Continuous Case:
Discrete Case:
Direct approaches form the basis of functions such as r* from R, or rand from SAS.
This is where indirect methods come into play!
Consider an alternative game of darts.
Consider an alternative game of darts.
Consider an alternative game of darts.
Now, let’s start throwing our darts!
Now, let’s start throwing our darts!
After throwing many darts, we look at the distribution…
… and discard the blue observations.
Without having to fully evaluate the target density, we were able to sample from it!
To generate \(Y \sim f_Y\):
Generate \(U \sim \operatorname{Unif}(0,1)\)
Generate \(V \sim f_V\) s.t. \(U \perp V\)
If \(U < \frac{1}{M} \cdot \frac{f_Y(V)}{f_V(V)}\), set \(Y=V\); else, discard \(V\).
Consider the cdf of \(Y\):
\[ \begin{aligned} P(Y \leq y) &= P(V \leq y \mid \text{accepted } V) \\ &= P\left(V \leq y \mid U < \frac{1}{M} \cdot \frac{f_Y(V)}{f_V(V)}\right) \\ &= \frac{P\left(V \leq y, U < \frac{1}{M} \cdot \frac{f_Y(V)}{f_V(V)}\right)}{P\left(U < \frac{1}{M} \cdot \frac{f_Y(V)}{f_V(V)}\right)} \end{aligned} \]
Consider the numerator of the previous expression. Let us condition it upon \(V=v\) and integrate over the support of \(V\) to account for this modification.
\[ \begin{aligned} .&= \int_{V} P\left(V \leq y, U < \frac{1}{M} \cdot \frac{f_Y(V)}{f_V(V)} \mid V=v \right) \cdot f_V(v) \ \text{d}v \\ &= \int_{V} P\left(v \leq y, U < \frac{1}{M} \cdot \frac{f_Y(v)}{f_V(v)} \right) \cdot f_V(v) \ \text{d}v \\ &= \int_{V} I(v \leq y) \cdot P\left(U < \frac{1}{M} \cdot \frac{f_Y(v)}{f_V(v)} \right) \cdot f_V(v) \ \text{d}v \\ \end{aligned} \]
…continued:
\[ \begin{aligned} .&= \int_{V} I(v \leq y) \cdot P\left(U < \frac{1}{M} \cdot \frac{f_Y(v)}{f_V(v)} \right) \cdot f_V(v) \ \text{d}v \\ &= \int^{y}_{-\infty} \frac{1}{M} \cdot \frac{f_Y(v)}{f_V(v)} \cdot f_V(v) \ \text{d}v \\ &= \frac{1}{M} \int^{y}_{-\infty} f_Y(v) \ \text{d}v \end{aligned} \]
Recall the denominator of the very first expression:
\[ \begin{aligned} P\left(U < \frac{1}{M} \cdot \frac{f_Y(V)}{f_V(V)}\right) &= \int_V P\left(U < \frac{1}{M} \cdot \frac{f_Y(V)}{f_V(V)} \mid V=v \right) \cdot f_V(v) \ \text{d}v \\ &= \int_V P\left(U < \frac{1}{M} \cdot \frac{f_Y(v)}{f_V(v)}\right) \cdot f_V(v) \ \text{d}v \\ &= \int_V \frac{1}{M} \cdot \frac{f_Y(v)}{f_V(v)} \cdot f_V(v) \ \text{d}v \\ &= \frac{1}{M} \int_V f_Y(v) \ \text{d}v \end{aligned} \]
Lastly, we combine the simplified numerator and denominator:
\[ \begin{aligned} P(Y \leq y) &= \frac{\frac{1}{M} \int^{y}_{-\infty} f_Y(v) \ \text{d}v}{\frac{1}{M}} \\ &= \int^{y}_{-\infty} f_Y(v) \ \text{d}v \\ &\implies Y \sim f_Y \end{aligned} \]
Let \(N\) be the number of iterations needed to generate one sample from the target distribution.
Consider the target density \(f_X(x) = \sin(x^2); \ 0 \leq x \leq \sqrt{\pi}\).
A good proposal distribution may be \(f_Y(y) = N(1.25, 0.4); -\infty \leq x \leq \infty\).
\[ M = \sup_x \left(\frac{\text{Target Density}}{\text{Proposal Density}}\right) \]
Assume that we want a sample of size \(n_x=500\).
Consider \(f(x) = \Gamma(\alpha = 2, \beta = 5); 0 \leq x\).