Amanita is a genus of fungi that is primarily made up of agarics, which are a particular kind of fungus that grows on mushrooms. There are about 600 distinct agaric species in the genus Amanita of fungus. Among the many different types of fungi that are known to exist are the deadliest mushrooms in the world, as well as some highly valued culinary varieties. The genus Amanita of mushrooms belongs to the Amanitaceae family of fungi that create mushrooms.
The Classification of This Genus Follows the Levels as Follows -
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Agaricales
Family: Amanitaceae
Sequence <- ncbi_byid(ids = c("NR_187078.1", "NR_187077.1", "NR_187076.1", "NR_187075.1", "NR_187074.1", "NR_187073.1", "NR_187072.1", "NR_187071.1", "NR_187070.1", "NR_187069.1", "NR_187068.1", "NR_187067.1", "NR_187066.1", "NR_185704.1", "NR_185703.1", "NR_184989.1", "NR_184934.1", "NR_182949.1", "NR_182712.1", "NR_182711.1", "NR_182482.1", "NR_178171.1", "NR_177541.1", "NR_177182.1", "NR_177133.1", "NR_176704.1", "NR_175723.1", "NR_175722.1", "NR_175721.1", "NR_175720.1", "NR_175719.1", "NR_175718.1", "NR_175717.1", "NR_175716.1", "NR_175715.1", "NR_175714.1", "NR_175713.1", "NR_175712.1", "NR_175711.1", "NR_175710.1", "NR_175709.1", "NR_175708.1", "NR_175707.1", "NR_174910.1", "NR_173939.1", "NR_173938.1", "NR_173801.1", "NR_173776.1", "NR_173773.1", "NR_173766.1", "NR_173190.1", "NR_173189.1", "NR_173188.1", "NR_173187.1", "NR_173159.1", "NR_173158.1", "NR_172802.1", "NR_169902.1", "NR_166224.1", "NR_164607.1", "NR_164606.1", "NR_164493.1", "NR_119968.1", "NR_119715.1", "NR_119714.1", "NR_119713.1", "NR_119499.1", "NR_119498.1", "NR_119390.1", "NR_119389.1", "NR_119388.1", "NR_119387.1", "NR_159596.1", "NR_159595.1", "NR_159593.1", "NR_159592.1", "NR_159591.1", "NR_159590.1", "NR_159589.1", "NR_159588.1", "NR_159587.1", "NR_159586.1", "NR_159585.1", "NR_159584.1", "NR_159583.1", "NR_159582.1", "NR_159581.1", "NR_159580.1", "NR_159579.1", "NR_159577.1", "NR_159576.1", "NR_159575.1", "NR_159574.1", "NR_159572.1", "NR_159571.1", "NR_159570.1", "NR_159569.1", "NR_159568.1", "NR_159567.1", "NR_159564.1", "NR_151657.1", "NR_151656.1", "NR_158347.1", "NR_158316.1", "NR_154703.1", "NR_154693.1", "NR_154692.1", "NR_154691.1", "NR_154690.1", "NR_154689.1", "NR_154683.1", "NR_154668.1", "NR_151654.1", "NR_151653.1", "NR_151652.1", "NR_151651.1", "NR_151650.1", "NR_151649.1", "NR_147634.1", "NR_147633.1", "NR_147632.1", "NR_137609.1", "NR_137116.1", "NR_151655.1"), verbose = TRUE)#create a table from the data by selecting columns using dplyr
Seq <- Sequence %>%
select(acc_no, taxon, journal, country, sequence, first_author)
SeqSeqq <- Seq %>%
filter(journal != "Unpublished") #get rid of unpublished data
Seqqq <- Seqq %>%
filter(first_author != "NA") #get rid of data with no known author
Seqqqq <- Seqqq %>%
filter(country != "NA") #get rid of data with no country recorded
Seqqqq## DNAStringSet object of length 69:
## width seq names
## [1] 601 TTGAATAAAACCCCCAATGGTTG...TTTTGGACAAAGTTGAACAAAT A.cretaceaverruca_1
## [2] 600 TTGAATGCTTTAAACCCATTGGC...ATGAGCAATTATACTTGTATAT A.brunneola_1
## [3] 600 TTGAATGCTTTAAACCCATTGGC...ATGAGCAATTATACTTGTATAT A.brunneola_2
## [4] 605 TTGAATGCTTTAAACCCATTGGC...ATGAGCAATTATACTTGTATAT A.brunneola_3
## [5] 604 TTGAATGCTTTAAACCCATTGGC...ATGAGCAATTATACTTGTATAT A.brunneola_4
## ... ... ...
## [65] 610 GGATCATTAGTGAAATGAACTTT...GAAATGCACAACTTGACCTCAA A.griseorosea
## [66] 606 GGATCATTAGTGAAATGAACCAT...GAATTGACCAACTTGACCTCAA A.molliuscula
## [67] 604 GGATCATTAAAGAAATGAACCCT...AACTTGACCAACTTGACCTCAA A.subfuliginea
## [68] 632 GGAAGTAAAAGTCGTAACAAGGT...AAGCATATCAATAAGCGGAGGA A.drummondii
## [69] 677 AAGTCGTAACAAGGTTTCCGTAG...TAGGACTACCCGCTGAACTTAA A.brunneitoxicaria
seqs <- OrientNucleotides(seqs)
## ========================================================================================================================================================================================================
##
## Time difference of 0.14 secs
## Determining distance matrix based on shared 9-mers:
## ================================================================================
##
## Time difference of 0.14 secs
##
## Clustering into groups by similarity:
## ================================================================================
##
## Time difference of 0.03 secs
##
## Aligning Sequences:
## ================================================================================
##
## Time difference of 1.78 secs
##
## Iteration 1 of 2:
##
## Determining distance matrix based on alignment:
## ================================================================================
##
## Time difference of 0.02 secs
##
## Reclustering into groups by similarity:
## ================================================================================
##
## Time difference of 0.03 secs
##
## Realigning Sequences:
## ================================================================================
##
## Time difference of 1.31 secs
##
## Iteration 2 of 2:
##
## Determining distance matrix based on alignment:
## ================================================================================
##
## Time difference of 0.02 secs
##
## Reclustering into groups by similarity:
## ================================================================================
##
## Time difference of 0.03 secs
##
## Realigning Sequences:
## ================================================================================
##
## Time difference of 0.67 secs
##
## Refining the alignment:
## ================================================================================
##
## Time difference of 0.56 secs
Darker shades of gray mean a larger distance
temp <- as.data.frame(as.matrix(D1))
table.paint(temp, cleg=0, clabel.row=.5, clabel.col=.5)+
scale_color_viridis()## NULL
All trees created using ape package will be of class phylo
## [1] "phylo"
Using base R plotting we get to view the newly construucted tree
It will help to see the height and the distance or the dissimilarities of sequences
h_cluster <- hclust(D1, method = "average", members = NULL) # method = average is used for UPGMA, members can be equal to NULL or a vector with a length of size D
plot(h_cluster, cex = 0.6)Plotting the alignment with the tree helps to note the rate of similarities, diversions in single neuclotide plymorphism (SNPs)
tre1$tip.label <- aligned@ranges@NAMES
msaplot(p=ggtree(tre1), fasta="Amanita_aligned1.fasta", window=c(150, 175))+ scale_fill_viridis_d(alpha = 0.8)
# The next move is to use the Molecular Evolution Genetic Analysis
software ————————————————————————
The next step is done with MEGA software, the Sequences are copied out to MEGA software and aligned and edited. The phylogenetic tree is constructed and the export via newick file format into R
nkk<- '((((((((((((A.simulans:0.02907337,A.glarea:0.04496334):0.00809242,A.variicolor:0.06018683):0.00431265,(A.lividopallescens:0.00989372,A.griseofusca:0.03271156):0.01275494):0.00524249,A.vladimirii:0.05453026):0.00613586,(A.griseofolia:0.08648412,(A.rhacopus:0.05113933,A.liquii:0.07084414):0.01336186):0.01592971):0.00719293,A.drummondii:0.08112228):0.00479849,A.griseocaerulea:0.04323164):0.03527613,A.calida:0.10272265):0.01495296,(A.minima:0.17498878,(A.fulvopulverulenta:0.16894419,(A.vernicoccora:0.13168734,A.goossensfontanae:0.17571715):0.00854798):0.01142453):0.01164006):0.00950753,(((A.submelleialba:0.12349877,A.bingensis:0.15120395):0.01583520,A.kalasinensis:0.15737323):0.01081793,(A.pallidoverruca:0.16195382,(A.robusta:0.10479585,(A.sinensis:0.08508934,A.ravicrocina:0.10983791):0.00815110):0.02939613):0.00274861):0.01146414):0.01073844,(A.ballerina:0.10803523,((A.molliuscula:0.05853378,A.griseorosea:0.07178017):0.03812872,((((A.subpallidorosea:0.05461553,A.subfuliginea:0.07663470):0.01044801,A.pallidorosea:0.04468423):0.00875680,A.rimosa:0.08054336):0.00433501,((A.fuligineoides:0.06467381,A.brunneitoxicaria:0.08299499):0.00853616,((A.millsii:0.04431407,A.gardneri:0.01133412):0.01158407,(A.harkoneniana:0.02273708,A.bweyeyensis:0.01871750):0.01010805):0.03543300):0.00559756):0.00422254):0.03906184):0.02618893):0.00447108,((A.wadulawitu:0.05563651,A.lesueurii:0.02798780):0.06810291,((((A.sabulosa_4:0.00819460,A.sabulosa_3:0.01436327):0.00516027,(A.sabulosa_2:0.00890918,A.sabulosa_1:0.00147483):0.01829013):0.08439046,((A.pupatju_4:0.00078466,A.pupatju_3:0.00439159):0.00219649,(A.pupatju_2:0.00426348,A.pupatju_1:0.00092340):0.00127862):0.09390663):0.01402404,(((A.compacta_3:0.00000000,A.compacta_2:0.00457843):0.00061855,A.compacta_1:0.00468112):0.05648131,(A.arenarioides:0.07054172,(A.pseudoarenaria_4:0.02745061,(A.pseudoarenaria_3:0.01048861,(A.pseudoarenaria_2:0.00295979,A.pseudoarenaria_1:0.00227974):0.00919717):0.01198716):0.02173716):0.00723149):0.02474670):0.05275944):0.02846739,(A.quenda:0.19741084,(((((A.brunneola_5:0.00754376,A.brunneola_4:0.00257218):0.00439174,A.brunneola_3:0.00578529):0.00925165,(A.brunneola_2:0.00087885,A.brunneola_1:0.00415833):0.00976583):0.15805804,A.heishidingensis:0.14319692):0.00434084,(((A.cretaceaverruca_7:0.01593990,A.cretaceaverruca_4:0.00772619):0.00324128,A.cretaceaverruca_2:0.00353222):0.00588864,((A.cretaceaverruca_8:0.00064111,A.cretaceaverruca_3:0.00275741):0.00806665,(A.cretaceaverruca_5:0.00911831,(A.cretaceaverruca_6:0.00346111,A.cretaceaverruca_1:0.00155082):0.00207371):0.00188128):0.00195448):0.14598532):0.02768546):0.02205341);'
Tree <- read.tree(text=nkk)using the full join , we joined the tree data with the design we created by the label.
we ensure to eliminate branch length without figure.
ggtree(Join_Tree2, layout = 'circular') + geom_treescale(fontsize=3, linesize=0.2, offset=0, color = 'red') +
geom_tiplab(aes(color = Country)) +
theme(legend.position = 'left') +
geom_highlight(node = 1:36, fill='red', alpha=.2)+
geom_highlight(node = 37:54, fill='green', alpha=.2)+
geom_highlight(node = 56:69, fill='skyblue', alpha=.2)The similarities between the sequences has been shown, as indicated by the country from where the Amanita originated from or submitted. the phylogenetic tree showed three major clades.
Joseph is an ‘R for evolution biology’ learner, still figuring out how this works please connect with me here. comment and help become better.
THANKS