylab = "Indice",main = "IPC;Alimentos y Bebidas no Alcohólicas, periodo 2009 - 2021 (Noviembre)")+theme_bw()Proyectar a 6 meses
## Series: ipc
## ARIMA(5,1,0)(2,0,0)[12] with drift
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5 sar1 sar2 drift
## 0.4329 -0.1393 0.0527 0.0050 -0.0437 0.1005 -0.0567 0.1553
## s.e. 0.0842 0.0889 0.0904 0.0893 0.0849 0.0898 0.1000 0.0910
##
## sigma^2 = 0.5889: log likelihood = -173.82
## AIC=365.63 AICc=366.88 BIC=392.97
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.004969409 0.7447565 0.5652386 0.0007652408 0.4914632 0.216671
## ACF1
## Training set -0.001184702
library(forecast)
autoplot(pronosticos$x,series = "Alimentos y Bebidas no Alcohólicas")+autolayer(pronosticos$fitted,series = "Pronóstico")+ggtitle("Ajuste SARIMA")Serie Ampliada
ipc_am <- ts(as.numeric(rbind(as.matrix(pronosticos$x),as.matrix(pronosticos$mean))),start = c(2009,1),frequency = 12)
print(ipc_am)## Jan Feb Mar Apr May Jun Jul Aug
## 2009 107.3100 106.3700 105.7200 104.5600 104.3100 103.2100 102.6400 101.8000
## 2010 101.3300 102.0300 103.5500 102.8400 102.2700 104.5000 104.4800 103.4700
## 2011 108.1600 108.5300 109.6100 112.1700 112.6300 113.7400 114.3100 113.5800
## 2012 111.3900 111.4300 111.3600 112.4000 112.1100 112.1900 112.1200 111.6700
## 2013 113.4600 114.4400 115.5000 114.7500 114.2600 115.1000 114.9100 114.7300
## 2014 115.6500 115.7700 115.7500 115.4800 116.2400 117.8800 119.8100 121.6000
## 2015 119.3100 119.2300 119.8100 120.3000 120.6200 120.3100 120.3500 119.9200
## 2016 121.8200 121.1700 120.6000 120.0300 119.9800 119.6300 119.2500 118.6900
## 2017 117.7000 118.5900 119.1300 119.5300 119.5500 120.1000 120.7800 119.6200
## 2018 119.8200 120.0000 119.9300 119.6800 119.5000 119.2600 119.8900 120.8100
## 2019 120.8100 121.1200 121.3900 121.7100 122.2900 122.6100 121.8200 120.7900
## 2020 122.3500 122.2200 122.6800 124.2400 125.0600 126.1400 125.8400 123.3300
## 2021 122.5000 123.1200 124.0900 124.1900 123.9700 124.8500 125.7600 125.9300
## 2022 132.2205 132.4540 132.6183 132.5880 132.6093
## Sep Oct Nov Dec
## 2009 102.0700 101.3800 100.7600 100.0000
## 2010 104.5800 107.4600 108.4400 107.8800
## 2011 112.1000 111.6400 111.9800 111.2900
## 2012 112.0000 112.0700 112.4500 112.5200
## 2013 114.6700 114.7100 114.5600 114.7000
## 2014 120.9700 121.2200 120.3600 118.9500
## 2015 119.6800 119.8500 119.8600 119.9500
## 2016 117.6200 117.8000 117.4000 117.0800
## 2017 119.1500 119.2000 120.0100 120.0000
## 2018 120.8400 120.2200 120.5600 120.4400
## 2019 120.6400 121.0800 121.4800 121.8800
## 2020 122.3600 121.8900 122.2400 122.3300
## 2021 127.1800 129.2900 131.3100 131.9976
## 2022
Descomposicion de la serie temporal
## Jan Feb Mar Apr May Jun Jul Aug
## 2009 106.1516 105.6525 105.1535 104.6863 104.2192 103.7796 103.3400 102.9208
## 2010 102.1189 102.3307 102.5425 102.9753 103.4080 103.9920 104.5760 105.1967
## 2011 108.8480 109.5718 110.2956 110.8020 111.3083 111.6264 111.9444 112.1042
## 2012 111.9947 111.9079 111.8211 111.8354 111.8496 111.9637 112.0779 112.2895
## 2013 113.5166 113.7595 114.0025 114.2056 114.4088 114.5604 114.7120 114.8170
## 2014 115.6466 116.0856 116.5246 117.0564 117.5883 118.0604 118.5325 118.9119
## 2015 120.1083 120.0586 120.0088 119.9638 119.9187 119.9860 120.0533 120.1568
## 2016 120.2515 120.1341 120.0168 119.8088 119.6008 119.3311 119.0615 118.8379
## 2017 118.5482 118.6803 118.8123 118.9907 119.1692 119.3503 119.5313 119.6479
## 2018 119.7765 119.7965 119.8165 119.8803 119.9442 120.0238 120.1034 120.2253
## 2019 121.0653 121.1569 121.2485 121.3026 121.3568 121.4384 121.5200 121.6219
## 2020 122.6255 122.8930 123.1606 123.3017 123.4428 123.4812 123.5197 123.5104
## 2021 123.3883 123.6178 123.8473 124.3895 124.9317 125.6899 126.4481 127.2696
## 2022 131.1597 131.9347 132.7098 133.4645 134.2193
## Sep Oct Nov Dec
## 2009 102.5017 102.2701 102.0385 102.0787
## 2010 105.8174 106.5285 107.2396 108.0438
## 2011 112.2641 112.2472 112.2304 112.1125
## 2012 112.5012 112.7547 113.0081 113.2623
## 2013 114.9219 115.0380 115.1540 115.4003
## 2014 119.2913 119.5850 119.8786 119.9935
## 2015 120.2603 120.2989 120.3374 120.2944
## 2016 118.6143 118.5327 118.4512 118.4997
## 2017 119.7645 119.7908 119.8171 119.7968
## 2018 120.3472 120.5293 120.7115 120.8884
## 2019 121.7238 121.8978 122.0718 122.3486
## 2020 123.5011 123.4489 123.3966 123.3925
## 2021 128.0910 128.8516 129.6122 130.3860
## 2022
Calculo de tasas
library(dplyr)
library(zoo)
TC %>% as.numeric() %>% as.data.frame()->TC_df
names(TC_df)<-c("TC")
TC_df %>% mutate(T_1_1=(TC/dplyr::lag(TC,n=1)-1)*100,
T_1_12=(TC/dplyr::lag(TC,n=12)-1)*100,
T_12_12=(rollapply(TC,12,mean,align='right',fill=NA)
/rollapply(dplyr::lag(TC,n=12),12,mean,align='right',fill=NA)-1)*100) %>%
mutate(T_1_12C=dplyr::lead(T_1_12,n = 6),
T_12_12C=dplyr::lead(T_12_12,n = 12)) %>% ts(start = c(2009,1),frequency = 12)-> tabla_c
print(tail(tabla_c,n=12))## TC T_1_1 T_1_12 T_12_12 T_1_12C T_12_12C
## Jun 2021 125.6899 0.6068849 1.788690 1.125463 5.667663 NA
## Jul 2021 126.4481 0.6032240 2.370803 1.187021 6.298283 NA
## Aug 2021 127.2696 0.6496367 3.043606 1.312412 6.727905 NA
## Sep 2021 128.0910 0.6454437 3.716511 1.501419 7.155935 NA
## Oct 2021 128.8516 0.5937995 4.376518 1.760566 7.295640 NA
## Nov 2021 129.6122 0.5902944 5.037084 2.089749 7.434133 NA
## Dec 2021 130.3860 0.5969449 5.667663 2.490365 NA NA
## Jan 2022 131.1597 0.5934026 6.298283 2.962491 NA NA
## Feb 2022 131.9347 0.5909178 6.727905 3.473618 NA NA
## Mar 2022 132.7098 0.5874465 7.155935 4.023729 NA NA
## Apr 2022 133.4645 0.5687503 7.295640 4.559380 NA NA
## May 2022 134.2193 0.5655338 7.434133 5.080169 NA NA
Grafico de Tasas
library(dplyr)
tabla_c %>% as.data.frame() %>% select(T_1_12C,T_12_12C) %>% ts(start = c(2009,1),frequency = 12)->tabla_c_graficos
autoplot(tabla_c_graficos)+theme_bw()tabla_c %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2009,1),frequency = 12) %>% autoplot()IPC Bebidas Alcohólicas, Tabaco
Cargar datos
library(ggplot2)
library(forecast)
library(readxl)
ipc_sv_b <- read_excel("IPC_SV_nov_2021.xlsx")
data = ipc_sv_b$`Bebidas Alcohólicas, Tabaco` %>% ts(start = c(2009, 1), frequency = 12) ->
ipc2
print(ipc2)## Jan Feb Mar Apr May Jun Jul Aug Sep Oct
## 2009 94.60 95.55 96.42 96.92 97.61 97.52 97.34 97.48 97.81 97.55
## 2010 103.15 112.47 115.91 116.53 117.58 118.08 117.95 117.69 118.34 118.16
## 2011 116.79 116.83 117.17 117.57 117.93 117.92 118.11 117.98 118.10 118.10
## 2012 118.08 118.44 118.69 121.95 125.03 125.49 125.28 124.78 124.91 125.39
## 2013 125.54 125.95 125.85 126.17 126.50 126.61 126.62 128.33 128.71 129.20
## 2014 129.20 129.18 129.01 129.02 129.38 131.06 132.53 133.68 134.33 134.57
## 2015 135.29 135.29 135.18 134.88 135.60 135.39 136.08 136.87 137.71 138.68
## 2016 139.14 140.38 140.35 140.86 140.69 140.49 141.77 141.80 143.34 143.82
## 2017 142.02 143.70 144.54 144.66 145.61 144.96 144.66 144.77 143.91 144.24
## 2018 144.13 144.12 145.34 145.87 145.99 145.64 146.20 145.90 145.99 146.00
## 2019 147.30 146.86 146.84 147.11 147.74 148.21 149.24 150.04 150.05 150.11
## 2020 151.89 151.81 152.29 152.01 153.09 152.72 154.65 154.56 152.64 153.40
## 2021 154.49 155.21 155.63 155.40 155.20 156.36 156.20 156.00 157.11 157.36
## Nov Dec
## 2009 97.99 100.00
## 2010 117.44 117.31
## 2011 117.40 116.92
## 2012 125.18 124.85
## 2013 129.40 129.35
## 2014 134.68 134.38
## 2015 138.42 138.09
## 2016 143.63 143.43
## 2017 144.03 143.76
## 2018 145.59 145.84
## 2019 149.90 150.54
## 2020 153.59 153.87
## 2021 157.57
autoplot(ipc2,xlab = "años",ylab = "Indice",main = "IPC;Bebidas Alcohólicas, Tabaco, periodo 2009 - 2021 (Noviembre)")+theme_bw()Proyectar a 6 meses
## Series: ipc2
## ARIMA(2,1,2)(1,0,0)[12] with drift
##
## Coefficients:
## ar1 ar2 ma1 ma2 sar1 drift
## -0.2660 0.3252 0.6962 -0.1125 0.0521 0.4098
## s.e. 0.3403 0.1524 0.3401 0.1998 0.0806 0.1355
##
## sigma^2 = 0.9495: log likelihood = -211.6
## AIC=437.2 AICc=437.97 BIC=458.46
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.0007788627 0.9521798 0.5933183 0.01016118 0.4522676 0.1202803
## ACF1
## Training set -0.0009904928
pronosticos2 <- forecast(modelo,h = 6)
autoplot(pronosticos2)+xlab("Años")+ylab("indice")+theme_bw()library(forecast)
autoplot(pronosticos2$x,series = "Bebidas Alcohólicas, Tabaco")+autolayer(pronosticos2$fitted,series = "Pronóstico")+ggtitle("Ajuste SARIMA")Serie Ampliada
ipc_am2 <- ts(as.numeric(rbind(as.matrix(pronosticos2$x),as.matrix(pronosticos2$mean))),start = c(2009,1),frequency = 12)
print(ipc_am2)## Jan Feb Mar Apr May Jun Jul Aug
## 2009 94.6000 95.5500 96.4200 96.9200 97.6100 97.5200 97.3400 97.4800
## 2010 103.1500 112.4700 115.9100 116.5300 117.5800 118.0800 117.9500 117.6900
## 2011 116.7900 116.8300 117.1700 117.5700 117.9300 117.9200 118.1100 117.9800
## 2012 118.0800 118.4400 118.6900 121.9500 125.0300 125.4900 125.2800 124.7800
## 2013 125.5400 125.9500 125.8500 126.1700 126.5000 126.6100 126.6200 128.3300
## 2014 129.2000 129.1800 129.0100 129.0200 129.3800 131.0600 132.5300 133.6800
## 2015 135.2900 135.2900 135.1800 134.8800 135.6000 135.3900 136.0800 136.8700
## 2016 139.1400 140.3800 140.3500 140.8600 140.6900 140.4900 141.7700 141.8000
## 2017 142.0200 143.7000 144.5400 144.6600 145.6100 144.9600 144.6600 144.7700
## 2018 144.1300 144.1200 145.3400 145.8700 145.9900 145.6400 146.2000 145.9000
## 2019 147.3000 146.8600 146.8400 147.1100 147.7400 148.2100 149.2400 150.0400
## 2020 151.8900 151.8100 152.2900 152.0100 153.0900 152.7200 154.6500 154.5600
## 2021 154.4900 155.2100 155.6300 155.4000 155.2000 156.3600 156.2000 156.0000
## 2022 158.3204 158.7466 159.1436 159.5237 159.8964
## Sep Oct Nov Dec
## 2009 97.8100 97.5500 97.9900 100.0000
## 2010 118.3400 118.1600 117.4400 117.3100
## 2011 118.1000 118.1000 117.4000 116.9200
## 2012 124.9100 125.3900 125.1800 124.8500
## 2013 128.7100 129.2000 129.4000 129.3500
## 2014 134.3300 134.5700 134.6800 134.3800
## 2015 137.7100 138.6800 138.4200 138.0900
## 2016 143.3400 143.8200 143.6300 143.4300
## 2017 143.9100 144.2400 144.0300 143.7600
## 2018 145.9900 146.0000 145.5900 145.8400
## 2019 150.0500 150.1100 149.9000 150.5400
## 2020 152.6400 153.4000 153.5900 153.8700
## 2021 157.1100 157.3600 157.5700 157.9405
## 2022
Descomposicion de la serie temporal
## Jan Feb Mar Apr May Jun Jul
## 2009 93.73541 94.43431 95.13321 95.91252 96.69184 97.56346 98.43508
## 2010 106.76737 108.66768 110.56799 112.28861 114.00923 115.21505 116.42088
## 2011 117.58804 117.57607 117.56410 117.56663 117.56916 117.62007 117.67097
## 2012 119.62369 120.26859 120.91349 121.59597 122.27846 122.95787 123.63728
## 2013 125.69786 125.90885 126.11983 126.42289 126.72594 127.08029 127.43464
## 2014 129.32150 129.69932 130.07714 130.52004 130.96295 131.48325 132.00354
## 2015 134.83077 135.08119 135.33160 135.60550 135.87939 136.22565 136.57190
## 2016 139.27588 139.68580 140.09571 140.50774 140.91976 141.30894 141.69812
## 2017 143.71888 143.89788 144.07687 144.15404 144.23121 144.29409 144.35697
## 2018 144.75876 144.88980 145.02084 145.17486 145.32889 145.51186 145.69484
## 2019 146.77989 147.06673 147.35356 147.69838 148.04321 148.43866 148.83411
## 2020 151.37548 151.71619 152.05689 152.34228 152.62767 152.88910 153.15052
## 2021 154.62515 154.85411 155.08307 155.37299 155.66291 155.98108 156.29926
## 2022 158.38385 158.73931 159.09478 159.44652 159.79825
## Aug Sep Oct Nov Dec
## 2009 99.38241 100.32975 101.68788 103.04601 104.90669
## 2010 116.92772 117.43456 117.51761 117.60066 117.59435
## 2011 117.80142 117.93186 118.24617 118.56047 119.09208
## 2012 124.18951 124.74174 125.05887 125.37599 125.53693
## 2013 127.77163 128.10861 128.40285 128.69709 129.00929
## 2014 132.56946 133.13538 133.63576 134.13613 134.48345
## 2015 137.00418 137.43647 137.91212 138.38778 138.83183
## 2016 142.04828 142.39845 142.74843 143.09841 143.40865
## 2017 144.41704 144.47711 144.53004 144.58296 144.67086
## 2018 145.87873 146.06262 146.22167 146.38071 146.58030
## 2019 149.27232 149.71054 150.14707 150.58359 150.97954
## 2020 153.41834 153.68617 153.93823 154.19029 154.40772
## 2021 156.64304 156.98683 157.33258 157.67832 158.03108
## 2022
Calculo de tasas
library(dplyr)
library(zoo)
TC %>% as.numeric() %>% as.data.frame()->TC_df
names(TC_df)<-c("TC")
TC_df %>% mutate(T_1_1=(TC/dplyr::lag(TC,n=1)-1)*100,
T_1_12=(TC/dplyr::lag(TC,n=12)-1)*100,
T_12_12=(rollapply(TC,12,mean,align='right',fill=NA)
/rollapply(dplyr::lag(TC,n=12),12,mean,align='right',fill=NA)-1)*100) %>%
mutate(T_1_12C=dplyr::lead(T_1_12,n = 6),
T_12_12C=dplyr::lead(T_12_12,n = 12)) %>% ts(start = c(2009,1),frequency = 12)-> tabla_c2
print(tail(tabla_c2,n=12))## TC T_1_1 T_1_12 T_12_12 T_1_12C T_12_12C
## Jun 2021 155.9811 0.2043982 2.022373 2.308138 2.346622 NA
## Jul 2021 156.2993 0.2039812 2.055977 2.238386 2.430844 NA
## Aug 2021 156.6430 0.2199548 2.101899 2.182695 2.508943 NA
## Sep 2021 156.9868 0.2194720 2.147662 2.140955 2.586811 NA
## Oct 2021 157.3326 0.2202376 2.205006 2.114818 2.621771 NA
## Nov 2021 157.6783 0.2197536 2.262162 2.104179 2.656601 NA
## Dec 2021 158.0311 0.2237232 2.346622 2.110882 NA NA
## Jan 2022 158.3838 0.2232238 2.430844 2.134831 NA NA
## Feb 2022 158.7393 0.2244336 2.508943 2.171759 NA NA
## Mar 2022 159.0948 0.2239311 2.586811 2.221607 NA NA
## Apr 2022 159.4465 0.2210869 2.621771 2.274386 NA NA
## May 2022 159.7983 0.2205992 2.656601 2.330082 NA NA
Prendas de Vestir y Calzado
Carga de datos
library(ggplot2)
library(forecast)
library(readxl)
ipc_sv_c <- read_excel("IPC_SV_nov_2021.xlsx")
data = ipc_sv_a$`Prendas de Vestir y Calzado` %>% ts(start = c(2009, 1), frequency = 12) ->
ipc3
print(ipc3)## Jan Feb Mar Apr May Jun Jul Aug Sep Oct
## 2009 100.54 100.75 101.22 101.21 101.31 101.09 101.03 100.81 100.34 100.05
## 2010 99.83 99.65 99.93 99.64 99.28 99.46 99.97 100.32 100.58 100.48
## 2011 100.72 100.81 100.44 100.66 101.08 101.85 101.90 101.82 102.24 102.40
## 2012 103.35 103.57 103.30 102.89 102.69 102.63 102.66 102.60 102.59 102.56
## 2013 102.86 102.97 103.02 102.85 102.86 102.98 102.70 102.59 102.50 102.35
## 2014 102.44 102.50 102.44 102.27 102.40 102.05 101.90 101.66 101.75 102.02
## 2015 101.72 101.66 101.75 101.57 101.13 100.59 99.97 99.73 99.05 98.60
## 2016 98.63 98.60 98.20 97.94 97.77 97.17 96.86 96.41 96.18 96.15
## 2017 95.97 95.95 95.81 95.66 95.45 95.59 95.30 94.93 94.67 94.35
## 2018 94.46 94.27 94.14 93.90 93.72 93.62 93.37 93.05 92.99 92.82
## 2019 92.76 92.93 92.89 92.90 92.69 92.57 92.42 92.13 91.42 91.44
## 2020 91.09 91.43 91.88 91.84 91.84 91.84 91.84 91.84 92.05 92.55
## 2021 93.00 93.50 93.84 93.98 94.35 94.50 94.71 94.86 94.85 95.11
## Nov Dec
## 2009 99.94 100.00
## 2010 100.65 100.67
## 2011 102.80 103.32
## 2012 102.31 102.85
## 2013 102.36 102.28
## 2014 101.89 102.00
## 2015 98.56 98.71
## 2016 96.12 96.17
## 2017 94.18 94.37
## 2018 92.77 92.74
## 2019 91.17 91.03
## 2020 92.60 92.75
## 2021 95.46
autoplot(ipc3,xlab = "años",ylab = "Indice",main = "IPC;Prendas de Vestir y Calzado, periodo 2009 - 2021 (Noviembre)")+theme_bw()Proyectar a 6 meses
## Series: ipc3
## ARIMA(2,1,0)
##
## Coefficients:
## ar1 ar2
## 0.4154 0.1460
## s.e. 0.0796 0.0805
##
## sigma^2 = 0.05152: log likelihood = 10.8
## AIC=-15.6 AICc=-15.44 BIC=-6.49
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.0125171 0.224767 0.1752489 -0.01266981 0.1782725 0.1159139
## ACF1
## Training set -0.01069974
pronosticos3 <- forecast(modelo,h = 6)
autoplot(pronosticos3)+xlab("Años")+ylab("indice")+theme_bw()library(forecast)
autoplot(pronosticos3$x,series = "Prendas de Vestir y Calzado")+autolayer(pronosticos3$fitted,series = "Pronóstico")+ggtitle("Ajuste SARIMA")Serie Ampliada
ipc_am3 <- ts(as.numeric(rbind(as.matrix(pronosticos3$x),as.matrix(pronosticos3$mean))),start = c(2009,1),frequency = 12)
print(ipc_am3)## Jan Feb Mar Apr May Jun Jul
## 2009 100.54000 100.75000 101.22000 101.21000 101.31000 101.09000 101.03000
## 2010 99.83000 99.65000 99.93000 99.64000 99.28000 99.46000 99.97000
## 2011 100.72000 100.81000 100.44000 100.66000 101.08000 101.85000 101.90000
## 2012 103.35000 103.57000 103.30000 102.89000 102.69000 102.63000 102.66000
## 2013 102.86000 102.97000 103.02000 102.85000 102.86000 102.98000 102.70000
## 2014 102.44000 102.50000 102.44000 102.27000 102.40000 102.05000 101.90000
## 2015 101.72000 101.66000 101.75000 101.57000 101.13000 100.59000 99.97000
## 2016 98.63000 98.60000 98.20000 97.94000 97.77000 97.17000 96.86000
## 2017 95.97000 95.95000 95.81000 95.66000 95.45000 95.59000 95.30000
## 2018 94.46000 94.27000 94.14000 93.90000 93.72000 93.62000 93.37000
## 2019 92.76000 92.93000 92.89000 92.90000 92.69000 92.57000 92.42000
## 2020 91.09000 91.43000 91.88000 91.84000 91.84000 91.84000 91.84000
## 2021 93.00000 93.50000 93.84000 93.98000 94.35000 94.50000 94.71000
## 2022 95.77066 95.85032 95.90200 95.93510 95.95640
## Aug Sep Oct Nov Dec
## 2009 100.81000 100.34000 100.05000 99.94000 100.00000
## 2010 100.32000 100.58000 100.48000 100.65000 100.67000
## 2011 101.82000 102.24000 102.40000 102.80000 103.32000
## 2012 102.60000 102.59000 102.56000 102.31000 102.85000
## 2013 102.59000 102.50000 102.35000 102.36000 102.28000
## 2014 101.66000 101.75000 102.02000 101.89000 102.00000
## 2015 99.73000 99.05000 98.60000 98.56000 98.71000
## 2016 96.41000 96.18000 96.15000 96.12000 96.17000
## 2017 94.93000 94.67000 94.35000 94.18000 94.37000
## 2018 93.05000 92.99000 92.82000 92.77000 92.74000
## 2019 92.13000 91.42000 91.44000 91.17000 91.03000
## 2020 91.84000 92.05000 92.55000 92.60000 92.75000
## 2021 94.86000 94.85000 95.11000 95.46000 95.64337
## 2022
Descomposicion de la serie temporal
## Jan Feb Mar Apr May Jun Jul
## 2009 101.11281 101.04022 100.96763 100.88657 100.80550 100.72075 100.63600
## 2010 99.95423 99.90164 99.84906 99.87954 99.91003 99.98881 100.06759
## 2011 100.73109 100.86717 101.00325 101.17053 101.33781 101.55690 101.77599
## 2012 102.82560 102.86133 102.89705 102.88344 102.86982 102.82914 102.78847
## 2013 102.75620 102.75971 102.76322 102.75213 102.74104 102.71232 102.68360
## 2014 102.37288 102.30935 102.24582 102.19628 102.14675 102.10395 102.06116
## 2015 101.58273 101.39738 101.21203 100.95482 100.69760 100.41174 100.12587
## 2016 98.45419 98.20694 97.95969 97.72772 97.49575 97.27228 97.04882
## 2017 95.96401 95.83425 95.70448 95.56410 95.42371 95.27793 95.13216
## 2018 94.24493 94.09787 93.95081 93.81432 93.67783 93.54611 93.41438
## 2019 92.83025 92.74198 92.65371 92.54020 92.42669 92.28906 92.15143
## 2020 91.57352 91.58228 91.59103 91.67762 91.76420 91.90148 92.03876
## 2021 93.18535 93.42255 93.65975 93.89762 94.13549 94.36750 94.59951
## 2022 95.57479 95.71828 95.86177 95.99830 96.13484
## Aug Sep Oct Nov Dec
## 2009 100.54920 100.46241 100.33504 100.20767 100.08095
## 2010 100.16308 100.25856 100.36711 100.47565 100.60337
## 2011 102.01440 102.25281 102.44001 102.62721 102.72641
## 2012 102.75963 102.73079 102.73141 102.73202 102.74411
## 2013 102.64007 102.59654 102.54603 102.49552 102.43420
## 2014 102.00824 101.95533 101.88408 101.81283 101.69778
## 2015 99.83774 99.54961 99.26739 98.98516 98.71968
## 2016 96.83715 96.62548 96.44213 96.25878 96.11140
## 2017 94.98944 94.84672 94.69934 94.55196 94.39844
## 2018 93.29659 93.17880 93.08508 92.99136 92.91081
## 2019 92.01823 91.88502 91.78428 91.68353 91.62853
## 2020 92.20098 92.36321 92.55193 92.74065 92.96300
## 2021 94.78729 94.97508 95.12640 95.27771 95.42625
## 2022
Calculo de tasas
library(dplyr)
library(zoo)
TC %>% as.numeric() %>% as.data.frame()->TC_df
names(TC_df)<-c("TC")
TC_df %>% mutate(T_1_1=(TC/dplyr::lag(TC,n=1)-1)*100,
T_1_12=(TC/dplyr::lag(TC,n=12)-1)*100,
T_12_12=(rollapply(TC,12,mean,align='right',fill=NA)
/rollapply(dplyr::lag(TC,n=12),12,mean,align='right',fill=NA)-1)*100) %>%
mutate(T_1_12C=dplyr::lead(T_1_12,n = 6),
T_12_12C=dplyr::lead(T_12_12,n = 12)) %>% ts(start = c(2009,1),frequency = 12)-> tabla_c3
print(tail(tabla_c3,n=12))## TC T_1_1 T_1_12 T_12_12 T_1_12C T_12_12C
## Jun 2021 94.36750 0.2464619 2.683331 1.478844 2.649714 NA
## Jul 2021 94.59951 0.2458560 2.782251 1.721785 2.564182 NA
## Aug 2021 94.78729 0.1985065 2.805080 1.939744 2.457363 NA
## Sep 2021 94.97508 0.1981132 2.827829 2.132559 2.351086 NA
## Oct 2021 95.12640 0.1593214 2.781649 2.294949 2.237208 NA
## Nov 2021 95.27771 0.1590680 2.735657 2.426852 2.123906 NA
## Dec 2021 95.42625 0.1559036 2.649714 2.526078 NA NA
## Jan 2022 95.57479 0.1556610 2.564182 2.592671 NA NA
## Feb 2022 95.71828 0.1501309 2.457363 2.629457 NA NA
## Mar 2022 95.86177 0.1499058 2.351086 2.636564 NA NA
## Apr 2022 95.99830 0.1424300 2.237208 2.620580 NA NA
## May 2022 96.13484 0.1422274 2.123906 2.581651 NA NA