# List of packages
packages <- c("tidyverse", "fst", "modelsummary") # add any you need here
# Install packages if they aren't installed already
new_packages <- packages[!(packages %in% installed.packages()[,"Package"])]
if(length(new_packages)) install.packages(new_packages)
# Load the packages
lapply(packages, library, character.only = TRUE)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## [[1]]
## [1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
## [7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
## [13] "grDevices" "utils" "datasets" "methods" "base"
##
## [[2]]
## [1] "fst" "lubridate" "forcats" "stringr" "dplyr" "purrr"
## [7] "readr" "tidyr" "tibble" "ggplot2" "tidyverse" "stats"
## [13] "graphics" "grDevices" "utils" "datasets" "methods" "base"
##
## [[3]]
## [1] "modelsummary" "fst" "lubridate" "forcats" "stringr"
## [6] "dplyr" "purrr" "readr" "tidyr" "tibble"
## [11] "ggplot2" "tidyverse" "stats" "graphics" "grDevices"
## [16] "utils" "datasets" "methods" "base"
Provide code and answer.
Prompt and question: calculate the average for the variable ‘happy’ for the country of Norway. On average, based on the ESS data, who reports higher levels of happiness: Norway or Belgium?
Note: we already did it for Belgium. You just need to compare to Norway’s average, making sure to provide the code for both.
belgium_data <- read.fst('belgium_data.fst')
belgium_happy <- belgium_data %>%
filter(cntry == "BE") %>%
select(happy)
belgium_happy$y <- belgium_happy$happy
table(belgium_happy$y)
##
## 0 1 2 3 4 5 6 7 8 9 10 77 88 99
## 50 27 104 194 234 830 999 3503 6521 3402 1565 3 16 3
belgium_happy$y[belgium_happy$y %in% 77:99] <- NA
table(belgium_happy$y)
##
## 0 1 2 3 4 5 6 7 8 9 10
## 50 27 104 194 234 830 999 3503 6521 3402 1565
mean_y <- mean(belgium_happy$y, na.rm = TRUE)
cat("Mean of 'y' is:", mean_y, "\n")
## Mean of 'y' is: 7.737334
norway_data <- read.fst('norway_data.fst')
norway_happy <- norway_data %>%
filter(cntry == "NO") %>%
select(happy)
norway_happy$y <- norway_happy$happy
table(norway_happy$y)
##
## 0 1 2 3 4 5 6 7 8 9 10 77 88
## 15 29 59 163 238 730 817 2617 5235 3796 2344 12 10
norway_happy$y[norway_happy$y %in% 77:99] <- NA
table(norway_happy$y)
##
## 0 1 2 3 4 5 6 7 8 9 10
## 15 29 59 163 238 730 817 2617 5235 3796 2344
mean_y <- mean(norway_happy$y, na.rm = TRUE)
cat("Mean of 'y' is:", mean_y, "\n")
## Mean of 'y' is: 7.975005
##Conclusion: Belgium’s mean happiness is lower than Norway’s mean happiness.
Provide code and answer.
Prompt and question: what is the most common category selected, for Irish respondents, for frequency of binge drinking? The variable of interest is: alcbnge.
More info here: https://ess-search.nsd.no/en/variable/0c65116e-7481-4ca6-b1d9-f237db99a694.
Hint: need to convert numeric value entries to categories as specified in the variable information link. We did similar steps for Estonia and the climate change attitude variable.
ireland_data <- read.fst("ireland_data.fst")
ireland_data$y <- ireland_data$alcbnge
table(ireland_data$y)
##
## 1 2 3 4 5 6 7 8
## 65 650 346 417 239 641 26 6
The most common response was weekly.
Provide code and answer.
Prompt and question: when you use the summary() function for the variable plnftr (about planning for future or taking every each day as it comes from 0-10) for both the countries of Portugal and Serbia, what do you notice? What stands out as different when you compare the two countries (note: look up the variable information on the ESS website to help with interpretation)? Explain while referring to the output generated.
serbia_data <- read.fst('serbia_data.fst')
summary(serbia_data$plnftr)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 4.000 4.983 8.000 88.000 1505
portugal_data <- read.fst('portugal_data.fst')
summary(portugal_data$plnftr)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 3.000 5.000 6.426 8.000 88.000 14604
There was a large difference between the NA’s of Portugal and Serbia.
Provide code and answer.
Prompt and question: using the variables stfdem and gndr, answer the following: on average, who is more dissastified with democracy in Italy, men or women? Explain while referring to the output generated.
Info on variable here: https://ess.sikt.no/en/variable/query/stfdem/page/1
italy_data <- read.fst('italy_data.fst')
dem_by_gender <- italy_data %>%
group_by(gndr) %>%
summarize(stfdem = mean(stfdem, na.rm = TRUE))
print(dem_by_gender)
## # A tibble: 3 × 2
## gndr stfdem
## <dbl> <dbl>
## 1 1 7.43
## 2 2 8.43
## 3 9 8.92
Provide code and answer.
Prompt: Interpret the boxplot graph of stfedu and stfhlth that we generated already: according to ESS data, would we say that the median French person is more satisfied with the education system or health services? Explain.
Change the boxplot graph: provide the code to change some of the key labels: (1) Change the title to: Boxplot of satisfaction with the state of education vs. health services; (2) Remove the x-axis label; (3) Change the y-axis label to: Satisfaction (0-10).
Hint: copy the boxplot code above and just replace or cut what is asked.
france_data <- read.fst('france_data.fst')
france_data %>%
mutate(stfedu = ifelse(stfedu %in% c(77, 88, 99), NA, stfedu),
stfhlth = ifelse(stfhlth %in% c(77, 88, 99), NA, stfhlth)) %>%
select(stfedu, stfhlth) %>%
gather(variable, value, c(stfedu, stfhlth)) %>%
ggplot(aes(x = variable, y = value)) +
geom_boxplot() +
labs(y = "Y-axis", x = "X-axis", title = "Boxplot of stfedu vs. stfhlth") +
theme_minimal()
## Warning: Removed 364 rows containing non-finite values (`stat_boxplot()`).
france_data %>%
mutate(stfedu = ifelse(stfedu %in% c(77, 88, 99), NA, stfedu),
stfhlth = ifelse(stfhlth %in% c(77, 88, 99), NA, stfhlth)) %>%
select(stfedu, stfhlth) %>%
gather(variable, value, c(stfedu, stfhlth)) %>%
ggplot(aes(x = variable, y = value)) +
geom_boxplot() +
labs(y = "Satisfaction (0-10)", x = "", title = "Boxplot of satisfaction with the state of education vs. health services") +
theme_minimal()
## Warning: Removed 364 rows containing non-finite values (`stat_boxplot()`).