## Loading required package: readxl
## Loading required package: lubridate
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:data.table':
## 
##     hour, isoweek, mday, minute, month, quarter, second, wday, week,
##     yday, year
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
## Loading required package: solartime
## - Winter data excluded.
## - The counts of all passing / wintering species (not breeding in the sampled unit) were set to zero. Abreed_and_non_breed contains the non-breeders as well.
## - Species less likely to be interacting with sampling location were EXCLUDED
## - observations with counts greater than or equal to 10 standard deviations AND greater than or equal to 60 individuals were set to 1,
## under the assumption that these are migrating or local wandering phenomena.
## No outliers found in unit Arid South.
## 2 outliers set equal to 1 in Herbaceous and Dwarf-Shrub Vegetation unit.
##                                     unit    point_name year
## 1: Herbaceous and Dwarf-Shrub Vegetation  Gamla Near 3 2014
## 2: Herbaceous and Dwarf-Shrub Vegetation Yavneel Far 2 2018
##                  SciName count_under_250  Z_score
## 1:     Passer domesticus              62 11.90316
## 2: Passer hispaniolensis              60 11.35733
## No outliers found in unit Inland Sands.
## No outliers found in unit Loess Covered Areas in the Northern Negev.
## No outliers found in unit Mediterranean-Desert Transition Zone.
## 5 outliers set equal to 1 in Mediterranean Maquis unit.
##                    unit           point_name year             SciName
## 1: Mediterranean Maquis     Beit Oren Near 1 2019     Curruca curruca
## 2: Mediterranean Maquis     Beit Oren Near 3 2019     Curruca curruca
## 3: Mediterranean Maquis Kerem Maharal Near 3 2021     Chloris chloris
## 4: Mediterranean Maquis Kerem Maharal Near 3 2021 Garrulus glandarius
## 5: Mediterranean Maquis    Nir Etzion Far 11 2021       Columba livia
##    count_under_250  Z_score
## 1:              99 11.94535
## 2:             142 17.16927
## 3:              80 19.19266
## 4:             150 20.50138
## 5:             100 14.85118
## 2 outliers set equal to 1 in Negev Highlands unit.
##               unit           point_name year                  SciName
## 1: Negev Highlands  Yeruham Far Slope 5 2018 Carpospiza brachydactyla
## 2: Negev Highlands Bislach Near Slope 6 2020    Passer hispaniolensis
##    count_under_250  Z_score
## 1:              70 14.34802
## 2:             100 10.61343
## No outliers found in unit Planted Conifer Forest.

Mediterranean Maquis

Unit is divided into 3 subunits: Judea, Carmel and Galilee. Factors are proximity to settlements and time. Sampling started in spring 2012 (pilot year), but during T0 sampling was performed only in winter of 2014, and the next spring sampling was done in T1 (2015). Therefore 2012 will not be considered as pilot here but as T0. Total 5 campaigns, 3subunits per campaign, 5 sites per subunit, with 6 plots per site (total of 450 plot-campaign combinations).

Raw data Total abundance: 21855 Number of observations: 5795 Total richness: 108

Filtered data Total abundance: 13230 Number of observations: 3576 Total richness: 49

Model gma, abundance and richness

Richness done with rare species. Abundance and mean abundance done without rare species. Full models include cosine and sine of the time difference from June 21st (in radians).

richness

Explore data and plot mean-variance plot. There is a strong relationship, indicating that employing GLMs is the proper way to analyze, rather than OLS (assumption of homogeneity is violated).

## [1] "RICHNESS WITH RARE SPECIES"
richness year_ct site settlements subunit td_sc cos_td_rad sin_td_rad h_from_sunrise cos_hsun sin_hsun monitors_name wind precipitation temperature clouds
Min. : 0.000 Min. :0.0 Nir Etzion : 31 Far :224 Judean Highlands:149 Min. :-1.9882 Min. :-0.1671 Min. :-1.0000 Length:444 Min. :-0.3289 Min. :-0.1253 Sassi Haham : 53 0 : 33 0 :119 0 : 4 0 : 32
1st Qu.: 6.000 1st Qu.:3.0 Ein Yaakov : 30 Near:220 Carmel :150 1st Qu.:-0.2713 1st Qu.: 0.5702 1st Qu.:-0.8215 Class :difftime 1st Qu.: 0.6855 1st Qu.: 0.2563 Eyal Shochat: 47 1 : 42 3 : 2 1 : 38 1 : 0
Median : 8.000 Median :5.0 Givat Yearim : 30 NA Galilee :145 Median : 0.4918 Median : 0.8140 Median :-0.5808 Mode :numeric Median : 0.8738 Median : 0.4863 Eran Banker : 30 2 : 12 NA’s:323 2 : 37 2 : 5
Mean : 8.054 Mean :4.8 Givat Yeshayahu: 30 NA NA Mean : 0.3205 Mean : 0.7098 Mean :-0.5864 NA Mean : 0.7997 Mean : 0.4836 Asaf Mayrose: 18 3 : 2 NA 3 : 18 3 : 13
3rd Qu.:10.000 3rd Qu.:7.0 Goren : 30 NA NA 3rd Qu.: 1.1023 3rd Qu.: 0.9413 3rd Qu.:-0.3375 NA 3rd Qu.: 0.9666 3rd Qu.: 0.7281 Ohad Sharir : 18 NA’s:355 NA NA’s:347 NA’s:394
Max. :18.000 Max. :9.0 Kerem Maharal : 30 NA NA Max. : 1.7127 Max. : 0.9976 Max. :-0.0688 NA Max. : 1.0000 Max. : 0.9998 (Other) : 58 NA NA NA NA
NA NA (Other) :263 NA NA NA NA NA NA NA’s :89 NA’s :89 NA’s :220 NA NA NA NA

no observation for all 4 weather variables. many NAs for sampling time of day variables.exclude from model. An extreme observation of richness>20 in Judean highlands near settlements.

richness year_ct site settlements subunit td_sc cos_td_rad sin_td_rad h_from_sunrise cos_hsun sin_hsun
richness 1.0000000 -0.0647635 0.0926545 0.4762118 -0.1936858 0.0617968 0.0751315 0.0460403 -0.0582024 0.0933868 -0.0342460
year_ct -0.0647635 1.0000000 -0.0460962 -0.0041782 0.0046005 -0.6240340 -0.5599811 -0.6642968 0.0244310 -0.0070326 0.0341395
site 0.0926545 -0.0460962 1.0000000 0.0038640 -0.1472070 0.0103683 0.0017250 0.0296647 -0.0105111 -0.0092740 -0.0240278
settlements 0.4762118 -0.0041782 0.0038640 1.0000000 -0.0167082 0.0029695 0.0016285 0.0037459 0.0341209 -0.0071595 0.0507160
subunit -0.1936858 0.0046005 -0.1472070 -0.0167082 1.0000000 -0.0056370 -0.0129685 -0.0136922 0.1193296 -0.1166460 0.1174210
td_sc 0.0617968 -0.6240340 0.0103683 0.0029695 -0.0056370 1.0000000 0.9788766 0.9693667 -0.1975082 0.1811635 -0.2043768
cos_td_rad 0.0751315 -0.5599811 0.0017250 0.0016285 -0.0129685 0.9788766 1.0000000 0.9008724 -0.1878186 0.1700185 -0.1970275
sin_td_rad 0.0460403 -0.6642968 0.0296647 0.0037459 -0.0136922 0.9693667 0.9008724 1.0000000 -0.2005880 0.1868900 -0.2040813
h_from_sunrise -0.0582024 0.0244310 -0.0105111 0.0341209 0.1193296 -0.1975082 -0.1878186 -0.2005880 1.0000000 -0.9598144 0.9818950
cos_hsun 0.0933868 -0.0070326 -0.0092740 -0.0071595 -0.1166460 0.1811635 0.1700185 0.1868900 -0.9598144 1.0000000 -0.8930078
sin_hsun -0.0342460 0.0341395 -0.0240278 0.0507160 0.1174210 -0.2043768 -0.1970275 -0.2040813 0.9818950 -0.8930078 1.0000000

Fit Poisson glm, check for existence of overdispersion

## [1] "Estimating overdispersion parameter phi: (Res. Dev.)/(n-p) where n=number of observations; p=number of parameters in the model."
## [1] "od = 0.917251305665046"

Overdispersion parameter is < 1. Choose Poisson.

##                         GVIF Df GVIF^(1/(2*Df))
## settlements         3.275497  1        1.809834
## year_ct             3.277089  1        1.810273
## subunit             1.001389  2        1.000347
## cos_td_rad          5.439321  1        2.332235
## sin_td_rad          6.692207  1        2.586930
## settlements:year_ct 4.690440  1        2.165742

go with mixed model, attempt model selection yet.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: 
## richness ~ settlements * year_ct + subunit + cos_td_rad + sin_td_rad +  
##     (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   2115.0   2151.8  -1048.5   2097.0      435 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.04280 -0.60906 -0.07994  0.57865  2.87628 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.009067 0.09522 
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              1.575932   0.201233   7.831 4.83e-15 ***
## settlementsNear          0.393867   0.061554   6.399 1.57e-10 ***
## year_ct                 -0.004072   0.009709  -0.419  0.67493    
## subunitCarmel            0.082972   0.071979   1.153  0.24902    
## subunitGalilee          -0.198418   0.072660  -2.731  0.00632 ** 
## cos_td_rad               0.299159   0.148180   2.019  0.04350 *  
## sin_td_rad              -0.228252   0.169323  -1.348  0.17765    
## settlementsNear:year_ct -0.002007   0.010854  -0.185  0.85329    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN yer_ct sbntCr sbntGl cs_td_ sn_td_
## settlmntsNr -0.190                                          
## year_ct     -0.027  0.552                                   
## subunitCrml -0.195 -0.002  0.005                            
## subunitGall -0.199  0.003 -0.001  0.501                     
## cos_td_rad  -0.931  0.008 -0.080  0.019  0.019              
## sin_td_rad   0.866 -0.010  0.328 -0.006 -0.018 -0.853       
## sttlmntsN:_  0.158 -0.833 -0.660  0.003  0.003 -0.006  0.009

perform stepwise model selection of poisson mixed model.

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0035507 (tol = 0.002, component 1)
## Single term deletions
## 
## Model:
## richness ~ settlements * year_ct + subunit + cos_td_rad + sin_td_rad + 
##     (1 | site)
##                     npar    AIC
## <none>                   2115.0
## subunit                2 2122.2
## cos_td_rad             1 2117.1
## sin_td_rad             1 2114.8
## settlements:year_ct    1 2113.0

remove settlements X year.

## Single term deletions
## 
## Model:
## richness ~ settlements + year_ct + subunit + cos_td_rad + sin_td_rad + 
##     (1 | site)
##             npar    AIC
## <none>           2113.0
## settlements    1 2240.8
## year_ct        1 2111.5
## subunit        2 2120.3
## cos_td_rad     1 2115.1
## sin_td_rad     1 2112.8

drop year

## Single term deletions
## 
## Model:
## richness ~ settlements + subunit + cos_td_rad + sin_td_rad + 
##     (1 | site)
##             npar    AIC
## <none>           2111.5
## settlements    1 2239.4
## subunit        2 2118.7
## cos_td_rad     1 2113.3
## sin_td_rad     1 2110.8

drop sine.

## Single term deletions
## 
## Model:
## richness ~ settlements + subunit + cos_td_rad + (1 | site)
##             npar    AIC
## <none>           2110.8
## settlements    1 2238.5
## subunit        2 2118.0
## cos_td_rad     1 2113.5

Settlements, subunit and cosin time of year remain. Final model:

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: richness ~ settlements + subunit + cos_td_rad + (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   2110.8   2135.4  -1049.4   2098.8      438 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.09026 -0.59675 -0.07933  0.56203  2.96581 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.009619 0.09808 
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.80687    0.07258  24.896   <2e-16 ***
## settlementsNear  0.38421    0.03401  11.296   <2e-16 ***
## subunitCarmel    0.08257    0.07349   1.124   0.2612    
## subunitGalilee  -0.20004    0.07405  -2.702   0.0069 ** 
## cos_td_rad       0.13535    0.06305   2.147   0.0318 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN sbntCr sbntGl
## settlmntsNr -0.279                     
## subunitCrml -0.526  0.002              
## subunitGall -0.508  0.009  0.502       
## cos_td_rad  -0.635 -0.002  0.021 -0.003
## $site
##                   (Intercept)
## Abirim          -7.321848e-02
## Aderet           6.137108e-02
## Beit Oren       -2.233669e-02
## Ein Yaakov      -2.970003e-02
## Givat Yearim    -7.623271e-02
## Givat Yeshayahu  9.364091e-02
## Goren           -7.232404e-03
## Iftach           1.773011e-01
## Kerem Maharal    9.669359e-02
## Kfar Shamai     -5.892993e-02
## Margaliot       -1.725282e-03
## Nehusha         -4.299542e-02
## Nir Etzion      -1.521589e-01
## Ofer             8.260917e-02
## Ramat Raziel    -3.076398e-02
## Yagur            2.684868e-05
## 
## with conditional variances for "site"
## $site

attempt to add year, see if significant:

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: richness ~ year_ct + settlements + subunit + cos_td_rad + (1 |  
##     site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   2112.8   2141.5  -1049.4   2098.8      437 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0946 -0.6000 -0.0782  0.5691  2.9651 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.009581 0.09788 
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.8147139  0.0962891  18.847   <2e-16 ***
## year_ct         -0.0008103  0.0065499  -0.124   0.9015    
## settlementsNear  0.3841894  0.0340127  11.295   <2e-16 ***
## subunitCarmel    0.0824132  0.0733925   1.123   0.2615    
## subunitGalilee  -0.2001589  0.0739537  -2.707   0.0068 ** 
## cos_td_rad       0.1298876  0.0769263   1.688   0.0913 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) yer_ct sttlmN sbntCr sbntGl
## year_ct     -0.658                            
## settlmntsNr -0.214  0.005                     
## subunitCrml -0.407  0.016  0.002              
## subunitGall -0.391  0.013  0.009  0.502       
## cos_td_rad  -0.769  0.574  0.001  0.027  0.005

year not significant, rightfully dropped. center time of year variable, highly correlated with intercept.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: richness ~ settlements + subunit + cos_td_rad_c + (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   2110.8   2135.4  -1049.4   2098.8      438 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.09026 -0.59674 -0.07933  0.56201  2.96580 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.009619 0.09808 
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.90293    0.05611  33.916   <2e-16 ***
## settlementsNear  0.38421    0.03401  11.296   <2e-16 ***
## subunitCarmel    0.08256    0.07349   1.124   0.2612    
## subunitGalilee  -0.20004    0.07404  -2.702   0.0069 ** 
## cos_td_rad_c     0.13534    0.06305   2.147   0.0318 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN sbntCr sbntGl
## settlmntsNr -0.363                     
## subunitCrml -0.663  0.002              
## subunitGall -0.660  0.009  0.502       
## cos_td_rd_c -0.023 -0.002  0.021 -0.003
## Registered S3 methods overwritten by 'broom':
##   method            from  
##   tidy.glht         jtools
##   tidy.summary.glht jtools
Observations 444
Dependent variable richness
Type Mixed effects generalized linear model
Family poisson
Link log
AIC 2110.815
BIC 2135.390
Pseudo-R² (fixed effects) 0.292
Pseudo-R² (total) 0.345
Fixed Effects
exp(Est.) S.E. z val. p
(Intercept) 6.706 0.056 33.916 0.000
settlementsNear 1.468 0.034 11.296 0.000
subunitCarmel 1.086 0.073 1.124 0.261
subunitGalilee 0.819 0.074 -2.702 0.007
cos_td_rad_c 1.145 0.063 2.147 0.032
Random Effects
Group Parameter Std. Dev.
site (Intercept) 0.098
Grouping Variables
Group # groups ICC
site 16 0.010
## Loading required package: Cairo
## Loading required package: extrafont
## Registering fonts with R
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

##        2 
## 3.141228
##        2 
## 46.84533
##        1        2 
## 6.705529 9.846757
## [1] 0.4684534
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

##  subunit          emmean     SE  df asymp.LCL asymp.UCL
##  Judean Highlands   2.10 0.0524 Inf      1.99      2.20
##  Carmel             2.18 0.0518 Inf      2.08      2.28
##  Galilee            1.89 0.0526 Inf      1.79      2.00
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95
## [1] 33.64275
## [1] 8.328707
## [1] 23.36781
##  contrast                   estimate     SE  df z.ratio p.value
##  Judean Highlands - Carmel   -0.0826 0.0735 Inf  -1.124  0.2612
##  Judean Highlands - Galilee   0.2000 0.0740 Inf   2.702  0.0103
##  Carmel - Galilee             0.2826 0.0736 Inf   3.839  0.0004
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

statistically significant lower richness in Galilee and far from settlements. No significant change in richness over time.

geometric mean of abundance

Explore data. Exclude time of day because of high number of NAs.

## [1] "GEOMETRIC MEAN ABUNDANCE WITHOUT RARE SPECIES"
## Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).
## Removed 1 rows containing non-finite values (`stat_boxplot()`).
## Removed 1 rows containing non-finite values (`stat_boxplot()`).

## Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).
## Removed 1 rows containing non-finite values (`stat_boxplot()`).
## Removed 1 rows containing non-finite values (`stat_boxplot()`).
gma year_ct site settlements subunit td_sc cos_td_rad sin_td_rad
Min. : 1.000 Min. :0.0 Nir Etzion : 31 Far :224 Judean Highlands:149 Min. :-1.9882 Min. :-0.1671 Min. :-1.0000
1st Qu.: 2.074 1st Qu.:3.0 Ein Yaakov : 30 Near:220 Carmel :150 1st Qu.:-0.2713 1st Qu.: 0.5702 1st Qu.:-0.8215
Median : 2.551 Median :5.0 Givat Yearim : 30 NA Galilee :145 Median : 0.4918 Median : 0.8140 Median :-0.5808
Mean : 2.784 Mean :4.8 Givat Yeshayahu: 30 NA NA Mean : 0.3205 Mean : 0.7098 Mean :-0.5864
3rd Qu.: 3.248 3rd Qu.:7.0 Goren : 30 NA NA 3rd Qu.: 1.1023 3rd Qu.: 0.9413 3rd Qu.:-0.3375
Max. :10.198 Max. :9.0 Kerem Maharal : 30 NA NA Max. : 1.7127 Max. : 0.9976 Max. :-0.0688
NA’s :1 NA (Other) :263 NA NA NA NA NA

Fit glm, compare gamma, gaussian (poisson inappropriate because response is not discrete)

Remove rows 211, 376, 408. Fit fixed and mixed models.

Mixed model converged

## Linear mixed model fit by REML ['lmerMod']
## Formula: gma ~ settlements * year_ct + subunit + cos_td_rad + sin_td_rad +  
##     (1 | site)
##    Data: P.anal
## 
## REML criterion at convergence: 1251.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0107 -0.6237 -0.1601  0.4508  6.1788 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  site     (Intercept) 0.07354  0.2712  
##  Residual             0.93681  0.9679  
## Number of obs: 440, groups:  site, 16
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)              1.132556   0.546614   2.072
## settlementsNear          0.332169   0.169117   1.964
## year_ct                 -0.005497   0.025215  -0.218
## subunitCarmel            0.077810   0.205187   0.379
## subunitGalilee          -0.082583   0.201837  -0.409
## cos_td_rad               1.113885   0.401654   2.773
## sin_td_rad              -1.307029   0.471776  -2.770
## settlementsNear:year_ct -0.033993   0.029582  -1.149
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN yer_ct sbntCr sbntGl cs_td_ sn_td_
## settlmntsNr -0.157                                          
## year_ct      0.022  0.486                                   
## subunitCrml -0.195 -0.001  0.007                            
## subunitGall -0.207  0.003  0.005  0.508                     
## cos_td_rad  -0.933  0.003 -0.107  0.011  0.015              
## sin_td_rad   0.869 -0.004  0.374  0.001 -0.014 -0.856       
## sttlmntsN:_  0.132 -0.838 -0.581  0.003  0.001 -0.004  0.003

perform stepwise model selection of gaussian model.

## Single term deletions
## 
## Model:
## gma ~ settlements * year_ct + subunit + cos_td_rad + sin_td_rad + 
##     (1 | site)
##                     npar    AIC
## <none>                   1249.7
## subunit                2 1246.5
## cos_td_rad             1 1255.4
## sin_td_rad             1 1255.6
## settlements:year_ct    1 1249.0

drop subunit

## Single term deletions
## 
## Model:
## gma ~ settlements * year_ct + cos_td_rad + sin_td_rad + (1 | 
##     site)
##                     npar    AIC
## <none>                   1246.5
## cos_td_rad             1 1252.2
## sin_td_rad             1 1252.4
## settlements:year_ct    1 1245.8

drop year X settlements

## Single term deletions
## 
## Model:
## gma ~ settlements + year_ct + cos_td_rad + sin_td_rad + (1 | 
##     site)
##             npar    AIC
## <none>           1245.8
## settlements    1 1247.2
## year_ct        1 1245.0
## cos_td_rad     1 1251.5
## sin_td_rad     1 1251.7

drop year

## Single term deletions
## 
## Model:
## gma ~ settlements + cos_td_rad + sin_td_rad + (1 | site)
##             npar    AIC
## <none>           1245.0
## settlements    1 1246.4
## cos_td_rad     1 1250.0
## sin_td_rad     1 1249.7

This is the final model:

## Linear mixed model fit by REML ['lmerMod']
## Formula: gma ~ settlements + cos_td_rad + sin_td_rad + (1 | site)
##    Data: P.anal
## 
## REML criterion at convergence: 1240.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1096 -0.6337 -0.1613  0.4701  6.2240 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  site     (Intercept) 0.06469  0.2543  
##  Residual             0.93758  0.9683  
## Number of obs: 440, groups:  site, 16
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)      1.28362    0.52079   2.465
## settlementsNear  0.16956    0.09237   1.836
## cos_td_rad       1.05182    0.39719   2.648
## sin_td_rad      -1.07442    0.41716  -2.576
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN cs_td_
## settlmntsNr -0.088              
## cos_td_rad  -0.964  0.000       
## sin_td_rad   0.957 -0.002 -0.904
## $site
##                 (Intercept)
## Abirim           0.02512544
## Aderet           0.39914017
## Beit Oren        0.11475809
## Ein Yaakov       0.01990634
## Givat Yearim    -0.35014787
## Givat Yeshayahu  0.17737192
## Goren            0.17829055
## Iftach          -0.29778493
## Kerem Maharal   -0.02281586
## Kfar Shamai     -0.11844217
## Margaliot       -0.08711515
## Nehusha         -0.15429168
## Nir Etzion      -0.17312429
## Ofer             0.06568644
## Ramat Raziel    -0.06810568
## Yagur            0.29154868
## 
## with conditional variances for "site"
## $site

Not a great fit. settlement is not significant.

Observations 440
Dependent variable gma
Type Mixed effects linear regression
AIC 1252.880
BIC 1277.401
Pseudo-R² (fixed effects) 0.024
Pseudo-R² (total) 0.087
Fixed Effects
Est. S.E. t val. d.f. p
(Intercept) 1.284 0.525 2.447 406.954 0.015
settlementsNear 0.170 0.092 1.836 421.695 0.067
cos_td_rad 1.052 0.400 2.629 427.973 0.009
sin_td_rad -1.074 0.420 -2.555 417.556 0.011
p values calculated using Kenward-Roger standard errors and d.f.
Random Effects
Group Parameter Std. Dev.
site (Intercept) 0.254
Residual 0.968
Grouping Variables
Group # groups ICC
site 16 0.065

## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.
## Warning: Removed 14 rows containing missing values (`geom_point()`).
## Removed 14 rows containing missing values (`geom_point()`).

## Warning: Removed 14 rows containing missing values (`geom_point()`).

No significant effect in GMA.

abundance

Explore data

## [1] "ABUNDANCE WITHOUT RARE SPECIES"
abundance year_ct site settlements subunit td_sc cos_td_rad sin_td_rad
Min. : 0.00 Min. :0.0 Nir Etzion : 31 Far :224 Judean Highlands:149 Min. :-1.9882 Min. :-0.1671 Min. :-1.0000
1st Qu.: 15.75 1st Qu.:3.0 Ein Yaakov : 30 Near:220 Carmel :150 1st Qu.:-0.2713 1st Qu.: 0.5702 1st Qu.:-0.8215
Median : 24.00 Median :5.0 Givat Yearim : 30 NA Galilee :145 Median : 0.4918 Median : 0.8140 Median :-0.5808
Mean : 29.17 Mean :4.8 Givat Yeshayahu: 30 NA NA Mean : 0.3205 Mean : 0.7098 Mean :-0.5864
3rd Qu.: 36.00 3rd Qu.:7.0 Goren : 30 NA NA 3rd Qu.: 1.1023 3rd Qu.: 0.9413 3rd Qu.:-0.3375
Max. :221.00 Max. :9.0 Kerem Maharal : 30 NA NA Max. : 1.7127 Max. : 0.9976 Max. :-0.0688
NA NA (Other) :263 NA NA NA NA NA

Some outliers with total abundance >100. Examine:

##             subunit             point_name            datetime monitors_name
## 1: Judean Highlands  Givat Yeshayahu Far 2 2017-04-20 10:20:00   Eran Banker
## 2: Judean Highlands Givat Yeshayahu Near 1 2017-04-20 06:25:00   Eran Banker
## 3: Judean Highlands Givat Yeshayahu Near 2 2017-04-20 06:50:00   Eran Banker
## 4: Judean Highlands Givat Yeshayahu Near 3 2017-04-20 07:15:00   Eran Banker
## 5: Judean Highlands          Aderet Near 2 2019-05-26 06:52:00   Eran Banker
## 6:           Carmel       Beit Oren Near 3 2019-04-19 07:35:00         Other
## 7:           Carmel   Kerem Maharal Near 3 2021-04-17 07:41:00   Eliraz Dvir
##    richness      gma abundance
## 1:       11 5.356635       115
## 2:       13 9.170560       140
## 3:       14 7.652753       138
## 4:       16 9.098580       221
## 5:       15 5.408017       106
## 6:       10 4.471017       113
## 7:       11 4.385841       117

Exclude 1 plot with high abundance (>150) to improve model fit.

PHI>1, hence choose negative binomial. Fit fixed and mixed models. Choose mixed model if possible, otherwise choose a model with fixed-effects only.

## [1] 3623.798
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00347226 (tol = 0.002, component 1)
## [1] 3613.284

mixed model converged, slightly better AIC. Perform stepwise model selection of mixed model.

## Single term deletions
## 
## Model:
## abundance ~ settlements * year_ct + subunit + cos_td_rad + sin_td_rad + 
##     (1 | site)
##                     npar    AIC
## <none>                   3613.3
## subunit                2 3616.5
## cos_td_rad             1 3628.9
## sin_td_rad             1 3627.4
## settlements:year_ct    1 3611.7

drop settlements X year

## Single term deletions
## 
## Model:
## abundance ~ settlements + subunit + year_ct + cos_td_rad + sin_td_rad + 
##     (1 | site)
##             npar    AIC
## <none>           3611.7
## settlements    1 3708.2
## subunit        2 3614.9
## year_ct        1 3611.0
## cos_td_rad     1 3627.4
## sin_td_rad     1 3625.8

drop year

## Single term deletions
## 
## Model:
## abundance ~ settlements + subunit + cos_td_rad + sin_td_rad + 
##     (1 | site)
##             npar    AIC
## <none>           3611.0
## settlements    1 3707.6
## subunit        2 3614.2
## cos_td_rad     1 3625.7
## sin_td_rad     1 3624.5

Subunit, settlement and time of year remain. The final model:

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Negative Binomial(3.845)  ( log )
## Formula: abundance ~ settlements + subunit + cos_td_rad + sin_td_rad +  
##     (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   3611.0   3643.7  -1797.5   3595.0      436 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8301 -0.7127 -0.2336  0.4548  6.7444 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.02135  0.1461  
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.89136    0.30491   6.203 5.54e-10 ***
## settlementsNear  0.51868    0.05206   9.962  < 2e-16 ***
## subunitCarmel    0.07702    0.11192   0.688   0.4914    
## subunitGalilee  -0.23938    0.11080  -2.160   0.0307 *  
## cos_td_rad       0.94098    0.22562   4.171 3.04e-05 ***
## sin_td_rad      -0.92974    0.23312  -3.988 6.65e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN sbntCr sbntGl cs_td_
## settlmntsNr -0.114                            
## subunitCrml -0.229  0.026                     
## subunitGall -0.234  0.032  0.507              
## cos_td_rad  -0.940  0.018  0.047  0.039       
## sin_td_rad   0.933 -0.023 -0.039 -0.056 -0.899
## $site
##                  (Intercept)
## Abirim          -0.116224848
## Aderet           0.171176492
## Beit Oren        0.066853757
## Ein Yaakov       0.022356791
## Givat Yearim    -0.205123412
## Givat Yeshayahu  0.206056383
## Goren           -0.014560285
## Iftach           0.084554316
## Kerem Maharal    0.106352145
## Kfar Shamai      0.021701734
## Margaliot        0.004312994
## Nehusha         -0.099031455
## Nir Etzion      -0.232721747
## Ofer             0.033580067
## Ramat Raziel    -0.071674915
## Yagur            0.027259196
## 
## with conditional variances for "site"
## $site

Not a great fit, high residuals. center time of year variables, highly correlated with intercept.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Negative Binomial(3.845)  ( log )
## Formula: abundance ~ settlements + subunit + cos_td_rad_c + sin_td_rad_c +  
##     (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   3611.0   3643.7  -1797.5   3595.0      436 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8301 -0.7127 -0.2336  0.4548  6.7444 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.02135  0.1461  
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      3.10445    0.08421  36.863  < 2e-16 ***
## settlementsNear  0.51868    0.05206   9.962  < 2e-16 ***
## subunitCarmel    0.07702    0.11192   0.688   0.4914    
## subunitGalilee  -0.23938    0.11081  -2.160   0.0307 *  
## cos_td_rad_c     0.94099    0.22562   4.171 3.04e-05 ***
## sin_td_rad_c    -0.92975    0.23311  -3.988 6.65e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN sbntCr sbntGl cs_t__
## settlmntsNr -0.340                            
## subunitCrml -0.674  0.026                     
## subunitGall -0.683  0.032  0.507              
## cos_td_rd_c -0.043  0.018  0.047  0.039       
## sin_td_rd_c  0.044 -0.023 -0.039 -0.056 -0.899

Interpretation of abundance model:

Observations 444
Dependent variable abundance
Type Mixed effects generalized linear model
Family Negative Binomial(3.845)
Link log
AIC 3610.983
BIC 3643.750
Pseudo-R² (fixed effects) 0.637
Pseudo-R² (total) 0.775
Fixed Effects
exp(Est.) S.E. z val. p
(Intercept) 22.297 0.084 36.863 0.000
settlementsNear 1.680 0.052 9.962 0.000
subunitCarmel 1.080 0.112 0.688 0.491
subunitGalilee 0.787 0.111 -2.160 0.031
cos_td_rad_c 2.563 0.226 4.171 0.000
sin_td_rad_c 0.395 0.233 -3.988 0.000
Random Effects
Group Parameter Std. Dev.
site (Intercept) 0.146
Grouping Variables
Group # groups ICC
site 16 0.065
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

##        1        2 
## 22.29694 37.45466
##        2 
## 67.98118
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

##  subunit          emmean     SE  df asymp.LCL asymp.UCL
##  Judean Highlands   3.36 0.0792 Inf      3.21      3.52
##  Carmel             3.44 0.0790 Inf      3.29      3.60
##  Galilee            3.12 0.0774 Inf      2.97      3.28
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95
## [1] "Carmel vs Galilee"
## [1] 37.21787
## [1] "Carmel vs Judea "
## [1] 8.006405
## [1] "Judea vs Galilee"
## [1] 27.04604
##  contrast                   estimate    SE  df z.ratio p.value
##  Judean Highlands - Carmel    -0.077 0.112 Inf  -0.688  0.4914
##  Judean Highlands - Galilee    0.239 0.111 Inf   2.160  0.0461
##  Carmel - Galilee              0.316 0.111 Inf   2.861  0.0127
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

significantly lower abundance in Galilee subunit and far from settlements. No significant temporal trend.

community analysis using package MVabund

## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR
## Only the variables Curruca.melanocephala, Turdus.merula, Streptopelia.decaocto, Passer.domesticus, Pycnonotus.xanthopygos, Parus.major, Columba.livia, Cinnyris.osea, Spilopelia.senegalensis, Garrulus.glandarius, Cecropis.daurica, Prinia.gracilis were included in the plot 
## (the variables with highest total abundance).

## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR
## Only the variables Curruca.melanocephala, Turdus.merula, Streptopelia.decaocto, Passer.domesticus, Pycnonotus.xanthopygos, Parus.major, Columba.livia, Cinnyris.osea, Spilopelia.senegalensis, Garrulus.glandarius, Cecropis.daurica, Prinia.gracilis were included in the plot 
## (the variables with highest total abundance).

There are few observations with counts of >60. Examine these:

##                point_name            datetime           SciName monitors_name
## 1: Givat Yeshayahu Near 3 2017-04-20 07:15:00 Passer domesticus   Eran Banker
## 2:     Ein Yaakov Near 31 2019-04-05 10:27:00 Passer domesticus   Sassi Haham
##    count_under_250
## 1:              65
## 2:              68

Both observations are of P. domesticus, it is likely to be seen in large groups.

Look for species that were completely absent in certain subunits or settlemnt proximities:

SciName subunit V1 is_zero
Curruca curruca Judean Highlands 0 TRUE
SciName settlements V1 is_zero

Curruca curruca was not observed in Judean Highlands at all. Validate model specifically.

start model specification:

##        nb        po 
##  977.1228 1350.8779
## [1] "POISSON"

## [1] "NEGATIVE BINOMIAL"

negative binomial model is better than poisson according to residuals and AIC comparison.

##        nb        po       nb1 
##  977.1228 1350.8779  966.4717

The addition of the explanatory variable ‘site’ is somewhat improving the AIC of the model. Prefer to exclude site, for simplification. stepwise selection of model:

## Single term deletions
## 
## Model:
## spp_no_rare ~ settlements * year_ct + subunit + cos_td_rad + 
##     sin_td_rad
##                     Df   AIC
## <none>                 23451
## subunit             48 23814
## cos_td_rad          24 23500
## sin_td_rad          24 23513
## settlements:year_ct 24 23434

drop settlements X year.

## Single term deletions
## 
## Model:
## spp_no_rare ~ settlements + subunit + year_ct + cos_td_rad + 
##     sin_td_rad
##             Df   AIC
## <none>         23434
## settlements 24 24225
## subunit     48 23797
## year_ct     24 23450
## cos_td_rad  24 23483
## sin_td_rad  24 23497

final model includes settlements, year, subunit, sampling time of year.

## 
## Test statistics:
##                 wald value Pr(>wald)    
## (Intercept)         11.948     0.001 ***
## settlementsNear     28.844     0.001 ***
## subunitCarmel       14.252     0.001 ***
## subunitGalilee      15.421     0.001 ***
## year_ct              8.548     0.001 ***
## cos_td_rad          10.026     0.001 ***
## sin_td_rad          10.846     0.001 ***
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Test statistic:  38.31, p-value: 0.001 
## Arguments:
##  Test statistics calculated assuming response assumed to be uncorrelated 
##  P-value calculated using 999 resampling iterations via pit.trap resampling (to account for correlation in testing).
## Analysis of Deviance Table
## 
## Model: spp_no_rare ~ settlements + subunit + year_ct + cos_td_rad + sin_td_rad
## 
## Multivariate test:
##             Res.Df Df.diff   Dev Pr(>Dev)   
## (Intercept)    443                          
## settlements    442       1 775.4     0.01 **
## subunit        440       2 435.9     0.01 **
## year_ct        439       1 131.2     0.01 **
## cos_td_rad     438       1  47.5     0.03 * 
## sin_td_rad     437       1 110.6     0.01 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Univariate Tests:
##             Acridotheres.tristis          Alectoris.chukar         
##                              Dev Pr(>Dev)              Dev Pr(>Dev)
## (Intercept)                                                        
## settlements               79.707     0.01           38.366     0.01
## subunit                   39.138     0.01           10.607     0.03
## year_ct                   29.844     0.01            9.298     0.04
## cos_td_rad                 3.002     0.86            2.276     0.92
## sin_td_rad                  5.64     0.49            0.596     0.99
##             Cinnyris.osea          Columba.livia          Curruca.curruca
##                       Dev Pr(>Dev)           Dev Pr(>Dev)             Dev
## (Intercept)                                                              
## settlements        41.948     0.01        18.361     0.01           1.694
## subunit            17.867     0.01        17.503     0.01          28.427
## year_ct             3.939     0.57        12.046     0.04           14.39
## cos_td_rad          1.651     0.95         0.274     1.00           7.887
## sin_td_rad           2.01     0.96        11.357     0.05           5.831
##                      Falco.tinnunculus          Passer.domesticus         
##             Pr(>Dev)               Dev Pr(>Dev)               Dev Pr(>Dev)
## (Intercept)                                                               
## settlements     0.59             1.849     0.59           166.539     0.01
## subunit         0.01             9.122     0.06            21.305     0.01
## year_ct         0.01             0.543     0.99             1.781     0.97
## cos_td_rad      0.21             0.078     1.00             0.485     1.00
## sin_td_rad      0.49             0.641     0.98             2.962     0.85
##             Prinia.gracilis          Pycnonotus.xanthopygos         
##                         Dev Pr(>Dev)                    Dev Pr(>Dev)
## (Intercept)                                                         
## settlements          48.787     0.01                 45.339     0.01
## subunit               1.864     0.73                  25.29     0.01
## year_ct              16.036     0.01                   2.87     0.71
## cos_td_rad            0.633     1.00                 11.394     0.03
## sin_td_rad            1.004     0.98                  0.499     0.99
##             Spilopelia.senegalensis          Streptopelia.decaocto         
##                                 Dev Pr(>Dev)                   Dev Pr(>Dev)
## (Intercept)                                                                
## settlements                 157.013     0.01                 1.955     0.59
## subunit                      27.046     0.01                12.168     0.02
## year_ct                       2.224     0.86                 0.068     0.99
## cos_td_rad                    0.333     1.00                 6.672     0.34
## sin_td_rad                    0.603     0.99                14.008     0.01
##             Streptopelia.turtur          Carduelis.carduelis         
##                             Dev Pr(>Dev)                 Dev Pr(>Dev)
## (Intercept)                                                          
## settlements               1.175     0.59                8.13     0.10
## subunit                   6.566     0.23              21.019     0.01
## year_ct                  18.089     0.01               6.527     0.22
## cos_td_rad                3.045     0.86               0.389     1.00
## sin_td_rad                1.847     0.97                1.61     0.97
##             Cecropis.daurica          Chloris.chloris          Corvus.cornix
##                          Dev Pr(>Dev)             Dev Pr(>Dev)           Dev
## (Intercept)                                                                 
## settlements           33.414     0.01          23.721     0.01        22.932
## subunit                1.066     0.73          10.394     0.03        47.477
## year_ct                1.257     0.98           0.769     0.99         0.695
## cos_td_rad             0.127     1.00           0.224     1.00         1.013
## sin_td_rad             3.044     0.85           0.465     0.99         0.157
##                      Corvus.monedula          Curruca.melanocephala         
##             Pr(>Dev)             Dev Pr(>Dev)                   Dev Pr(>Dev)
## (Intercept)                                                                 
## settlements     0.01           0.428     0.59                 21.24     0.01
## subunit         0.01          22.714     0.01                41.067     0.01
## year_ct         0.99           0.301     0.99                 0.747     0.99
## cos_td_rad      1.00           0.184     1.00                   0.3     1.00
## sin_td_rad      0.99           0.053     0.99                 0.429     0.99
##             Dendrocopos.syriacus          Garrulus.glandarius         
##                              Dev Pr(>Dev)                 Dev Pr(>Dev)
## (Intercept)                                                           
## settlements                9.285     0.09               3.632     0.45
## subunit                    3.648     0.48              25.056     0.01
## year_ct                    0.002     0.99               4.786     0.45
## cos_td_rad                 1.417     0.98               1.146     0.99
## sin_td_rad                  3.35     0.77               1.103     0.97
##             Parus.major          Psittacula.krameri         
##                     Dev Pr(>Dev)                Dev Pr(>Dev)
## (Intercept)                                                 
## settlements       3.908     0.45             15.594     0.01
## subunit          25.606     0.01             14.393     0.01
## year_ct           0.176     0.99              1.082     0.98
## cos_td_rad        3.376     0.86              0.793     1.00
## sin_td_rad        7.701     0.24              1.724     0.97
##             Troglodytes.troglodytes          Turdus.merula         
##                                 Dev Pr(>Dev)           Dev Pr(>Dev)
## (Intercept)                                                        
## settlements                  26.472     0.01         3.926     0.45
## subunit                       4.411     0.39         2.142     0.73
## year_ct                       0.576     0.99         3.137     0.64
## cos_td_rad                     0.48     1.00         0.347     1.00
## sin_td_rad                   10.786     0.05         33.19     0.01
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
## P-value calculated using 99 iterations via PIT-trap resampling.

Factors settlements, year, subunit, time of year have a statistically significant effect on community composition.

Check Curruca curruca model:

## 
## Call:
## glm.nb(formula = Curruca.curruca ~ settlements + subunit + year_ct + 
##     cos_td_rad + sin_td_rad, data = d.curcur, init.theta = 0.1967702774, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8887  -0.4746  -0.1231   0.0000   2.9000  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     -4.252e+01  4.837e+06   0.000   1.0000  
## settlementsNear -6.070e-01  4.396e-01  -1.381   0.1674  
## subunitCarmel    3.401e+01  4.837e+06   0.000   1.0000  
## subunitGalilee   3.494e+01  4.837e+06   0.000   1.0000  
## year_ct          5.414e-02  1.052e-01   0.515   0.6067  
## cos_td_rad       1.792e+00  2.100e+00   0.853   0.3935  
## sin_td_rad      -7.121e+00  3.136e+00  -2.271   0.0232 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(0.1968) family taken to be 1)
## 
##     Null deviance: 161.416  on 443  degrees of freedom
## Residual deviance:  88.683  on 437  degrees of freedom
## AIC: 261.84
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  0.1968 
##           Std. Err.:  0.0612 
## 
##  2 x log-likelihood:  -245.8440

subunit factor still significant, year variable not significant. replace p_value for Curruca curruca in manyglm results with p-value obtained from individual glm.

## Loading required package: ggnewscale
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## [1] "black arrow is median of synanthrope/invasive\n\n"

## [1] "black arrow is median of synanthrope/invasive\n\n"

## [[1]]

## 
## [[2]]

## 
## [[3]]

Alectoris chukar - חוגלת סלעים

##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##      -3.3297204      -1.8142174       1.0363737       0.3667818       0.1915418 
##      cos_td_rad      sin_td_rad 
##       1.7562492      -1.0706266 
##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##      -3.3297134      -1.8142178       1.0363750       0.3667830       0.1915409 
##      cos_td_rad      sin_td_rad 
##       1.7562446      -1.0706260 
## [1] "RESULTS FOR Alectoris chukar"
## [1] "P-values"
##           term    p
## 1: (Intercept)   NA
## 2: settlements 0.01
## 3:     subunit 0.03
## 4:     year_ct 0.04
## 5:  cos_td_rad 0.92
## 6:  sin_td_rad 0.99

## [1] "change in Alectoris chukar abundance over monitoring period: 460.617421331887 %"

## [1] "Alectoris chukar abundance in high proximity is 513.627439919791 % higher than low proximity."

##  subunit          emmean    SE  df asymp.LCL asymp.UCL
##  Judean Highlands -1.443 0.258 Inf    -1.948   -0.9383
##  Carmel           -0.407 0.216 Inf    -0.831    0.0171
##  Galilee          -1.076 0.243 Inf    -1.552   -0.6010
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## [1] "Carmel vs Galilee (% difference)"
## [1] 95.34401
## [1] "Carmel vs Judea (% difference)"
## [1] 181.898
## [1] "Galilee vs Judea (% difference)"
## [1] 44.30847
##  contrast                   estimate    SE  df z.ratio p.value
##  Judean Highlands - Carmel    -1.036 0.330 Inf  -3.141  0.0050
##  Judean Highlands - Galilee   -0.367 0.344 Inf  -1.067  0.2859
##  Carmel - Galilee              0.670 0.318 Inf   2.104  0.0531
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

Acridotheres tristis - מיינה מצויה

##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##     -5.81322891      3.04949199     -0.06360271     -2.84839762      0.14854946 
##      cos_td_rad      sin_td_rad 
##      1.04586057     -2.82696864 
##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##     -5.81322905      3.04949186     -0.06360287     -2.84839757      0.14854959 
##      cos_td_rad      sin_td_rad 
##      1.04586061     -2.82696797 
## [1] "RESULTS FOR Acridotheres tristis"
## [1] "P-values"
##           term    p
## 1: (Intercept)   NA
## 2: settlements 0.01
## 3:     subunit 0.01
## 4:     year_ct 0.01
## 5:  cos_td_rad 0.86
## 6:  sin_td_rad 0.49

## [1] "change in Acridotheres tristis abundance over monitoring period: 280.739909808961 %"

## [1] "Acridotheres tristis abundance in high proximity is 2010.46174933252 % higher than low proximity."

##  subunit          emmean    SE  df asymp.LCL asymp.UCL
##  Judean Highlands  -1.18 0.216 Inf     -1.60    -0.753
##  Carmel            -1.24 0.220 Inf     -1.67    -0.808
##  Galilee           -4.02 0.430 Inf     -4.87    -3.180
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## [1] "Carmel vs Galilee (% difference)"
## [1] 1519.649
## [1] "Carmel vs Judea (% difference)"
## [1] -6.162242
## [1] "Galilee vs Judea (% difference)"
## [1] -94.20629
##  contrast                   estimate    SE  df z.ratio p.value
##  Judean Highlands - Carmel    0.0636 0.255 Inf   0.249  0.8032
##  Judean Highlands - Galilee   2.8484 0.435 Inf   6.547  <.0001
##  Carmel - Galilee             2.7848 0.433 Inf   6.436  <.0001
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

Streptopelia turtur - תור מצוי

##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##      -4.0568827      -0.3138816       0.8126151       0.2758993      -0.1499697 
##      cos_td_rad      sin_td_rad 
##       2.8254657      -1.6813797 
##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##      -4.0568824      -0.3138816       0.8126152       0.2758993      -0.1499697 
##      cos_td_rad      sin_td_rad 
##       2.8254655      -1.6813795 
## [1] "RESULTS FOR Streptopelia turtur"
## [1] "P-values"
##           term    p
## 1: (Intercept)   NA
## 2: settlements 0.59
## 3:     subunit 0.23
## 4:     year_ct 0.01
## 5:  cos_td_rad 0.86
## 6:  sin_td_rad 0.97

## [1] "change in Streptopelia turtur abundance over monitoring period: -74.0688984897411 %"

Columba livia - יונת סלעים (ותת-מין יונת הבית)

##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##     -8.17508962      2.03815291      0.07336363     -1.60376098      0.13085672 
##      cos_td_rad      sin_td_rad 
##      4.99588496     -5.41099832 
##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##     -8.17507599      2.03815322      0.07337114     -1.60375004      0.13085565 
##      cos_td_rad      sin_td_rad 
##      4.99587573     -5.41098508 
## [1] "RESULTS FOR Columba livia"
## [1] "P-values"
##           term    p
## 1: (Intercept)   NA
## 2: settlements 0.01
## 3:     subunit 0.01
## 4:     year_ct 0.04
## 5:  cos_td_rad 1.00
## 6:  sin_td_rad 0.05

## [1] "change in Columba livia abundance over monitoring period: 224.690047628383 %"

## [1] "Columba livia abundance in high proximity is 667.641942989646 % higher than low proximity."

##  subunit          emmean    SE  df asymp.LCL asymp.UCL
##  Judean Highlands  0.191 0.243 Inf    -0.286     0.668
##  Carmel            0.264 0.243 Inf    -0.211     0.740
##  Galilee          -1.413 0.298 Inf    -1.996    -0.829
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## [1] "Carmel vs Galilee (% difference)"
## [1] 435.0132
## [1] "Carmel vs Judea (% difference)"
## [1] 7.612985
## [1] "Galilee vs Judea (% difference)"
## [1] -79.88592
##  contrast                   estimate    SE  df z.ratio p.value
##  Judean Highlands - Carmel   -0.0734 0.342 Inf  -0.215  0.8301
##  Judean Highlands - Galilee   1.6038 0.380 Inf   4.218  <.0001
##  Carmel - Galilee             1.6771 0.379 Inf   4.423  <.0001
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

Passer domesticus - דרור הבית

##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##      -5.2174230       4.9808727      -1.2576557       0.3878957      -0.1176087 
##      cos_td_rad      sin_td_rad 
##       1.4382456      -2.3168731 
##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##      -5.2174237       4.9808727      -1.2576557       0.3878958      -0.1176087 
##      cos_td_rad      sin_td_rad 
##       1.4382462      -2.3168737 
## [1] "RESULTS FOR Passer domesticus"
## [1] "P-values"
##           term    p
## 1: (Intercept)   NA
## 2: settlements 0.01
## 3:     subunit 0.01
## 4:     year_ct 0.97
## 5:  cos_td_rad 1.00
## 6:  sin_td_rad 0.85

## [1] "Passer domesticus abundance in high proximity is 14460.1398241022 % higher than low proximity."

##  subunit          emmean    SE  df asymp.LCL asymp.UCL
##  Judean Highlands -0.912 0.270 Inf     -1.44   -0.3838
##  Carmel           -2.170 0.304 Inf     -2.76   -1.5744
##  Galilee          -0.524 0.260 Inf     -1.03   -0.0151
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## [1] "Carmel vs Galilee (% difference)"
## [1] -80.70939
## [1] "Carmel vs Judea (% difference)"
## [1] -71.56802
## [1] "Galilee vs Judea (% difference)"
## [1] 47.38762
##  contrast                   estimate    SE  df z.ratio p.value
##  Judean Highlands - Carmel     1.258 0.313 Inf   4.022  0.0001
##  Judean Highlands - Galilee   -0.388 0.296 Inf  -1.311  0.1899
##  Carmel - Galilee             -1.646 0.315 Inf  -5.230  <.0001
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

Spilopelia senegalensis - צוצלת

##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##     -2.48717563      2.85687260     -0.13160712     -1.14301540     -0.04214909 
##      cos_td_rad      sin_td_rad 
##      0.63738395     -0.60406669 
##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##     -2.48716893      2.85687304     -0.13160658     -1.14301634     -0.04214947 
##      cos_td_rad      sin_td_rad 
##      0.63737835     -0.60406475 
## [1] "RESULTS FOR Spilopelia senegalensis"
## [1] "P-values"
##           term    p
## 1: (Intercept)   NA
## 2: settlements 0.01
## 3:     subunit 0.01
## 4:     year_ct 0.86
## 5:  cos_td_rad 1.00
## 6:  sin_td_rad 0.99

## [1] "Spilopelia senegalensis abundance in high proximity is 1640.70107787319 % higher than low proximity."

##  subunit          emmean    SE  df asymp.LCL asymp.UCL
##  Judean Highlands -0.454 0.154 Inf    -0.756    -0.153
##  Carmel           -0.586 0.157 Inf    -0.895    -0.277
##  Galilee          -1.597 0.198 Inf    -1.985    -1.210
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## [1] "Carmel vs Galilee (% difference)"
## [1] 174.9474
## [1] "Carmel vs Judea (% difference)"
## [1] -12.33142
## [1] "Galilee vs Judea (% difference)"
## [1] -68.11442
##  contrast                   estimate    SE  df z.ratio p.value
##  Judean Highlands - Carmel     0.132 0.190 Inf   0.692  0.4887
##  Judean Highlands - Galilee    1.143 0.220 Inf   5.195  <.0001
##  Carmel - Galilee              1.011 0.222 Inf   4.560  <.0001
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

Cecropis daurica - סנונית מערות

##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##      0.98095288      2.16869649     -0.45368366     -0.08874088      0.10836920 
##      cos_td_rad      sin_td_rad 
##     -2.15241967      2.63508635 
##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##      0.98094089      2.16869257     -0.45368117     -0.08874169      0.10836879 
##      cos_td_rad      sin_td_rad 
##     -2.15240660      2.63507576 
## [1] "RESULTS FOR Cecropis daurica"
## [1] "P-values"
##           term    p
## 1: (Intercept)   NA
## 2: settlements 0.01
## 3:     subunit 0.73
## 4:     year_ct 0.98
## 5:  cos_td_rad 1.00
## 6:  sin_td_rad 0.85

## [1] "Cecropis daurica abundance in high proximity is 774.684066550356 % higher than low proximity."

Psittacula krameri - דררה

##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##    -5.269088823     1.668902826     1.190144622    -0.452394245    -0.009682361 
##      cos_td_rad      sin_td_rad 
##     0.995954283    -2.204367675 
##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##    -5.269099503     1.668904042     1.190146788    -0.452393130    -0.009682248 
##      cos_td_rad      sin_td_rad 
##     0.995960536    -2.204373874 
## [1] "RESULTS FOR Psittacula krameri"
## [1] "P-values"
##           term    p
## 1: (Intercept)   NA
## 2: settlements 0.01
## 3:     subunit 0.01
## 4:     year_ct 0.98
## 5:  cos_td_rad 1.00
## 6:  sin_td_rad 0.97

## [1] "Psittacula krameri abundance in high proximity is 430.634907481498 % higher than low proximity."

##  subunit          emmean    SE  df asymp.LCL asymp.UCL
##  Judean Highlands  -2.48 0.347 Inf     -3.16    -1.801
##  Carmel            -1.29 0.263 Inf     -1.81    -0.777
##  Galilee           -2.93 0.404 Inf     -3.72    -2.143
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## [1] "Carmel vs Galilee (% difference)"
## [1] 416.828
## [1] "Carmel vs Judea (% difference)"
## [1] 228.7564
## [1] "Galilee vs Judea (% difference)"
## [1] -36.3896
##  contrast                   estimate    SE  df z.ratio p.value
##  Judean Highlands - Carmel    -1.190 0.419 Inf  -2.839  0.0068
##  Judean Highlands - Galilee    0.452 0.510 Inf   0.887  0.3750
##  Carmel - Galilee              1.643 0.465 Inf   3.533  0.0012
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

Prinia gracilis - פשוש

##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##     -0.12702277      1.51717609      0.26228731     -0.06852479     -0.08504256 
##      cos_td_rad      sin_td_rad 
##     -0.36574149      0.92278481 
##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##     -0.12702190      1.51717688      0.26228733     -0.06852537     -0.08504253 
##      cos_td_rad      sin_td_rad 
##     -0.36574233      0.92278602 
## [1] "RESULTS FOR Prinia gracilis"
## [1] "P-values"
##           term    p
## 1: (Intercept)   NA
## 2: settlements 0.01
## 3:     subunit 0.73
## 4:     year_ct 0.01
## 5:  cos_td_rad 1.00
## 6:  sin_td_rad 0.98

## [1] "change in Prinia gracilis abundance over monitoring period: -53.4844158204341 %"

## [1] "Prinia gracilis abundance in high proximity is 355.933546091388 % higher than low proximity."

Curruca curruca - סבכי טוחנים

##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##    -20.28530352     -0.60703439     11.77820245     12.70057714      0.05413925 
##      cos_td_rad      sin_td_rad 
##      1.79200052     -7.12131418
##     (Intercept) settlementsNear  subunitGalilee         year_ct      cos_td_rad 
##      -8.5072544      -0.6070405       0.9223838       0.0541405       1.7920523 
##      sin_td_rad 
##      -7.1214608
## [1] "RESULTS FOR Curruca curruca"
## [1] "P-values"
##           term         p
## 1: (Intercept)        NA
## 2: settlements 0.5900000
## 3:     subunit 0.0100000
## 4:     year_ct 0.6066676
## 5:  cos_td_rad 0.2100000
## 6:  sin_td_rad 0.4900000

##  subunit emmean    SE  df asymp.LCL asymp.UCL
##  Carmel   -3.08 0.463 Inf     -3.99     -2.18
##  Galilee  -2.16 0.398 Inf     -2.94     -1.38
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## [1] "Carmel vs Galilee (% difference)"
## [1] -60.24298
## [1] "Carmel vs Judea (% difference)"
## numeric(0)
## [1] "Galilee vs Judea (% difference)"
## numeric(0)
##  contrast         estimate    SE  df z.ratio p.value
##  Carmel - Galilee   -0.922 0.443 Inf  -2.080  0.0375
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale.

Chloris chloris - ירקון

##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##      -0.4660311       1.2206656      -0.9393722      -0.1550147       0.0592256 
##      cos_td_rad      sin_td_rad 
##      -0.3608733       0.7592962 
##     (Intercept) settlementsNear   subunitCarmel  subunitGalilee         year_ct 
##     -0.46602851      1.22066509     -0.93937302     -0.15501467      0.05922575 
##      cos_td_rad      sin_td_rad 
##     -0.36087540      0.75929856 
## [1] "RESULTS FOR Chloris chloris"
## [1] "P-values"
##           term    p
## 1: (Intercept)   NA
## 2: settlements 0.01
## 3:     subunit 0.03
## 4:     year_ct 0.99
## 5:  cos_td_rad 1.00
## 6:  sin_td_rad 0.99

## [1] "Chloris chloris abundance in high proximity is 238.944126900858 % higher than low proximity."

##  subunit          emmean    SE  df asymp.LCL asymp.UCL
##  Judean Highlands -0.273 0.190 Inf    -0.646    0.1001
##  Carmel           -1.212 0.223 Inf    -1.650   -0.7747
##  Galilee          -0.428 0.197 Inf    -0.814   -0.0417
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## [1] "Carmel vs Galilee (% difference)"
## [1] -54.35875
## [1] "Carmel vs Judea (% difference)"
## [1] -60.91272
## [1] "Galilee vs Judea (% difference)"
## [1] -14.35974
##  contrast                   estimate    SE  df z.ratio p.value
##  Judean Highlands - Carmel     0.939 0.291 Inf   3.227  0.0038
##  Judean Highlands - Galilee    0.155 0.273 Inf   0.569  0.5697
##  Carmel - Galilee             -0.784 0.296 Inf  -2.651  0.0120
## 
## Results are averaged over the levels of: settlements 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests