Date: 19:55:20, 18 - 01 - 2024

NHIỆM VỤ 2.1

Đọc dữ liệu từ file csv

data <- read.csv(file.choose(), header = T)
data
STT Năm CÔNG.TY Y X2 X3
1 1935 GE 33.10 1170.6 97.8
2 1936 GE 45.00 2015.8 104.4
3 1937 GE 77.20 2803.3 118.0
4 1938 GE 44.60 2039.7 156.2
5 1939 GE 48.10 2256.2 172.6
6 1940 GE 74.40 2132.2 186.6
7 1941 GE 113.00 1834.1 220.9
8 1942 GE 91.90 1588.0 287.8
9 1943 GE 61.30 1749.4 319.9
10 1944 GE 56.80 1687.2 321.3
11 1945 GE 93.60 2007.7 319.6
12 1946 GE 159.90 2208.3 346.0
13 1947 GE 147.20 1656.7 456.4
14 1948 GE 146.30 1604.4 543.4
15 1949 GE 98.30 1431.8 618.3
16 1950 GE 93.50 1610.5 647.4
17 1951 GE 135.20 1819.4 671.3
18 1952 GE 157.30 2079.7 726.1
19 1953 GE 179.50 2371.6 800.3
20 1954 GE 189.60 2759.9 888.9
21 1935 US 209.90 1362.4 53.8
22 1936 US 355.30 1807.1 50.5
23 1937 US 469.90 2673.3 118.1
24 1938 US 262.30 1801.9 260.2
25 1939 US 230.40 1957.3 312.7
26 1940 US 361.60 2202.9 254.2
27 1941 US 472.80 2380.5 261.4
28 1942 US 445.60 2168.6 298.7
29 1943 US 361.60 1985.1 301.8
30 1944 US 288.20 1813.9 279.1
31 1945 US 258.70 1850.2 213.8
32 1946 US 420.30 2067.7 232.6
33 1947 US 420.50 1796.3 264.8
34 1948 US 494.50 1625.8 306.9
35 1949 US 405.10 1667.0 351.1
36 1950 US 418.80 1677.4 357.8
37 1951 US 588.20 2289.5 341.1
38 1952 US 645.20 2159.4 444.2
39 1953 US 641.00 2031.3 623.6
40 1954 US 459.30 2115.5 669.7
41 1935 GM 317.60 3078.5 2.8
42 1936 GM 391.80 4661.7 52.6
43 1937 GM 410.60 5387.1 156.9
44 1938 GM 257.70 2792.2 209.2
45 1939 GM 330.80 4313.2 203.4
46 1940 GM 461.20 4643.9 207.2
47 1941 GM 512.00 4551.2 255.2
48 1942 GM 448.00 3244.1 303.7
49 1943 GM 499.60 4053.7 264.1
50 1944 GM 547.50 4379.3 201.6
51 1945 GM 561.20 4840.9 265.0
52 1946 GM 688.10 4900.0 402.0
53 1947 GM 568.90 3526.5 761.5
54 1948 GM 529.20 3245.7 922.4
55 1949 GM 555.10 3700.2 1020.1
56 1950 GM 642.90 3755.6 1099.0
57 1951 GM 755.90 4833.0 1207.7
58 1952 GM 891.20 4926.9 1430.5
59 1953 GM 1304.40 6241.7 1777.3
60 1954 GM 1486.70 5593.6 226.3
61 1935 WEST 12.93 191.5 1.8
62 1936 WEST 25.90 516.0 0.8
63 1937 WEST 35.05 729.0 7.4
64 1938 WEST 22.89 560.4 18.1
65 1939 WEST 18.84 519.9 23.5
66 1940 WEST 28.57 628.5 26.5
67 1941 WEST 48.51 537.1 36.2
68 1942 WEST 43.34 561.2 60.8
69 1943 WEST 37.02 617.2 84.4
70 1944 WEST 37.81 626.7 91.2
71 1945 WEST 39.27 737.2 92.4
72 1946 WEST 53.46 760.5 86.0
73 1947 WEST 55.56 581.4 111.1
74 1948 WEST 49.56 662.3 130.6
75 1949 WEST 32.04 583.8 141.8
76 1950 WEST 32.24 635.2 136.7
77 1951 WEST 54.38 732.8 129.7
78 1952 WEST 71.78 864.1 145.5
79 1953 WEST 90.08 1193.5 174.8
80 1954 WEST 68.60 1188.9 213.5
library(xlsx)
Data <- read.xlsx(file.choose(), sheetIndex = 1, header = T)
Data
STT Năm CÔNG.TY Y X2 X3 NA.
1 1935 GE 33.10 1170.6 97.8 NA
2 1936 GE 45.00 2015.8 104.4 NA
3 1937 GE 77.20 2803.3 118.0 NA
4 1938 GE 44.60 2039.7 156.2 NA
5 1939 GE 48.10 2256.2 172.6 NA
6 1940 GE 74.40 2132.2 186.6 NA
7 1941 GE 113.00 1834.1 220.9 NA
8 1942 GE 91.90 1588.0 287.8 NA
9 1943 GE 61.30 1749.4 319.9 NA
10 1944 GE 56.80 1687.2 321.3 NA
11 1945 GE 93.60 2007.7 319.6 NA
12 1946 GE 159.90 2208.3 346.0 NA
13 1947 GE 147.20 1656.7 456.4 NA
14 1948 GE 146.30 1604.4 543.4 NA
15 1949 GE 98.30 1431.8 618.3 NA
16 1950 GE 93.50 1610.5 647.4 NA
17 1951 GE 135.20 1819.4 671.3 NA
18 1952 GE 157.30 2079.7 726.1 NA
19 1953 GE 179.50 2371.6 800.3 NA
20 1954 GE 189.60 2759.9 888.9 NA
21 1935 US 209.90 1362.4 53.8 NA
22 1936 US 355.30 1807.1 50.5 NA
23 1937 US 469.90 2673.3 118.1 NA
24 1938 US 262.30 1801.9 260.2 NA
25 1939 US 230.40 1957.3 312.7 NA
26 1940 US 361.60 2202.9 254.2 NA
27 1941 US 472.80 2380.5 261.4 NA
28 1942 US 445.60 2168.6 298.7 NA
29 1943 US 361.60 1985.1 301.8 NA
30 1944 US 288.20 1813.9 279.1 NA
31 1945 US 258.70 1850.2 213.8 NA
32 1946 US 420.30 2067.7 232.6 NA
33 1947 US 420.50 1796.3 264.8 NA
34 1948 US 494.50 1625.8 306.9 NA
35 1949 US 405.10 1667.0 351.1 NA
36 1950 US 418.80 1677.4 357.8 NA
37 1951 US 588.20 2289.5 341.1 NA
38 1952 US 645.20 2159.4 444.2 NA
39 1953 US 641.00 2031.3 623.6 NA
40 1954 US 459.30 2115.5 669.7 NA
41 1935 GM 317.60 3078.5 2.8 NA
42 1936 GM 391.80 4661.7 52.6 NA
43 1937 GM 410.60 5387.1 156.9 NA
44 1938 GM 257.70 2792.2 209.2 NA
45 1939 GM 330.80 4313.2 203.4 NA
46 1940 GM 461.20 4643.9 207.2 NA
47 1941 GM 512.00 4551.2 255.2 NA
48 1942 GM 448.00 3244.1 303.7 NA
49 1943 GM 499.60 4053.7 264.1 NA
50 1944 GM 547.50 4379.3 201.6 NA
51 1945 GM 561.20 4840.9 265.0 NA
52 1946 GM 688.10 4900.0 402.0 NA
53 1947 GM 568.90 3526.5 761.5 NA
54 1948 GM 529.20 3245.7 922.4 NA
55 1949 GM 555.10 3700.2 1020.1 NA
56 1950 GM 642.90 3755.6 1099.0 NA
57 1951 GM 755.90 4833.0 1207.7 NA
58 1952 GM 891.20 4926.9 1430.5 NA
59 1953 GM 1304.40 6241.7 1777.3 NA
60 1954 GM 1486.70 5593.6 226.3 NA
61 1935 WEST 12.93 191.5 1.8 NA
62 1936 WEST 25.90 516.0 0.8 NA
63 1937 WEST 35.05 729.0 7.4 NA
64 1938 WEST 22.89 560.4 18.1 NA
65 1939 WEST 18.84 519.9 23.5 NA
66 1940 WEST 28.57 628.5 26.5 NA
67 1941 WEST 48.51 537.1 36.2 NA
68 1942 WEST 43.34 561.2 60.8 NA
69 1943 WEST 37.02 617.2 84.4 NA
70 1944 WEST 37.81 626.7 91.2 NA
71 1945 WEST 39.27 737.2 92.4 NA
72 1946 WEST 53.46 760.5 86.0 NA
73 1947 WEST 55.56 581.4 111.1 NA
74 1948 WEST 49.56 662.3 130.6 NA
75 1949 WEST 32.04 583.8 141.8 NA
76 1950 WEST 32.24 635.2 136.7 NA
77 1951 WEST 54.38 732.8 129.7 NA
78 1952 WEST 71.78 864.1 145.5 NA
79 1953 WEST 90.08 1193.5 174.8 NA
80 1954 WEST 68.60 1188.9 213.5 NA

Sử dụng dữ liệu có sẵn trong R

library(datasets)
data(package = 'datasets')
b <- women
b
height weight
58 115
59 117
60 120
61 123
62 126
63 129
64 132
65 135
66 139
67 142
68 146
69 150
70 154
71 159
72 164
library(ggplot2)
data(package = 'ggplot2')
a <- msleep
a
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake brainwt bodywt
Cheetah Acinonyx carni Carnivora lc 12.1 NA NA 11.90 NA 50.000
Owl monkey Aotus omni Primates NA 17.0 1.8 NA 7.00 0.01550 0.480
Mountain beaver Aplodontia herbi Rodentia nt 14.4 2.4 NA 9.60 NA 1.350
Greater short-tailed shrew Blarina omni Soricomorpha lc 14.9 2.3 0.1333333 9.10 0.00029 0.019
Cow Bos herbi Artiodactyla domesticated 4.0 0.7 0.6666667 20.00 0.42300 600.000
Three-toed sloth Bradypus herbi Pilosa NA 14.4 2.2 0.7666667 9.60 NA 3.850
Northern fur seal Callorhinus carni Carnivora vu 8.7 1.4 0.3833333 15.30 NA 20.490
Vesper mouse Calomys NA Rodentia NA 7.0 NA NA 17.00 NA 0.045
Dog Canis carni Carnivora domesticated 10.1 2.9 0.3333333 13.90 0.07000 14.000
Roe deer Capreolus herbi Artiodactyla lc 3.0 NA NA 21.00 0.09820 14.800
Goat Capri herbi Artiodactyla lc 5.3 0.6 NA 18.70 0.11500 33.500
Guinea pig Cavis herbi Rodentia domesticated 9.4 0.8 0.2166667 14.60 0.00550 0.728
Grivet Cercopithecus omni Primates lc 10.0 0.7 NA 14.00 NA 4.750
Chinchilla Chinchilla herbi Rodentia domesticated 12.5 1.5 0.1166667 11.50 0.00640 0.420
Star-nosed mole Condylura omni Soricomorpha lc 10.3 2.2 NA 13.70 0.00100 0.060
African giant pouched rat Cricetomys omni Rodentia NA 8.3 2.0 NA 15.70 0.00660 1.000
Lesser short-tailed shrew Cryptotis omni Soricomorpha lc 9.1 1.4 0.1500000 14.90 0.00014 0.005
Long-nosed armadillo Dasypus carni Cingulata lc 17.4 3.1 0.3833333 6.60 0.01080 3.500
Tree hyrax Dendrohyrax herbi Hyracoidea lc 5.3 0.5 NA 18.70 0.01230 2.950
North American Opossum Didelphis omni Didelphimorphia lc 18.0 4.9 0.3333333 6.00 0.00630 1.700
Asian elephant Elephas herbi Proboscidea en 3.9 NA NA 20.10 4.60300 2547.000
Big brown bat Eptesicus insecti Chiroptera lc 19.7 3.9 0.1166667 4.30 0.00030 0.023
Horse Equus herbi Perissodactyla domesticated 2.9 0.6 1.0000000 21.10 0.65500 521.000
Donkey Equus herbi Perissodactyla domesticated 3.1 0.4 NA 20.90 0.41900 187.000
European hedgehog Erinaceus omni Erinaceomorpha lc 10.1 3.5 0.2833333 13.90 0.00350 0.770
Patas monkey Erythrocebus omni Primates lc 10.9 1.1 NA 13.10 0.11500 10.000
Western american chipmunk Eutamias herbi Rodentia NA 14.9 NA NA 9.10 NA 0.071
Domestic cat Felis carni Carnivora domesticated 12.5 3.2 0.4166667 11.50 0.02560 3.300
Galago Galago omni Primates NA 9.8 1.1 0.5500000 14.20 0.00500 0.200
Giraffe Giraffa herbi Artiodactyla cd 1.9 0.4 NA 22.10 NA 899.995
Pilot whale Globicephalus carni Cetacea cd 2.7 0.1 NA 21.35 NA 800.000
Gray seal Haliochoerus carni Carnivora lc 6.2 1.5 NA 17.80 0.32500 85.000
Gray hyrax Heterohyrax herbi Hyracoidea lc 6.3 0.6 NA 17.70 0.01227 2.625
Human Homo omni Primates NA 8.0 1.9 1.5000000 16.00 1.32000 62.000
Mongoose lemur Lemur herbi Primates vu 9.5 0.9 NA 14.50 NA 1.670
African elephant Loxodonta herbi Proboscidea vu 3.3 NA NA 20.70 5.71200 6654.000
Thick-tailed opposum Lutreolina carni Didelphimorphia lc 19.4 6.6 NA 4.60 NA 0.370
Macaque Macaca omni Primates NA 10.1 1.2 0.7500000 13.90 0.17900 6.800
Mongolian gerbil Meriones herbi Rodentia lc 14.2 1.9 NA 9.80 NA 0.053
Golden hamster Mesocricetus herbi Rodentia en 14.3 3.1 0.2000000 9.70 0.00100 0.120
Vole Microtus herbi Rodentia NA 12.8 NA NA 11.20 NA 0.035
House mouse Mus herbi Rodentia nt 12.5 1.4 0.1833333 11.50 0.00040 0.022
Little brown bat Myotis insecti Chiroptera NA 19.9 2.0 0.2000000 4.10 0.00025 0.010
Round-tailed muskrat Neofiber herbi Rodentia nt 14.6 NA NA 9.40 NA 0.266
Slow loris Nyctibeus carni Primates NA 11.0 NA NA 13.00 0.01250 1.400
Degu Octodon herbi Rodentia lc 7.7 0.9 NA 16.30 NA 0.210
Northern grasshopper mouse Onychomys carni Rodentia lc 14.5 NA NA 9.50 NA 0.028
Rabbit Oryctolagus herbi Lagomorpha domesticated 8.4 0.9 0.4166667 15.60 0.01210 2.500
Sheep Ovis herbi Artiodactyla domesticated 3.8 0.6 NA 20.20 0.17500 55.500
Chimpanzee Pan omni Primates NA 9.7 1.4 1.4166667 14.30 0.44000 52.200
Tiger Panthera carni Carnivora en 15.8 NA NA 8.20 NA 162.564
Jaguar Panthera carni Carnivora nt 10.4 NA NA 13.60 0.15700 100.000
Lion Panthera carni Carnivora vu 13.5 NA NA 10.50 NA 161.499
Baboon Papio omni Primates NA 9.4 1.0 0.6666667 14.60 0.18000 25.235
Desert hedgehog Paraechinus NA Erinaceomorpha lc 10.3 2.7 NA 13.70 0.00240 0.550
Potto Perodicticus omni Primates lc 11.0 NA NA 13.00 NA 1.100
Deer mouse Peromyscus NA Rodentia NA 11.5 NA NA 12.50 NA 0.021
Phalanger Phalanger NA Diprotodontia NA 13.7 1.8 NA 10.30 0.01140 1.620
Caspian seal Phoca carni Carnivora vu 3.5 0.4 NA 20.50 NA 86.000
Common porpoise Phocoena carni Cetacea vu 5.6 NA NA 18.45 NA 53.180
Potoroo Potorous herbi Diprotodontia NA 11.1 1.5 NA 12.90 NA 1.100
Giant armadillo Priodontes insecti Cingulata en 18.1 6.1 NA 5.90 0.08100 60.000
Rock hyrax Procavia NA Hyracoidea lc 5.4 0.5 NA 18.60 0.02100 3.600
Laboratory rat Rattus herbi Rodentia lc 13.0 2.4 0.1833333 11.00 0.00190 0.320
African striped mouse Rhabdomys omni Rodentia NA 8.7 NA NA 15.30 NA 0.044
Squirrel monkey Saimiri omni Primates NA 9.6 1.4 NA 14.40 0.02000 0.743
Eastern american mole Scalopus insecti Soricomorpha lc 8.4 2.1 0.1666667 15.60 0.00120 0.075
Cotton rat Sigmodon herbi Rodentia NA 11.3 1.1 0.1500000 12.70 0.00118 0.148
Mole rat Spalax NA Rodentia NA 10.6 2.4 NA 13.40 0.00300 0.122
Arctic ground squirrel Spermophilus herbi Rodentia lc 16.6 NA NA 7.40 0.00570 0.920
Thirteen-lined ground squirrel Spermophilus herbi Rodentia lc 13.8 3.4 0.2166667 10.20 0.00400 0.101
Golden-mantled ground squirrel Spermophilus herbi Rodentia lc 15.9 3.0 NA 8.10 NA 0.205
Musk shrew Suncus NA Soricomorpha NA 12.8 2.0 0.1833333 11.20 0.00033 0.048
Pig Sus omni Artiodactyla domesticated 9.1 2.4 0.5000000 14.90 0.18000 86.250
Short-nosed echidna Tachyglossus insecti Monotremata NA 8.6 NA NA 15.40 0.02500 4.500
Eastern american chipmunk Tamias herbi Rodentia NA 15.8 NA NA 8.20 NA 0.112
Brazilian tapir Tapirus herbi Perissodactyla vu 4.4 1.0 0.9000000 19.60 0.16900 207.501
Tenrec Tenrec omni Afrosoricida NA 15.6 2.3 NA 8.40 0.00260 0.900
Tree shrew Tupaia omni Scandentia NA 8.9 2.6 0.2333333 15.10 0.00250 0.104
Bottle-nosed dolphin Tursiops carni Cetacea NA 5.2 NA NA 18.80 NA 173.330
Genet Genetta carni Carnivora NA 6.3 1.3 NA 17.70 0.01750 2.000
Arctic fox Vulpes carni Carnivora NA 12.5 NA NA 11.50 0.04450 3.380
Red fox Vulpes carni Carnivora NA 9.8 2.4 0.3500000 14.20 0.05040 4.230

Bộ dữ liệu “Data trong bài MP05 của Fulltight”

e <- data
is.data.frame(e)
## [1] TRUE
is.matrix(e)
## [1] FALSE
length(e)
## [1] 6
names(e)
## [1] "STT"     "Năm"     "CÔNG.TY" "Y"       "X2"      "X3"
dim(e)
## [1] 80  6
library(skimr)
skim(e)
Data summary
Name e
Number of rows 80
Number of columns 6
_______________________
Column type frequency:
character 1
numeric 5
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
CÔNG.TY 0 1 2 4 0 4 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
STT 0 1 40.50 23.24 1.00 20.75 40.50 60.25 80.0 ▇▇▇▇▇
Năm 0 1 1944.50 5.80 1935.00 1939.75 1944.50 1949.25 1954.0 ▇▇▇▇▇
Y 0 1 290.92 284.85 12.93 55.26 199.75 459.78 1486.7 ▇▅▁▁▁
X2 0 1 2229.45 1430.01 191.50 1192.35 1971.20 2794.97 6241.7 ▅▇▂▂▁
X3 0 1 333.51 337.71 0.80 118.07 243.40 352.78 1777.3 ▇▁▁▁▁
head(e, 10)
STT Năm CÔNG.TY Y X2 X3
1 1935 GE 33.1 1170.6 97.8
2 1936 GE 45.0 2015.8 104.4
3 1937 GE 77.2 2803.3 118.0
4 1938 GE 44.6 2039.7 156.2
5 1939 GE 48.1 2256.2 172.6
6 1940 GE 74.4 2132.2 186.6
7 1941 GE 113.0 1834.1 220.9
8 1942 GE 91.9 1588.0 287.8
9 1943 GE 61.3 1749.4 319.9
10 1944 GE 56.8 1687.2 321.3
tail(e,12)
STT Năm CÔNG.TY Y X2 X3
69 69 1943 WEST 37.02 617.2 84.4
70 70 1944 WEST 37.81 626.7 91.2
71 71 1945 WEST 39.27 737.2 92.4
72 72 1946 WEST 53.46 760.5 86.0
73 73 1947 WEST 55.56 581.4 111.1
74 74 1948 WEST 49.56 662.3 130.6
75 75 1949 WEST 32.04 583.8 141.8
76 76 1950 WEST 32.24 635.2 136.7
77 77 1951 WEST 54.38 732.8 129.7
78 78 1952 WEST 71.78 864.1 145.5
79 79 1953 WEST 90.08 1193.5 174.8
80 80 1954 WEST 68.60 1188.9 213.5
str(e)
## 'data.frame':    80 obs. of  6 variables:
##  $ STT    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Năm    : int  1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 ...
##  $ CÔNG.TY: chr  "GE" "GE" "GE" "GE" ...
##  $ Y      : num  33.1 45 77.2 44.6 48.1 74.4 113 91.9 61.3 56.8 ...
##  $ X2     : num  1171 2016 2803 2040 2256 ...
##  $ X3     : num  97.8 104.4 118 156.2 172.6 ...
is.na(e)
##         STT   Năm CÔNG.TY     Y    X2    X3
##  [1,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [2,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [3,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [4,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [5,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [6,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [7,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [8,] FALSE FALSE   FALSE FALSE FALSE FALSE
##  [9,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [10,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [11,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [12,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [13,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [14,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [15,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [16,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [17,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [18,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [19,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [20,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [21,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [22,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [23,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [24,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [25,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [26,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [27,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [28,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [29,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [30,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [31,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [32,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [33,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [34,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [35,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [36,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [37,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [38,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [39,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [40,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [41,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [42,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [43,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [44,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [45,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [46,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [47,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [48,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [49,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [50,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [51,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [52,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [53,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [54,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [55,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [56,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [57,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [58,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [59,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [60,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [61,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [62,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [63,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [64,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [65,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [66,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [67,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [68,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [69,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [70,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [71,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [72,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [73,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [74,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [75,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [76,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [77,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [78,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [79,] FALSE FALSE   FALSE FALSE FALSE FALSE
## [80,] FALSE FALSE   FALSE FALSE FALSE FALSE
sum(is.na(e))
## [1] 0
which(is.na(e))
## integer(0)

Rút trích dữ liệu

names(e) <- c('S', 'N', 'CT', 'Y', 'X2', 'X3')
e
S N CT Y X2 X3
1 1935 GE 33.10 1170.6 97.8
2 1936 GE 45.00 2015.8 104.4
3 1937 GE 77.20 2803.3 118.0
4 1938 GE 44.60 2039.7 156.2
5 1939 GE 48.10 2256.2 172.6
6 1940 GE 74.40 2132.2 186.6
7 1941 GE 113.00 1834.1 220.9
8 1942 GE 91.90 1588.0 287.8
9 1943 GE 61.30 1749.4 319.9
10 1944 GE 56.80 1687.2 321.3
11 1945 GE 93.60 2007.7 319.6
12 1946 GE 159.90 2208.3 346.0
13 1947 GE 147.20 1656.7 456.4
14 1948 GE 146.30 1604.4 543.4
15 1949 GE 98.30 1431.8 618.3
16 1950 GE 93.50 1610.5 647.4
17 1951 GE 135.20 1819.4 671.3
18 1952 GE 157.30 2079.7 726.1
19 1953 GE 179.50 2371.6 800.3
20 1954 GE 189.60 2759.9 888.9
21 1935 US 209.90 1362.4 53.8
22 1936 US 355.30 1807.1 50.5
23 1937 US 469.90 2673.3 118.1
24 1938 US 262.30 1801.9 260.2
25 1939 US 230.40 1957.3 312.7
26 1940 US 361.60 2202.9 254.2
27 1941 US 472.80 2380.5 261.4
28 1942 US 445.60 2168.6 298.7
29 1943 US 361.60 1985.1 301.8
30 1944 US 288.20 1813.9 279.1
31 1945 US 258.70 1850.2 213.8
32 1946 US 420.30 2067.7 232.6
33 1947 US 420.50 1796.3 264.8
34 1948 US 494.50 1625.8 306.9
35 1949 US 405.10 1667.0 351.1
36 1950 US 418.80 1677.4 357.8
37 1951 US 588.20 2289.5 341.1
38 1952 US 645.20 2159.4 444.2
39 1953 US 641.00 2031.3 623.6
40 1954 US 459.30 2115.5 669.7
41 1935 GM 317.60 3078.5 2.8
42 1936 GM 391.80 4661.7 52.6
43 1937 GM 410.60 5387.1 156.9
44 1938 GM 257.70 2792.2 209.2
45 1939 GM 330.80 4313.2 203.4
46 1940 GM 461.20 4643.9 207.2
47 1941 GM 512.00 4551.2 255.2
48 1942 GM 448.00 3244.1 303.7
49 1943 GM 499.60 4053.7 264.1
50 1944 GM 547.50 4379.3 201.6
51 1945 GM 561.20 4840.9 265.0
52 1946 GM 688.10 4900.0 402.0
53 1947 GM 568.90 3526.5 761.5
54 1948 GM 529.20 3245.7 922.4
55 1949 GM 555.10 3700.2 1020.1
56 1950 GM 642.90 3755.6 1099.0
57 1951 GM 755.90 4833.0 1207.7
58 1952 GM 891.20 4926.9 1430.5
59 1953 GM 1304.40 6241.7 1777.3
60 1954 GM 1486.70 5593.6 226.3
61 1935 WEST 12.93 191.5 1.8
62 1936 WEST 25.90 516.0 0.8
63 1937 WEST 35.05 729.0 7.4
64 1938 WEST 22.89 560.4 18.1
65 1939 WEST 18.84 519.9 23.5
66 1940 WEST 28.57 628.5 26.5
67 1941 WEST 48.51 537.1 36.2
68 1942 WEST 43.34 561.2 60.8
69 1943 WEST 37.02 617.2 84.4
70 1944 WEST 37.81 626.7 91.2
71 1945 WEST 39.27 737.2 92.4
72 1946 WEST 53.46 760.5 86.0
73 1947 WEST 55.56 581.4 111.1
74 1948 WEST 49.56 662.3 130.6
75 1949 WEST 32.04 583.8 141.8
76 1950 WEST 32.24 635.2 136.7
77 1951 WEST 54.38 732.8 129.7
78 1952 WEST 71.78 864.1 145.5
79 1953 WEST 90.08 1193.5 174.8
80 1954 WEST 68.60 1188.9 213.5
a1 <- e[10,4]
a1
## [1] 56.8
CT <- e$CT
CT
##  [1] "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"  
## [11] "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"   "GE"  
## [21] "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"  
## [31] "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"   "US"  
## [41] "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"  
## [51] "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"   "GM"  
## [61] "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST"
## [71] "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST" "WEST"
a2 <- e[3,]
a2
S N CT Y X2 X3
3 3 1937 GE 77.2 2803.3 118
a3 <- e[,c(1,4)]
a3
S Y
1 33.10
2 45.00
3 77.20
4 44.60
5 48.10
6 74.40
7 113.00
8 91.90
9 61.30
10 56.80
11 93.60
12 159.90
13 147.20
14 146.30
15 98.30
16 93.50
17 135.20
18 157.30
19 179.50
20 189.60
21 209.90
22 355.30
23 469.90
24 262.30
25 230.40
26 361.60
27 472.80
28 445.60
29 361.60
30 288.20
31 258.70
32 420.30
33 420.50
34 494.50
35 405.10
36 418.80
37 588.20
38 645.20
39 641.00
40 459.30
41 317.60
42 391.80
43 410.60
44 257.70
45 330.80
46 461.20
47 512.00
48 448.00
49 499.60
50 547.50
51 561.20
52 688.10
53 568.90
54 529.20
55 555.10
56 642.90
57 755.90
58 891.20
59 1304.40
60 1486.70
61 12.93
62 25.90
63 35.05
64 22.89
65 18.84
66 28.57
67 48.51
68 43.34
69 37.02
70 37.81
71 39.27
72 53.46
73 55.56
74 49.56
75 32.04
76 32.24
77 54.38
78 71.78
79 90.08
80 68.60
a4 <- e[c(3,5,7,15,56),]
a4
S N CT Y X2 X3
3 3 1937 GE 77.2 2803.3 118.0
5 5 1939 GE 48.1 2256.2 172.6
7 7 1941 GE 113.0 1834.1 220.9
15 15 1949 GE 98.3 1431.8 618.3
56 56 1950 GM 642.9 3755.6 1099.0
a5 <- e[e$Y <50 & e$X2 <=2000,]
a5
S N CT Y X2 X3
1 1 1935 GE 33.10 1170.6 97.8
61 61 1935 WEST 12.93 191.5 1.8
62 62 1936 WEST 25.90 516.0 0.8
63 63 1937 WEST 35.05 729.0 7.4
64 64 1938 WEST 22.89 560.4 18.1
65 65 1939 WEST 18.84 519.9 23.5
66 66 1940 WEST 28.57 628.5 26.5
67 67 1941 WEST 48.51 537.1 36.2
68 68 1942 WEST 43.34 561.2 60.8
69 69 1943 WEST 37.02 617.2 84.4
70 70 1944 WEST 37.81 626.7 91.2
71 71 1945 WEST 39.27 737.2 92.4
74 74 1948 WEST 49.56 662.3 130.6
75 75 1949 WEST 32.04 583.8 141.8
76 76 1950 WEST 32.24 635.2 136.7
a5 <- e[e$CT =='WEST'| e$X3 >= 50,]
a5
S N CT Y X2 X3
1 1 1935 GE 33.10 1170.6 97.8
2 2 1936 GE 45.00 2015.8 104.4
3 3 1937 GE 77.20 2803.3 118.0
4 4 1938 GE 44.60 2039.7 156.2
5 5 1939 GE 48.10 2256.2 172.6
6 6 1940 GE 74.40 2132.2 186.6
7 7 1941 GE 113.00 1834.1 220.9
8 8 1942 GE 91.90 1588.0 287.8
9 9 1943 GE 61.30 1749.4 319.9
10 10 1944 GE 56.80 1687.2 321.3
11 11 1945 GE 93.60 2007.7 319.6
12 12 1946 GE 159.90 2208.3 346.0
13 13 1947 GE 147.20 1656.7 456.4
14 14 1948 GE 146.30 1604.4 543.4
15 15 1949 GE 98.30 1431.8 618.3
16 16 1950 GE 93.50 1610.5 647.4
17 17 1951 GE 135.20 1819.4 671.3
18 18 1952 GE 157.30 2079.7 726.1
19 19 1953 GE 179.50 2371.6 800.3
20 20 1954 GE 189.60 2759.9 888.9
21 21 1935 US 209.90 1362.4 53.8
22 22 1936 US 355.30 1807.1 50.5
23 23 1937 US 469.90 2673.3 118.1
24 24 1938 US 262.30 1801.9 260.2
25 25 1939 US 230.40 1957.3 312.7
26 26 1940 US 361.60 2202.9 254.2
27 27 1941 US 472.80 2380.5 261.4
28 28 1942 US 445.60 2168.6 298.7
29 29 1943 US 361.60 1985.1 301.8
30 30 1944 US 288.20 1813.9 279.1
31 31 1945 US 258.70 1850.2 213.8
32 32 1946 US 420.30 2067.7 232.6
33 33 1947 US 420.50 1796.3 264.8
34 34 1948 US 494.50 1625.8 306.9
35 35 1949 US 405.10 1667.0 351.1
36 36 1950 US 418.80 1677.4 357.8
37 37 1951 US 588.20 2289.5 341.1
38 38 1952 US 645.20 2159.4 444.2
39 39 1953 US 641.00 2031.3 623.6
40 40 1954 US 459.30 2115.5 669.7
42 42 1936 GM 391.80 4661.7 52.6
43 43 1937 GM 410.60 5387.1 156.9
44 44 1938 GM 257.70 2792.2 209.2
45 45 1939 GM 330.80 4313.2 203.4
46 46 1940 GM 461.20 4643.9 207.2
47 47 1941 GM 512.00 4551.2 255.2
48 48 1942 GM 448.00 3244.1 303.7
49 49 1943 GM 499.60 4053.7 264.1
50 50 1944 GM 547.50 4379.3 201.6
51 51 1945 GM 561.20 4840.9 265.0
52 52 1946 GM 688.10 4900.0 402.0
53 53 1947 GM 568.90 3526.5 761.5
54 54 1948 GM 529.20 3245.7 922.4
55 55 1949 GM 555.10 3700.2 1020.1
56 56 1950 GM 642.90 3755.6 1099.0
57 57 1951 GM 755.90 4833.0 1207.7
58 58 1952 GM 891.20 4926.9 1430.5
59 59 1953 GM 1304.40 6241.7 1777.3
60 60 1954 GM 1486.70 5593.6 226.3
61 61 1935 WEST 12.93 191.5 1.8
62 62 1936 WEST 25.90 516.0 0.8
63 63 1937 WEST 35.05 729.0 7.4
64 64 1938 WEST 22.89 560.4 18.1
65 65 1939 WEST 18.84 519.9 23.5
66 66 1940 WEST 28.57 628.5 26.5
67 67 1941 WEST 48.51 537.1 36.2
68 68 1942 WEST 43.34 561.2 60.8
69 69 1943 WEST 37.02 617.2 84.4
70 70 1944 WEST 37.81 626.7 91.2
71 71 1945 WEST 39.27 737.2 92.4
72 72 1946 WEST 53.46 760.5 86.0
73 73 1947 WEST 55.56 581.4 111.1
74 74 1948 WEST 49.56 662.3 130.6
75 75 1949 WEST 32.04 583.8 141.8
76 76 1950 WEST 32.24 635.2 136.7
77 77 1951 WEST 54.38 732.8 129.7
78 78 1952 WEST 71.78 864.1 145.5
79 79 1953 WEST 90.08 1193.5 174.8
80 80 1954 WEST 68.60 1188.9 213.5
str(e)
## 'data.frame':    80 obs. of  6 variables:
##  $ S : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ N : int  1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 ...
##  $ CT: chr  "GE" "GE" "GE" "GE" ...
##  $ Y : num  33.1 45 77.2 44.6 48.1 74.4 113 91.9 61.3 56.8 ...
##  $ X2: num  1171 2016 2803 2040 2256 ...
##  $ X3: num  97.8 104.4 118 156.2 172.6 ...
head(e,4)
S N CT Y X2 X3
1 1935 GE 33.1 1170.6 97.8
2 1936 GE 45.0 2015.8 104.4
3 1937 GE 77.2 2803.3 118.0
4 1938 GE 44.6 2039.7 156.2
tail(e,7)
S N CT Y X2 X3
74 74 1948 WEST 49.56 662.3 130.6
75 75 1949 WEST 32.04 583.8 141.8
76 76 1950 WEST 32.24 635.2 136.7
77 77 1951 WEST 54.38 732.8 129.7
78 78 1952 WEST 71.78 864.1 145.5
79 79 1953 WEST 90.08 1193.5 174.8
80 80 1954 WEST 68.60 1188.9 213.5
a6 <- e[e$CT =='GE',]
a6
S N CT Y X2 X3
1 1935 GE 33.1 1170.6 97.8
2 1936 GE 45.0 2015.8 104.4
3 1937 GE 77.2 2803.3 118.0
4 1938 GE 44.6 2039.7 156.2
5 1939 GE 48.1 2256.2 172.6
6 1940 GE 74.4 2132.2 186.6
7 1941 GE 113.0 1834.1 220.9
8 1942 GE 91.9 1588.0 287.8
9 1943 GE 61.3 1749.4 319.9
10 1944 GE 56.8 1687.2 321.3
11 1945 GE 93.6 2007.7 319.6
12 1946 GE 159.9 2208.3 346.0
13 1947 GE 147.2 1656.7 456.4
14 1948 GE 146.3 1604.4 543.4
15 1949 GE 98.3 1431.8 618.3
16 1950 GE 93.5 1610.5 647.4
17 1951 GE 135.2 1819.4 671.3
18 1952 GE 157.3 2079.7 726.1
19 1953 GE 179.5 2371.6 800.3
20 1954 GE 189.6 2759.9 888.9
a7 <- e[5:20,]
a7
S N CT Y X2 X3
5 5 1939 GE 48.1 2256.2 172.6
6 6 1940 GE 74.4 2132.2 186.6
7 7 1941 GE 113.0 1834.1 220.9
8 8 1942 GE 91.9 1588.0 287.8
9 9 1943 GE 61.3 1749.4 319.9
10 10 1944 GE 56.8 1687.2 321.3
11 11 1945 GE 93.6 2007.7 319.6
12 12 1946 GE 159.9 2208.3 346.0
13 13 1947 GE 147.2 1656.7 456.4
14 14 1948 GE 146.3 1604.4 543.4
15 15 1949 GE 98.3 1431.8 618.3
16 16 1950 GE 93.5 1610.5 647.4
17 17 1951 GE 135.2 1819.4 671.3
18 18 1952 GE 157.3 2079.7 726.1
19 19 1953 GE 179.5 2371.6 800.3
20 20 1954 GE 189.6 2759.9 888.9
a8 <- e[e$CT != 'WEST',]
a8
S N CT Y X2 X3
1 1935 GE 33.1 1170.6 97.8
2 1936 GE 45.0 2015.8 104.4
3 1937 GE 77.2 2803.3 118.0
4 1938 GE 44.6 2039.7 156.2
5 1939 GE 48.1 2256.2 172.6
6 1940 GE 74.4 2132.2 186.6
7 1941 GE 113.0 1834.1 220.9
8 1942 GE 91.9 1588.0 287.8
9 1943 GE 61.3 1749.4 319.9
10 1944 GE 56.8 1687.2 321.3
11 1945 GE 93.6 2007.7 319.6
12 1946 GE 159.9 2208.3 346.0
13 1947 GE 147.2 1656.7 456.4
14 1948 GE 146.3 1604.4 543.4
15 1949 GE 98.3 1431.8 618.3
16 1950 GE 93.5 1610.5 647.4
17 1951 GE 135.2 1819.4 671.3
18 1952 GE 157.3 2079.7 726.1
19 1953 GE 179.5 2371.6 800.3
20 1954 GE 189.6 2759.9 888.9
21 1935 US 209.9 1362.4 53.8
22 1936 US 355.3 1807.1 50.5
23 1937 US 469.9 2673.3 118.1
24 1938 US 262.3 1801.9 260.2
25 1939 US 230.4 1957.3 312.7
26 1940 US 361.6 2202.9 254.2
27 1941 US 472.8 2380.5 261.4
28 1942 US 445.6 2168.6 298.7
29 1943 US 361.6 1985.1 301.8
30 1944 US 288.2 1813.9 279.1
31 1945 US 258.7 1850.2 213.8
32 1946 US 420.3 2067.7 232.6
33 1947 US 420.5 1796.3 264.8
34 1948 US 494.5 1625.8 306.9
35 1949 US 405.1 1667.0 351.1
36 1950 US 418.8 1677.4 357.8
37 1951 US 588.2 2289.5 341.1
38 1952 US 645.2 2159.4 444.2
39 1953 US 641.0 2031.3 623.6
40 1954 US 459.3 2115.5 669.7
41 1935 GM 317.6 3078.5 2.8
42 1936 GM 391.8 4661.7 52.6
43 1937 GM 410.6 5387.1 156.9
44 1938 GM 257.7 2792.2 209.2
45 1939 GM 330.8 4313.2 203.4
46 1940 GM 461.2 4643.9 207.2
47 1941 GM 512.0 4551.2 255.2
48 1942 GM 448.0 3244.1 303.7
49 1943 GM 499.6 4053.7 264.1
50 1944 GM 547.5 4379.3 201.6
51 1945 GM 561.2 4840.9 265.0
52 1946 GM 688.1 4900.0 402.0
53 1947 GM 568.9 3526.5 761.5
54 1948 GM 529.2 3245.7 922.4
55 1949 GM 555.1 3700.2 1020.1
56 1950 GM 642.9 3755.6 1099.0
57 1951 GM 755.9 4833.0 1207.7
58 1952 GM 891.2 4926.9 1430.5
59 1953 GM 1304.4 6241.7 1777.3
60 1954 GM 1486.7 5593.6 226.3
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
i <- iris
i1 <- filter(i,Sepal.Length >5|Species=='setosa')
i1
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.1 setosa
5.4 3.7 1.5 0.2 setosa
4.8 3.4 1.6 0.2 setosa
4.8 3.0 1.4 0.1 setosa
4.3 3.0 1.1 0.1 setosa
5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
5.4 3.9 1.3 0.4 setosa
5.1 3.5 1.4 0.3 setosa
5.7 3.8 1.7 0.3 setosa
5.1 3.8 1.5 0.3 setosa
5.4 3.4 1.7 0.2 setosa
5.1 3.7 1.5 0.4 setosa
4.6 3.6 1.0 0.2 setosa
5.1 3.3 1.7 0.5 setosa
4.8 3.4 1.9 0.2 setosa
5.0 3.0 1.6 0.2 setosa
5.0 3.4 1.6 0.4 setosa
5.2 3.5 1.5 0.2 setosa
5.2 3.4 1.4 0.2 setosa
4.7 3.2 1.6 0.2 setosa
4.8 3.1 1.6 0.2 setosa
5.4 3.4 1.5 0.4 setosa
5.2 4.1 1.5 0.1 setosa
5.5 4.2 1.4 0.2 setosa
4.9 3.1 1.5 0.2 setosa
5.0 3.2 1.2 0.2 setosa
5.5 3.5 1.3 0.2 setosa
4.9 3.6 1.4 0.1 setosa
4.4 3.0 1.3 0.2 setosa
5.1 3.4 1.5 0.2 setosa
5.0 3.5 1.3 0.3 setosa
4.5 2.3 1.3 0.3 setosa
4.4 3.2 1.3 0.2 setosa
5.0 3.5 1.6 0.6 setosa
5.1 3.8 1.9 0.4 setosa
4.8 3.0 1.4 0.3 setosa
5.1 3.8 1.6 0.2 setosa
4.6 3.2 1.4 0.2 setosa
5.3 3.7 1.5 0.2 setosa
5.0 3.3 1.4 0.2 setosa
7.0 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
5.5 2.3 4.0 1.3 versicolor
6.5 2.8 4.6 1.5 versicolor
5.7 2.8 4.5 1.3 versicolor
6.3 3.3 4.7 1.6 versicolor
6.6 2.9 4.6 1.3 versicolor
5.2 2.7 3.9 1.4 versicolor
5.9 3.0 4.2 1.5 versicolor
6.0 2.2 4.0 1.0 versicolor
6.1 2.9 4.7 1.4 versicolor
5.6 2.9 3.6 1.3 versicolor
6.7 3.1 4.4 1.4 versicolor
5.6 3.0 4.5 1.5 versicolor
5.8 2.7 4.1 1.0 versicolor
6.2 2.2 4.5 1.5 versicolor
5.6 2.5 3.9 1.1 versicolor
5.9 3.2 4.8 1.8 versicolor
6.1 2.8 4.0 1.3 versicolor
6.3 2.5 4.9 1.5 versicolor
6.1 2.8 4.7 1.2 versicolor
6.4 2.9 4.3 1.3 versicolor
6.6 3.0 4.4 1.4 versicolor
6.8 2.8 4.8 1.4 versicolor
6.7 3.0 5.0 1.7 versicolor
6.0 2.9 4.5 1.5 versicolor
5.7 2.6 3.5 1.0 versicolor
5.5 2.4 3.8 1.1 versicolor
5.5 2.4 3.7 1.0 versicolor
5.8 2.7 3.9 1.2 versicolor
6.0 2.7 5.1 1.6 versicolor
5.4 3.0 4.5 1.5 versicolor
6.0 3.4 4.5 1.6 versicolor
6.7 3.1 4.7 1.5 versicolor
6.3 2.3 4.4 1.3 versicolor
5.6 3.0 4.1 1.3 versicolor
5.5 2.5 4.0 1.3 versicolor
5.5 2.6 4.4 1.2 versicolor
6.1 3.0 4.6 1.4 versicolor
5.8 2.6 4.0 1.2 versicolor
5.6 2.7 4.2 1.3 versicolor
5.7 3.0 4.2 1.2 versicolor
5.7 2.9 4.2 1.3 versicolor
6.2 2.9 4.3 1.3 versicolor
5.1 2.5 3.0 1.1 versicolor
5.7 2.8 4.1 1.3 versicolor
6.3 3.3 6.0 2.5 virginica
5.8 2.7 5.1 1.9 virginica
7.1 3.0 5.9 2.1 virginica
6.3 2.9 5.6 1.8 virginica
6.5 3.0 5.8 2.2 virginica
7.6 3.0 6.6 2.1 virginica
7.3 2.9 6.3 1.8 virginica
6.7 2.5 5.8 1.8 virginica
7.2 3.6 6.1 2.5 virginica
6.5 3.2 5.1 2.0 virginica
6.4 2.7 5.3 1.9 virginica
6.8 3.0 5.5 2.1 virginica
5.7 2.5 5.0 2.0 virginica
5.8 2.8 5.1 2.4 virginica
6.4 3.2 5.3 2.3 virginica
6.5 3.0 5.5 1.8 virginica
7.7 3.8 6.7 2.2 virginica
7.7 2.6 6.9 2.3 virginica
6.0 2.2 5.0 1.5 virginica
6.9 3.2 5.7 2.3 virginica
5.6 2.8 4.9 2.0 virginica
7.7 2.8 6.7 2.0 virginica
6.3 2.7 4.9 1.8 virginica
6.7 3.3 5.7 2.1 virginica
7.2 3.2 6.0 1.8 virginica
6.2 2.8 4.8 1.8 virginica
6.1 3.0 4.9 1.8 virginica
6.4 2.8 5.6 2.1 virginica
7.2 3.0 5.8 1.6 virginica
7.4 2.8 6.1 1.9 virginica
7.9 3.8 6.4 2.0 virginica
6.4 2.8 5.6 2.2 virginica
6.3 2.8 5.1 1.5 virginica
6.1 2.6 5.6 1.4 virginica
7.7 3.0 6.1 2.3 virginica
6.3 3.4 5.6 2.4 virginica
6.4 3.1 5.5 1.8 virginica
6.0 3.0 4.8 1.8 virginica
6.9 3.1 5.4 2.1 virginica
6.7 3.1 5.6 2.4 virginica
6.9 3.1 5.1 2.3 virginica
5.8 2.7 5.1 1.9 virginica
6.8 3.2 5.9 2.3 virginica
6.7 3.3 5.7 2.5 virginica
6.7 3.0 5.2 2.3 virginica
6.3 2.5 5.0 1.9 virginica
6.5 3.0 5.2 2.0 virginica
6.2 3.4 5.4 2.3 virginica
5.9 3.0 5.1 1.8 virginica
i2 <- i %>% filter(Petal.Width >= 1.5|Species == 'virginica')
i2
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
6.5 2.8 4.6 1.5 versicolor
6.3 3.3 4.7 1.6 versicolor
5.9 3.0 4.2 1.5 versicolor
5.6 3.0 4.5 1.5 versicolor
6.2 2.2 4.5 1.5 versicolor
5.9 3.2 4.8 1.8 versicolor
6.3 2.5 4.9 1.5 versicolor
6.7 3.0 5.0 1.7 versicolor
6.0 2.9 4.5 1.5 versicolor
6.0 2.7 5.1 1.6 versicolor
5.4 3.0 4.5 1.5 versicolor
6.0 3.4 4.5 1.6 versicolor
6.7 3.1 4.7 1.5 versicolor
6.3 3.3 6.0 2.5 virginica
5.8 2.7 5.1 1.9 virginica
7.1 3.0 5.9 2.1 virginica
6.3 2.9 5.6 1.8 virginica
6.5 3.0 5.8 2.2 virginica
7.6 3.0 6.6 2.1 virginica
4.9 2.5 4.5 1.7 virginica
7.3 2.9 6.3 1.8 virginica
6.7 2.5 5.8 1.8 virginica
7.2 3.6 6.1 2.5 virginica
6.5 3.2 5.1 2.0 virginica
6.4 2.7 5.3 1.9 virginica
6.8 3.0 5.5 2.1 virginica
5.7 2.5 5.0 2.0 virginica
5.8 2.8 5.1 2.4 virginica
6.4 3.2 5.3 2.3 virginica
6.5 3.0 5.5 1.8 virginica
7.7 3.8 6.7 2.2 virginica
7.7 2.6 6.9 2.3 virginica
6.0 2.2 5.0 1.5 virginica
6.9 3.2 5.7 2.3 virginica
5.6 2.8 4.9 2.0 virginica
7.7 2.8 6.7 2.0 virginica
6.3 2.7 4.9 1.8 virginica
6.7 3.3 5.7 2.1 virginica
7.2 3.2 6.0 1.8 virginica
6.2 2.8 4.8 1.8 virginica
6.1 3.0 4.9 1.8 virginica
6.4 2.8 5.6 2.1 virginica
7.2 3.0 5.8 1.6 virginica
7.4 2.8 6.1 1.9 virginica
7.9 3.8 6.4 2.0 virginica
6.4 2.8 5.6 2.2 virginica
6.3 2.8 5.1 1.5 virginica
6.1 2.6 5.6 1.4 virginica
7.7 3.0 6.1 2.3 virginica
6.3 3.4 5.6 2.4 virginica
6.4 3.1 5.5 1.8 virginica
6.0 3.0 4.8 1.8 virginica
6.9 3.1 5.4 2.1 virginica
6.7 3.1 5.6 2.4 virginica
6.9 3.1 5.1 2.3 virginica
5.8 2.7 5.1 1.9 virginica
6.8 3.2 5.9 2.3 virginica
6.7 3.3 5.7 2.5 virginica
6.7 3.0 5.2 2.3 virginica
6.3 2.5 5.0 1.9 virginica
6.5 3.0 5.2 2.0 virginica
6.2 3.4 5.4 2.3 virginica
5.9 3.0 5.1 1.8 virginica
i3 <- i %>% select(Sepal.Length, Petal.Width, Species)
i3
Sepal.Length Petal.Width Species
5.1 0.2 setosa
4.9 0.2 setosa
4.7 0.2 setosa
4.6 0.2 setosa
5.0 0.2 setosa
5.4 0.4 setosa
4.6 0.3 setosa
5.0 0.2 setosa
4.4 0.2 setosa
4.9 0.1 setosa
5.4 0.2 setosa
4.8 0.2 setosa
4.8 0.1 setosa
4.3 0.1 setosa
5.8 0.2 setosa
5.7 0.4 setosa
5.4 0.4 setosa
5.1 0.3 setosa
5.7 0.3 setosa
5.1 0.3 setosa
5.4 0.2 setosa
5.1 0.4 setosa
4.6 0.2 setosa
5.1 0.5 setosa
4.8 0.2 setosa
5.0 0.2 setosa
5.0 0.4 setosa
5.2 0.2 setosa
5.2 0.2 setosa
4.7 0.2 setosa
4.8 0.2 setosa
5.4 0.4 setosa
5.2 0.1 setosa
5.5 0.2 setosa
4.9 0.2 setosa
5.0 0.2 setosa
5.5 0.2 setosa
4.9 0.1 setosa
4.4 0.2 setosa
5.1 0.2 setosa
5.0 0.3 setosa
4.5 0.3 setosa
4.4 0.2 setosa
5.0 0.6 setosa
5.1 0.4 setosa
4.8 0.3 setosa
5.1 0.2 setosa
4.6 0.2 setosa
5.3 0.2 setosa
5.0 0.2 setosa
7.0 1.4 versicolor
6.4 1.5 versicolor
6.9 1.5 versicolor
5.5 1.3 versicolor
6.5 1.5 versicolor
5.7 1.3 versicolor
6.3 1.6 versicolor
4.9 1.0 versicolor
6.6 1.3 versicolor
5.2 1.4 versicolor
5.0 1.0 versicolor
5.9 1.5 versicolor
6.0 1.0 versicolor
6.1 1.4 versicolor
5.6 1.3 versicolor
6.7 1.4 versicolor
5.6 1.5 versicolor
5.8 1.0 versicolor
6.2 1.5 versicolor
5.6 1.1 versicolor
5.9 1.8 versicolor
6.1 1.3 versicolor
6.3 1.5 versicolor
6.1 1.2 versicolor
6.4 1.3 versicolor
6.6 1.4 versicolor
6.8 1.4 versicolor
6.7 1.7 versicolor
6.0 1.5 versicolor
5.7 1.0 versicolor
5.5 1.1 versicolor
5.5 1.0 versicolor
5.8 1.2 versicolor
6.0 1.6 versicolor
5.4 1.5 versicolor
6.0 1.6 versicolor
6.7 1.5 versicolor
6.3 1.3 versicolor
5.6 1.3 versicolor
5.5 1.3 versicolor
5.5 1.2 versicolor
6.1 1.4 versicolor
5.8 1.2 versicolor
5.0 1.0 versicolor
5.6 1.3 versicolor
5.7 1.2 versicolor
5.7 1.3 versicolor
6.2 1.3 versicolor
5.1 1.1 versicolor
5.7 1.3 versicolor
6.3 2.5 virginica
5.8 1.9 virginica
7.1 2.1 virginica
6.3 1.8 virginica
6.5 2.2 virginica
7.6 2.1 virginica
4.9 1.7 virginica
7.3 1.8 virginica
6.7 1.8 virginica
7.2 2.5 virginica
6.5 2.0 virginica
6.4 1.9 virginica
6.8 2.1 virginica
5.7 2.0 virginica
5.8 2.4 virginica
6.4 2.3 virginica
6.5 1.8 virginica
7.7 2.2 virginica
7.7 2.3 virginica
6.0 1.5 virginica
6.9 2.3 virginica
5.6 2.0 virginica
7.7 2.0 virginica
6.3 1.8 virginica
6.7 2.1 virginica
7.2 1.8 virginica
6.2 1.8 virginica
6.1 1.8 virginica
6.4 2.1 virginica
7.2 1.6 virginica
7.4 1.9 virginica
7.9 2.0 virginica
6.4 2.2 virginica
6.3 1.5 virginica
6.1 1.4 virginica
7.7 2.3 virginica
6.3 2.4 virginica
6.4 1.8 virginica
6.0 1.8 virginica
6.9 2.1 virginica
6.7 2.4 virginica
6.9 2.3 virginica
5.8 1.9 virginica
6.8 2.3 virginica
6.7 2.5 virginica
6.7 2.3 virginica
6.3 1.9 virginica
6.5 2.0 virginica
6.2 2.3 virginica
5.9 1.8 virginica
i4 <- i %>% filter(Petal.Length <3| Species =='versicolor') %>% select(Sepal.Length,Petal.Width,Species)
i4
Sepal.Length Petal.Width Species
5.1 0.2 setosa
4.9 0.2 setosa
4.7 0.2 setosa
4.6 0.2 setosa
5.0 0.2 setosa
5.4 0.4 setosa
4.6 0.3 setosa
5.0 0.2 setosa
4.4 0.2 setosa
4.9 0.1 setosa
5.4 0.2 setosa
4.8 0.2 setosa
4.8 0.1 setosa
4.3 0.1 setosa
5.8 0.2 setosa
5.7 0.4 setosa
5.4 0.4 setosa
5.1 0.3 setosa
5.7 0.3 setosa
5.1 0.3 setosa
5.4 0.2 setosa
5.1 0.4 setosa
4.6 0.2 setosa
5.1 0.5 setosa
4.8 0.2 setosa
5.0 0.2 setosa
5.0 0.4 setosa
5.2 0.2 setosa
5.2 0.2 setosa
4.7 0.2 setosa
4.8 0.2 setosa
5.4 0.4 setosa
5.2 0.1 setosa
5.5 0.2 setosa
4.9 0.2 setosa
5.0 0.2 setosa
5.5 0.2 setosa
4.9 0.1 setosa
4.4 0.2 setosa
5.1 0.2 setosa
5.0 0.3 setosa
4.5 0.3 setosa
4.4 0.2 setosa
5.0 0.6 setosa
5.1 0.4 setosa
4.8 0.3 setosa
5.1 0.2 setosa
4.6 0.2 setosa
5.3 0.2 setosa
5.0 0.2 setosa
7.0 1.4 versicolor
6.4 1.5 versicolor
6.9 1.5 versicolor
5.5 1.3 versicolor
6.5 1.5 versicolor
5.7 1.3 versicolor
6.3 1.6 versicolor
4.9 1.0 versicolor
6.6 1.3 versicolor
5.2 1.4 versicolor
5.0 1.0 versicolor
5.9 1.5 versicolor
6.0 1.0 versicolor
6.1 1.4 versicolor
5.6 1.3 versicolor
6.7 1.4 versicolor
5.6 1.5 versicolor
5.8 1.0 versicolor
6.2 1.5 versicolor
5.6 1.1 versicolor
5.9 1.8 versicolor
6.1 1.3 versicolor
6.3 1.5 versicolor
6.1 1.2 versicolor
6.4 1.3 versicolor
6.6 1.4 versicolor
6.8 1.4 versicolor
6.7 1.7 versicolor
6.0 1.5 versicolor
5.7 1.0 versicolor
5.5 1.1 versicolor
5.5 1.0 versicolor
5.8 1.2 versicolor
6.0 1.6 versicolor
5.4 1.5 versicolor
6.0 1.6 versicolor
6.7 1.5 versicolor
6.3 1.3 versicolor
5.6 1.3 versicolor
5.5 1.3 versicolor
5.5 1.2 versicolor
6.1 1.4 versicolor
5.8 1.2 versicolor
5.0 1.0 versicolor
5.6 1.3 versicolor
5.7 1.2 versicolor
5.7 1.3 versicolor
6.2 1.3 versicolor
5.1 1.1 versicolor
5.7 1.3 versicolor

Tạo dữ liệu mới từ dữ liệu có sẵn

w <- women
tich <- w$height+w$weight
tich
##  [1] 173 176 180 184 188 192 196 200 205 209 214 219 224 230 236
sqrt = sqrt(tich)
sqrt
##  [1] 13.15295 13.26650 13.41641 13.56466 13.71131 13.85641 14.00000 14.14214
##  [9] 14.31782 14.45683 14.62874 14.79865 14.96663 15.16575 15.36229
w1 <- w %>% mutate(sqrt)
w1
height weight sqrt
58 115 13.15295
59 117 13.26650
60 120 13.41641
61 123 13.56466
62 126 13.71131
63 129 13.85641
64 132 14.00000
65 135 14.14214
66 139 14.31782
67 142 14.45683
68 146 14.62874
69 150 14.79865
70 154 14.96663
71 159 15.16575
72 164 15.36229

Lấy dữ liệu từ World Bank

library(WDI)
ind <- WDIsearch('Total reserves')
ind
indicator name
4340 DT.DOD.DSTC.IR.ZS Short-term debt (% of total reserves)
6593 FI.RES.TOTL.CD Total reserves (includes gold, current US\() | |6594 |FI.RES.TOTL.CD.WB |Total reserves including gold valued at London gold price (current US\))
6595 FI.RES.TOTL.CD.ZS Total reserves includes gold (% of GDP)
6596 FI.RES.TOTL.DT.ZS Total reserves (% of total external debt)
6597 FI.RES.TOTL.MO Total reserves in months of imports
6598 FI.RES.TOTL.MO.WB Total reserves in months of imports of goods and services
6599 FI.RES.XGLD.CD Total reserves minus gold (current US$)
7408 FM.LBL.BMNY.IR.ZS Broad money to total reserves ratio
7416 FM.LBL.MQMY.IR.ZS Money and quasi money (M2) to total reserves ratio
17958 TOTRESV Total Reserves
ind1 <- WDI(indicator = 'FI.RES.TOTL.MO', country = c('VN'), extra = T)
ind1
country iso2c iso3c year FI.RES.TOTL.MO status lastupdated region capital longitude latitude income lending
Viet Nam VN VNM 2022 2.641353 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2021 3.686074 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2020 3.978296 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2019 3.366793 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2018 2.529580 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2017 2.462901 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2016 2.223985 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2015 1.850373 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2014 2.536335 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2013 2.146522 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2012 2.487028 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2011 1.417350 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2010 1.620547 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2009 2.574184 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2008 3.214584 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2007 4.075098 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2006 3.224640 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2005 2.653657 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2004 2.442831 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2003 2.694840 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2002 2.213041 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2001 2.355113 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 2000 2.264215 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1999 2.814992 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1998 1.680220 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1997 1.670657 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1996 1.620063 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1995 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1994 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1993 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1992 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1991 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1990 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1989 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1988 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1987 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1986 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1985 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1984 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1983 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1982 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1981 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1980 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1979 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1978 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1977 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1976 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1975 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1974 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1973 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1972 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1971 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1970 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1969 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1968 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1967 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1966 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1965 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1964 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1963 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1962 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1961 NA 2023-12-18 NA NA NA NA NA NA
Viet Nam VN VNM 1960 NA 2023-12-18 NA NA NA NA NA NA
se <- ind1 %>% select(year,FI.RES.TOTL.MO)
se
year FI.RES.TOTL.MO
2022 2.641353
2021 3.686074
2020 3.978296
2019 3.366793
2018 2.529580
2017 2.462901
2016 2.223985
2015 1.850373
2014 2.536335
2013 2.146522
2012 2.487028
2011 1.417350
2010 1.620547
2009 2.574184
2008 3.214584
2007 4.075098
2006 3.224640
2005 2.653657
2004 2.442831
2003 2.694840
2002 2.213041
2001 2.355113
2000 2.264215
1999 2.814992
1998 1.680220
1997 1.670657
1996 1.620063
1995 NA
1994 NA
1993 NA
1992 NA
1991 NA
1990 NA
1989 NA
1988 NA
1987 NA
1986 NA
1985 NA
1984 NA
1983 NA
1982 NA
1981 NA
1980 NA
1979 NA
1978 NA
1977 NA
1976 NA
1975 NA
1974 NA
1973 NA
1972 NA
1971 NA
1970 NA
1969 NA
1968 NA
1967 NA
1966 NA
1965 NA
1964 NA
1963 NA
1962 NA
1961 NA
1960 NA
na <- na.omit(se)
na
year FI.RES.TOTL.MO
2022 2.641353
2021 3.686074
2020 3.978296
2019 3.366793
2018 2.529580
2017 2.462901
2016 2.223985
2015 1.850373
2014 2.536335
2013 2.146522
2012 2.487028
2011 1.417350
2010 1.620547
2009 2.574184
2008 3.214584
2007 4.075098
2006 3.224640
2005 2.653657
2004 2.442831
2003 2.694840
2002 2.213041
2001 2.355113
2000 2.264215
1999 2.814992
1998 1.680220
1997 1.670657
1996 1.620063
names(na) <- c('year','DuTru')
na
year DuTru
2022 2.641353
2021 3.686074
2020 3.978296
2019 3.366793
2018 2.529580
2017 2.462901
2016 2.223985
2015 1.850373
2014 2.536335
2013 2.146522
2012 2.487028
2011 1.417350
2010 1.620547
2009 2.574184
2008 3.214584
2007 4.075098
2006 3.224640
2005 2.653657
2004 2.442831
2003 2.694840
2002 2.213041
2001 2.355113
2000 2.264215
1999 2.814992
1998 1.680220
1997 1.670657
1996 1.620063

NHIỆM VỤ 2.2