#llamamos a "tidyverse" y "dplyr"
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
# Cargamos la BD de mtcars
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
# seleccionar las 3 primeras columnas y asignarlas a una varible
head((m1 <- mtcars[,1:3]))
## mpg cyl disp
## Mazda RX4 21.0 6 160
## Mazda RX4 Wag 21.0 6 160
## Datsun 710 22.8 4 108
## Hornet 4 Drive 21.4 6 258
## Hornet Sportabout 18.7 8 360
## Valiant 18.1 6 225
#seleccionar los 6 primeros datos, con la función head, de m1
(m2 <- head(m1))
## mpg cyl disp
## Mazda RX4 21.0 6 160
## Mazda RX4 Wag 21.0 6 160
## Datsun 710 22.8 4 108
## Hornet 4 Drive 21.4 6 258
## Hornet Sportabout 18.7 8 360
## Valiant 18.1 6 225
?select_helpers
## starting httpd help server ... done
#Permite utilizar funciones que nos ayuden a encontrar datos dentro de una BD más rapidamente
(col_d <- head(select(mtcars, starts_with("d"))))
## disp drat
## Mazda RX4 160 3.90
## Mazda RX4 Wag 160 3.90
## Datsun 710 108 3.85
## Hornet 4 Drive 258 3.08
## Hornet Sportabout 360 3.15
## Valiant 225 2.76
(col_p <- head(select(mtcars, ends_with("p"))))
## disp hp
## Mazda RX4 160 110
## Mazda RX4 Wag 160 110
## Datsun 710 108 93
## Hornet 4 Drive 258 110
## Hornet Sportabout 360 175
## Valiant 225 105
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
head(select( mtcars, -drat, -am ))
## mpg cyl disp hp wt qsec vs gear carb
## Mazda RX4 21.0 6 160 110 2.620 16.46 0 4 4
## Mazda RX4 Wag 21.0 6 160 110 2.875 17.02 0 4 4
## Datsun 710 22.8 4 108 93 2.320 18.61 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.215 19.44 1 3 1
## Hornet Sportabout 18.7 8 360 175 3.440 17.02 0 3 2
## Valiant 18.1 6 225 105 3.460 20.22 1 3 1
#nos da todas las columnas menos drat y am
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
head(select( mtcars, contains( "a" ) ))
## drat am gear carb
## Mazda RX4 3.90 1 4 4
## Mazda RX4 Wag 3.90 1 4 4
## Datsun 710 3.85 1 4 1
## Hornet 4 Drive 3.08 0 3 1
## Hornet Sportabout 3.15 0 3 2
## Valiant 2.76 0 3 1
#Selecciona todas las columnas que en su nombre contienen la letra "a"
head(filter(mtcars,mpg>20,gear==4))
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#Nos da solo las filas que tengan un mpg mayor 20 y un gear igual a 4
head(filter(mtcars, am==1, cyl<=6))
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
head(filter(mtcars, (mpg < 21 | carb < 3) & gear < 4))
## mpg cyl disp hp drat wt qsec vs am gear carb
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
head(select(mtcars,cyl ,disp, everything()))
## cyl disp mpg hp drat wt qsec vs am gear carb
## Mazda RX4 6 160 21.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 6 160 21.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 4 108 22.8 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 6 258 21.4 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 8 360 18.7 175 3.15 3.440 17.02 0 0 3 2
## Valiant 6 225 18.1 105 2.76 3.460 20.22 1 0 3 1
libras<-mtcars
libras$Libras<-libras$wt*0.45
head(libras)
## mpg cyl disp hp drat wt qsec vs am gear carb Libras
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 1.17900
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 1.29375
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 1.04400
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 1.44675
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 1.54800
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 1.55700
group_disp <- group_by(mtcars, disp)
group_disp
## # A tibble: 32 × 11
## # Groups: disp [27]
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
## 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
## # ℹ 22 more rows
summarise(group_disp, mean(disp))
## # A tibble: 27 × 2
## disp `mean(disp)`
## <dbl> <dbl>
## 1 71.1 71.1
## 2 75.7 75.7
## 3 78.7 78.7
## 4 79 79
## 5 95.1 95.1
## 6 108 108
## 7 120. 120.
## 8 120. 120.
## 9 121 121
## 10 141. 141.
## # ℹ 17 more rows
summarise(group_by(mtcars, cyl), max = max(disp))
## # A tibble: 3 × 2
## cyl max
## <dbl> <dbl>
## 1 4 147.
## 2 6 258
## 3 8 472
#Agrupa los datos del cilindraje por su valor y obtiene el maximo de ese conjunto de datos.
mtcars %>% select( mpg:disp )%>% head
## mpg cyl disp
## Mazda RX4 21.0 6 160
## Mazda RX4 Wag 21.0 6 160
## Datsun 710 22.8 4 108
## Hornet 4 Drive 21.4 6 258
## Hornet Sportabout 18.7 8 360
## Valiant 18.1 6 225
#Selecciona las columas desde mpg hasta disp y nos muestra los 6 primeros valores de esta.
head(select(select(mtcars, contains("a")), -drat, -am))
## gear carb
## Mazda RX4 4 4
## Mazda RX4 Wag 4 4
## Datsun 710 4 1
## Hornet 4 Drive 3 1
## Hornet Sportabout 3 2
## Valiant 3 1
#Selecciona las columnas que contengan una letra a en su encabezado a excepción de drat y am.
head(mtcars %>%
select((contains("a")), -drat, -am))
## gear carb
## Mazda RX4 4 4
## Mazda RX4 Wag 4 4
## Datsun 710 4 1
## Hornet 4 Drive 3 1
## Hornet Sportabout 3 2
## Valiant 3 1
mtcars_filtered = filter(mtcars, wt > 1.5)
mtcars_grouped = group_by(mtcars_filtered, cyl)
summarise(mtcars_grouped, mn = mean(mpg), sd = sd(mpg))
## # A tibble: 3 × 3
## cyl mn sd
## <dbl> <dbl> <dbl>
## 1 4 26.7 4.51
## 2 6 19.7 1.45
## 3 8 15.1 2.56
#Se obtiene la media y la desviación estándar de la columna mpg, agrupagas según su cilindraje y
#siempre y cuando su wt sea mayor a 1.5.
mtcars %>%
filter(wt > 1.5) %>%
group_by(cyl) %>%
summarise(mn = mean(mpg), sd = sd(mpg))
## # A tibble: 3 × 3
## cyl mn sd
## <dbl> <dbl> <dbl>
## 1 4 26.7 4.51
## 2 6 19.7 1.45
## 3 8 15.1 2.56
dplyr y recomendable utilizar pipes%>%` para los
siguientes ejercicioslibrary(dplyr)
vuelos.csv situado en
http://gauss.inf.um.es/datos/; en local o localiza la
url donde se encuentradesc<-"https://gauss.inf.um.es/datos/vuelos.csv"
download.file(desc,"vuelos.csv")
vuelosgetwd()
## [1] "C:/Users/Acer/Documents"
setwd("C:/Users/Acer/Downloads")
vuelos <- read.csv(file= "vuelos.csv", header = T, sep = ",", dec = ".")
head(vuelos)
## date hour minute dep arr dep_delay arr_delay carrier flight dest
## 1 2011-01-01 14 0 1400 1500 0 -10 AA 428 DFW
## 2 2011-01-02 14 1 1401 1501 1 -9 AA 428 DFW
## 3 2011-01-03 13 52 1352 1502 -8 -8 AA 428 DFW
## 4 2011-01-04 14 3 1403 1513 3 3 AA 428 DFW
## 5 2011-01-05 14 5 1405 1507 5 -3 AA 428 DFW
## 6 2011-01-06 13 59 1359 1503 -1 -7 AA 428 DFW
## plane cancelled time dist
## 1 N576AA 0 40 224
## 2 N557AA 0 45 224
## 3 N541AA 0 48 224
## 4 N403AA 0 39 224
## 5 N492AA 0 44 224
## 6 N262AA 0 45 224
SFO u
OAK utilizando las funciones del paquete dplyr.v_dest<- filter(vuelos, dest == "SFO" | dest == "OAK" )
head(v_dest)
## date hour minute dep arr dep_delay arr_delay carrier flight dest
## 373 2011-01-31 8 51 851 1052 1 -27 CO 170 SFO
## 389 2011-01-31 11 29 1129 1351 4 1 CO 270 SFO
## 402 2011-01-31 14 32 1432 1656 7 5 CO 370 SFO
## 436 2011-01-31 17 48 1748 2001 3 -4 CO 570 SFO
## 467 2011-01-31 21 43 2143 2338 50 24 CO 770 SFO
## 468 2011-01-31 7 29 729 1002 -1 2 CO 771 SFO
## plane cancelled time dist
## 373 N35407 0 225 1635
## 389 N37420 0 228 1635
## 402 N27213 0 229 1635
## 436 N75436 0 236 1635
## 467 N37281 0 224 1635
## 468 N26226 0 237 1635
##?Con cuantos vuelos nos quedamos?
cat("Selecciona ", nrow(v_dest), "datos ")
## Selecciona 1121 datos
vuelos<-read.table(file = "https://gauss.inf.um.es/datos/vuelos.csv", header = T, sep = ",")
head(vuelos)
## date hour minute dep arr dep_delay arr_delay carrier flight dest
## 1 2011-01-01 14 0 1400 1500 0 -10 AA 428 DFW
## 2 2011-01-02 14 1 1401 1501 1 -9 AA 428 DFW
## 3 2011-01-03 13 52 1352 1502 -8 -8 AA 428 DFW
## 4 2011-01-04 14 3 1403 1513 3 3 AA 428 DFW
## 5 2011-01-05 14 5 1405 1507 5 -3 AA 428 DFW
## 6 2011-01-06 13 59 1359 1503 -1 -7 AA 428 DFW
## plane cancelled time dist
## 1 N576AA 0 40 224
## 2 N557AA 0 45 224
## 3 N541AA 0 48 224
## 4 N403AA 0 39 224
## 5 N492AA 0 44 224
## 6 N262AA 0 45 224
web1 <- "https://gauss.inf.um.es/datos/vuelos.csv"
download.file(web1, "vuelos.csv")
vuelos <- read.table(file = "vuelos.csv", header = T, sep = ",")
View(vuelos)
vuelos %>% select(arr_delay, dest)%>%
filter(arr_delay>60) %>% head()
## arr_delay dest
## 17 84 DFW
## 20 72 DFW
## 74 69 DFW
## 97 126 DFW
## 99 70 DFW
## 129 80 MIA
selectpara seleccionar las variables relacionadas con los
retrasos (delay)head(select(vuelos, ends_with("delay")))
## dep_delay arr_delay
## 1 0 -10
## 2 1 -9
## 3 -8 -8
## 4 3 3
## 5 5 -3
## 6 -1 -7
head(select(vuelos, contains("de")))
## dep dep_delay arr_delay dest
## 1 1400 0 -10 DFW
## 2 1401 1 -9 DFW
## 3 1352 -8 -8 DFW
## 4 1403 3 3 DFW
## 5 1405 5 -3 DFW
## 6 1359 -1 -7 DFW
head(select(vuelos, matches(".d.")))
## dep_delay arr_delay
## 1 0 -10
## 2 1 -9
## 3 -8 -8
## 4 3 3
## 5 5 -3
## 6 -1 -7
vuelos %>% select(-contains("d")) %>% head()
## hour minute arr carrier flight plane time
## 1 14 0 1500 AA 428 N576AA 40
## 2 14 1 1501 AA 428 N557AA 45
## 3 13 52 1502 AA 428 N541AA 48
## 4 14 3 1513 AA 428 N403AA 39
## 5 14 5 1507 AA 428 N492AA 44
## 6 13 59 1503 AA 428 N262AA 45
agrupacion <- vuelos %>%
select(date, hour, arr_delay) %>%
group_by(date) %>%
summarise(media = mean(arr_delay, na.rm = T), mediana = median(arr_delay, na.rm = T),
cuatil_75 = quantile(arr_delay, 0.75, na.rm = T))
head(agrupacion)
## # A tibble: 6 × 4
## date media mediana cuatil_75
## <chr> <dbl> <dbl> <dbl>
## 1 2011-01-01 10.1 5 17
## 2 2011-01-02 10.5 3 17
## 3 2011-01-03 6.04 -2 10.5
## 4 2011-01-04 7.97 4 16
## 5 2011-01-05 4.17 -1 11
## 6 2011-01-06 6.07 2 13
can_vuelos <- vuelos %>%
select(date, hour, arr_delay, flight) %>%
filter(flight > 10) %>%
group_by(date) %>%
summarise(media_retraso = mean(arr_delay, na.rm = T),
cantidad_vuelos = n_distinct(flight))
can_vuelos
## # A tibble: 120 × 3
## date media_retraso cantidad_vuelos
## <chr> <dbl> <int>
## 1 2011-01-01 9.97 531
## 2 2011-01-02 10.5 649
## 3 2011-01-03 6.18 668
## 4 2011-01-04 8.07 554
## 5 2011-01-05 4.23 561
## 6 2011-01-06 6.17 629
## 7 2011-01-07 4.02 630
## 8 2011-01-08 3.04 487
## 9 2011-01-09 17.3 582
## 10 2011-01-10 11.1 626
## # ℹ 110 more rows
library("RODBC")