Gender x Incivility Recall Pilot 1

Measure information

Scale Abbrev Scale Name
lmx_aff Leader member exchange - affect subscale
lmx_loy Leader member exchange - loyalty subscale
lmx_resp Leader member exchange - respect subscale
perceptions_1 confronter wanted to protect women’s well being
perceptions_2 confronter was moral
perceptions_3 confronter wanted to right a wrong
perceptions_4 confronter wanted to teach perp lesson
perceptions_5 confronter wanted to send perp a message
perceptions_6 confronter was angry with perp
perceptions_7 confronter was disgusted w/ perp
perceptions_10 confronter was comfortable taking a risk to protect women
perceptions_23 confronter was competent
comp_1 competent
comp_2 confident
comp_3 independent
warm_1 warm
warm_2 trustworthy
warm_3 tolerant
warm_4 sincere
warm_5 assertive
warm_6 dominant
warm_7 compassionate
warm_8 caring
participant_gender participant gender
sentiment_1 sentiment
ladder_confronter confronter_power
ladder_perpetrator perpetrator_power
ladder_participant participant_power
pwr_confronter_perp confronter power-perpetrator power

Responses to Amy’s comments

Graphs of Significant Three Way Interactions

Perceptions 1: Confronter wanted to protect women’s well-being

MOD: Perceptions 4: Confronter wanted to teach perp a lesson

Click Here for Simple Slopes

MOD: Perceptions 10: Confronter was comfortable taking a risk to protect women

Click Here for Simple Slopes

Perceptions 2: Confronter was moral

MOD: Perceptions 4: Confronter wanted to teach perp a lesson

Click Here for Simple Slopes

MOD: Perceptions 10: Confronter was comfortable taking a risk to protect women

Click Here for Simple Slopes

DV: LMX Aff: LMX Affect

MOD: Perceptions 4: Confronter wanted to teach perp a lesson

Click Here for Simple Slopes

MOD: Perceptions 10: Confronter was comfortable taking a risk to protect women

Click Here for Simple Slopes

MOD: Warm 1: Confronter was warm

Click Here for Simple Slopes

MOD: Warm 2: Confronter was trustworthy

Click Here for Simple Slopes

MOD: Warm 7: Confronter was compassionate

Click Here for Simple Slopes

LMX Resp: LMX Respect

MOD: Warm 3: Confronter was tolerant

Click Here for Simple Slopes
interactions::interact_plot(lm(lmx_resp~cond*cond2*warm_3, g_i1_clean),
                            modx = "cond",
                            mod2 = "cond2",
                            pred = "warm_3",
                            x.label = "Tolerant",
                            y.label = "LMX Resp")+
  theme_apa()

LMX Loy: LMX Loyalty

MOD: Warm 3: Confronter was disgusted with perp

Click Here for Simple Slopes

Participant Information

Amount that could recall in each condition

## , , recall = No
## 
##        cond2
## cond    rude sexist
##   man     23     30
##   woman   24     23
## 
## , , recall = Yes
## 
##        cond2
## cond    rude sexist
##   man     44     20
##   woman   27     38

Total retained in each condition after filtering out those who failed attn check and couldn’t recall specified situation

##        
##         rude sexist
##   man     39     14
##   woman   22     33

Analyses

Main Effects - Just Man vs. Woman

Main Effects - Just Rudeness

Main Effects - Both Rudeness vs. Sexism in the same regression

Controls

I controlled for:
- Age.
- Participant Gender.
- Extant sentiment towards confronter.
- Power of participant in org.
- Power of confronter in org.
- Power of perpetrator in org.

## $`as dv: prot. women\nwell-being.`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.700 -1.088  0.154  1.329  3.242 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.36307    0.91652    3.67  0.00040 ***
## condwoman                 0.05177    0.38307    0.14  0.89279    
## cond2sexist               0.77158    0.39029    1.98  0.05095 .  
## Age                      -0.00394    0.01380   -0.29  0.77586    
## participant_genderFemale  1.39175    0.36320    3.83  0.00023 ***
## participant_genderOther   0.68810    1.33345    0.52  0.60703    
## sentiment_1               0.44050    0.13184    3.34  0.00119 ** 
## ladder_participant       -0.12303    0.11946   -1.03  0.30570    
## ladder_confronter         0.00755    0.10713    0.07  0.94395    
## ladder_perpetrator        0.10431    0.08190    1.27  0.20592    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.8 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.313,  Adjusted R-squared:  0.248 
## F-statistic: 4.81 on 9 and 95 DF,  p-value: 2.7e-05
## 
## 
## $`as dv: was moral`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.525 -0.809  0.045  0.865  2.829 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                4.5694     0.7094    6.44  4.9e-09 ***
## condwoman                 -0.0769     0.2965   -0.26   0.7961    
## cond2sexist                0.4531     0.3021    1.50   0.1370    
## Age                       -0.0057     0.0107   -0.53   0.5945    
## participant_genderFemale   0.8511     0.2811    3.03   0.0032 ** 
## participant_genderOther    0.0144     1.0321    0.01   0.9889    
## sentiment_1                0.4367     0.1021    4.28  4.5e-05 ***
## ladder_participant        -0.0870     0.0925   -0.94   0.3489    
## ladder_confronter         -0.0966     0.0829   -1.16   0.2472    
## ladder_perpetrator         0.1189     0.0634    1.88   0.0639 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.4 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.327,  Adjusted R-squared:  0.264 
## F-statistic: 5.14 on 9 and 95 DF,  p-value: 1.16e-05
## 
## 
## $`as dv: wntd 2\nright a wrong`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.694 -0.914  0.307  1.120  2.559 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.83266    0.84211    5.74  1.1e-07 ***
## condwoman                -0.30379    0.35198   -0.86  0.39026    
## cond2sexist              -0.06923    0.35860   -0.19  0.84733    
## Age                      -0.00316    0.01268   -0.25  0.80395    
## participant_genderFemale  0.54708    0.33371    1.64  0.10445    
## participant_genderOther   0.44941    1.22520    0.37  0.71458    
## sentiment_1               0.41605    0.12114    3.43  0.00088 ***
## ladder_participant       -0.28898    0.10976   -2.63  0.00989 ** 
## ladder_confronter         0.05360    0.09844    0.54  0.58737    
## ladder_perpetrator        0.19034    0.07525    2.53  0.01308 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.6 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.248,  Adjusted R-squared:  0.176 
## F-statistic: 3.47 on 9 and 95 DF,  p-value: 0.000955
## 
## 
## $`as dv: teach perp.\nlesson`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.126 -0.893  0.493  1.092  3.045 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.83843    0.85522    5.66  1.6e-07 ***
## condwoman                -0.59972    0.35745   -1.68   0.0967 .  
## cond2sexist              -0.28220    0.36418   -0.77   0.4403    
## Age                       0.00502    0.01287    0.39   0.6977    
## participant_genderFemale -0.02709    0.33891   -0.08   0.9365    
## participant_genderOther   0.94344    1.24427    0.76   0.4502    
## sentiment_1               0.35684    0.12302    2.90   0.0046 ** 
## ladder_participant       -0.10886    0.11147   -0.98   0.3313    
## ladder_confronter        -0.05953    0.09997   -0.60   0.5529    
## ladder_perpetrator        0.18045    0.07643    2.36   0.0203 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.7 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.184,  Adjusted R-squared:  0.106 
## F-statistic: 2.37 on 9 and 95 DF,  p-value: 0.0181
## 
## 
## $`as dv: send message`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.019 -0.528  0.249  0.952  2.181 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.58373    0.74741    7.47  3.9e-11 ***
## condwoman                -0.48274    0.31239   -1.55     0.13    
## cond2sexist              -0.18813    0.31828   -0.59     0.56    
## Age                      -0.00709    0.01125   -0.63     0.53    
## participant_genderFemale  0.39379    0.29618    1.33     0.19    
## participant_genderOther   0.37092    1.08741    0.34     0.73    
## sentiment_1               0.09988    0.10752    0.93     0.36    
## ladder_participant       -0.15303    0.09742   -1.57     0.12    
## ladder_confronter         0.12865    0.08737    1.47     0.14    
## ladder_perpetrator        0.10328    0.06679    1.55     0.13    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.5 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.122,  Adjusted R-squared:  0.0388 
## F-statistic: 1.47 on 9 and 95 DF,  p-value: 0.172
## 
## 
## $`as dv: angry\nwith perp.`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.253 -0.587  0.226  1.001  2.016 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.97746    0.77041    6.46  4.4e-09 ***
## condwoman                 0.01923    0.32201    0.06    0.952    
## cond2sexist              -0.49744    0.32807   -1.52    0.133    
## Age                      -0.00576    0.01160   -0.50    0.621    
## participant_genderFemale  0.15035    0.30530    0.49    0.624    
## participant_genderOther   0.57646    1.12088    0.51    0.608    
## sentiment_1               0.23026    0.11082    2.08    0.040 *  
## ladder_participant       -0.09115    0.10042   -0.91    0.366    
## ladder_confronter         0.06361    0.09005    0.71    0.482    
## ladder_perpetrator        0.13475    0.06885    1.96    0.053 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.5 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.128,  Adjusted R-squared:  0.0453 
## F-statistic: 1.55 on 9 and 95 DF,  p-value: 0.142
## 
## 
## $`as dv: disgusted\nwith perp.`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.994 -0.980  0.331  1.134  2.158 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.85760    0.76427    6.36  7.2e-09 ***
## condwoman                 0.10929    0.31944    0.34    0.733    
## cond2sexist              -0.36614    0.32546   -1.13    0.263    
## Age                      -0.00708    0.01150   -0.62    0.539    
## participant_genderFemale  0.45209    0.30286    1.49    0.139    
## participant_genderOther   0.67064    1.11194    0.60    0.548    
## sentiment_1               0.19252    0.10994    1.75    0.083 .  
## ladder_participant       -0.12578    0.09962   -1.26    0.210    
## ladder_confronter         0.10668    0.08934    1.19    0.235    
## ladder_perpetrator        0.12081    0.06830    1.77    0.080 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.5 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.135,  Adjusted R-squared:  0.0525 
## F-statistic: 1.64 on 9 and 95 DF,  p-value: 0.115
## 
## 
## $`as dv: ok\nw risk`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.412 -0.848  0.209  1.137  3.101 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.129766   0.849161    4.86  4.6e-06 ***
## condwoman                -0.848133   0.354922   -2.39   0.0188 *  
## cond2sexist               0.500287   0.361605    1.38   0.1697    
## Age                       0.000469   0.012782    0.04   0.9708    
## participant_genderFemale  1.089598   0.336506    3.24   0.0017 ** 
## participant_genderOther   0.948283   1.235452    0.77   0.4447    
## sentiment_1               0.293881   0.122152    2.41   0.0181 *  
## ladder_participant       -0.235122   0.110682   -2.12   0.0362 *  
## ladder_confronter         0.088648   0.099260    0.89   0.3741    
## ladder_perpetrator        0.171691   0.075884    2.26   0.0259 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.7 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.272,  Adjusted R-squared:  0.203 
## F-statistic: 3.94 on 9 and 95 DF,  p-value: 0.000274
## 
## 
## $`as dv: comp.`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.241 -1.022  0.071  0.831  2.960 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.35916    0.67884    6.42  5.3e-09 ***
## condwoman                -0.34032    0.28373   -1.20   0.2333    
## cond2sexist               0.21853    0.28907    0.76   0.4515    
## Age                      -0.00528    0.01022   -0.52   0.6063    
## participant_genderFemale  0.81527    0.26901    3.03   0.0031 ** 
## participant_genderOther   0.29310    0.98764    0.30   0.7673    
## sentiment_1               0.57582    0.09765    5.90  5.7e-08 ***
## ladder_participant       -0.13129    0.08848   -1.48   0.1412    
## ladder_confronter         0.02519    0.07935    0.32   0.7516    
## ladder_perpetrator        0.14192    0.06066    2.34   0.0214 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.404,  Adjusted R-squared:  0.347 
## F-statistic: 7.14 on 9 and 95 DF,  p-value: 7.62e-08
## 
## 
## $`as dv: competent`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7794 -0.8695  0.0508  0.7673  2.9868 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.59238    0.62987    7.29  9.1e-11 ***
## condwoman                -0.67906    0.26327   -2.58  0.01143 *  
## cond2sexist               0.53047    0.26822    1.98  0.05086 .  
## Age                       0.00183    0.00948    0.19  0.84754    
## participant_genderFemale  0.97796    0.24961    3.92  0.00017 ***
## participant_genderOther   0.32485    0.91640    0.35  0.72376    
## sentiment_1               0.50854    0.09061    5.61  2.0e-07 ***
## ladder_participant       -0.18606    0.08210   -2.27  0.02570 *  
## ladder_confronter         0.04153    0.07363    0.56  0.57403    
## ladder_perpetrator        0.10331    0.05629    1.84  0.06958 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.432,  Adjusted R-squared:  0.378 
## F-statistic: 8.04 on 9 and 95 DF,  p-value: 9.18e-09
## 
## 
## $`as dv: confident`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1573 -0.7287  0.0805  0.8442  2.2378 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.84e+00   5.98e-01    8.09    2e-12 ***
## condwoman                -3.75e-01   2.50e-01   -1.50  0.13671    
## cond2sexist              -1.65e-01   2.55e-01   -0.65  0.51827    
## Age                       8.73e-05   9.01e-03    0.01  0.99229    
## participant_genderFemale  4.17e-01   2.37e-01    1.76  0.08219 .  
## participant_genderOther   4.93e-01   8.71e-01    0.57  0.57295    
## sentiment_1               3.08e-01   8.61e-02    3.58  0.00054 ***
## ladder_participant       -1.80e-01   7.80e-02   -2.31  0.02321 *  
## ladder_confronter         9.29e-02   7.00e-02    1.33  0.18754    
## ladder_perpetrator        1.94e-01   5.35e-02    3.62  0.00047 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.323,  Adjusted R-squared:  0.259 
## F-statistic: 5.03 on 9 and 95 DF,  p-value: 1.53e-05
## 
## 
## $`as dv: indep.`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.936 -0.782  0.095  0.840  2.570 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.084618   0.568867    8.94  3.1e-14 ***
## condwoman                -0.191468   0.237768   -0.81   0.4227    
## cond2sexist              -0.106094   0.242245   -0.44   0.6624    
## Age                      -0.000561   0.008563   -0.07   0.9479    
## participant_genderFemale  0.244791   0.225431    1.09   0.2803    
## participant_genderOther  -0.172258   0.827650   -0.21   0.8356    
## sentiment_1               0.387642   0.081832    4.74  7.6e-06 ***
## ladder_participant       -0.251193   0.074148   -3.39   0.0010 ** 
## ladder_confronter         0.134479   0.066496    2.02   0.0460 *  
## ladder_perpetrator        0.141590   0.050836    2.79   0.0065 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.344,  Adjusted R-squared:  0.282 
## F-statistic: 5.55 on 9 and 95 DF,  p-value: 4.02e-06
## 
## 
## $`as dv: warm`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.254 -1.014 -0.048  1.182  3.171 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                3.4161     0.8661    3.94  0.00015 ***
## condwoman                 -0.5053     0.3620   -1.40  0.16602    
## cond2sexist                0.8234     0.3688    2.23  0.02792 *  
## Age                        0.0143     0.0130    1.10  0.27392    
## participant_genderFemale   0.6544     0.3432    1.91  0.05960 .  
## participant_genderOther    0.9388     1.2601    0.75  0.45809    
## sentiment_1                0.2297     0.1246    1.84  0.06833 .  
## ladder_participant        -0.1063     0.1129   -0.94  0.34865    
## ladder_confronter         -0.1515     0.1012   -1.50  0.13779    
## ladder_perpetrator         0.1118     0.0774    1.45  0.15172    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.7 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.188,  Adjusted R-squared:  0.111 
## F-statistic: 2.45 on 9 and 95 DF,  p-value: 0.015
## 
## 
## $`as dv: trustworthy`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.463 -0.711  0.009  0.949  2.564 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                3.9217     0.6839    5.73  1.2e-07 ***
## condwoman                 -0.0968     0.2859   -0.34    0.736    
## cond2sexist                0.4081     0.2912    1.40    0.164    
## Age                        0.0133     0.0103    1.29    0.201    
## participant_genderFemale   0.5178     0.2710    1.91    0.059 .  
## participant_genderOther    0.7349     0.9951    0.74    0.462    
## sentiment_1                0.5413     0.0984    5.50  3.2e-07 ***
## ladder_participant        -0.1224     0.0891   -1.37    0.173    
## ladder_confronter         -0.0777     0.0799   -0.97    0.334    
## ladder_perpetrator         0.1092     0.0611    1.79    0.077 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.367,  Adjusted R-squared:  0.307 
## F-statistic: 6.12 on 9 and 95 DF,  p-value: 9.4e-07
## 
## 
## $`as dv: tolerant`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.166 -1.266 -0.047  1.575  3.918 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.04844    0.92840    5.44  4.2e-07 ***
## condwoman                -0.10362    0.38804   -0.27    0.790    
## cond2sexist               0.21731    0.39535    0.55    0.584    
## Age                      -0.01509    0.01397   -1.08    0.283    
## participant_genderFemale  0.26367    0.36791    0.72    0.475    
## participant_genderOther  -0.00205    1.35073    0.00    0.999    
## sentiment_1               0.27904    0.13355    2.09    0.039 *  
## ladder_participant       -0.25246    0.12101   -2.09    0.040 *  
## ladder_confronter        -0.01145    0.10852   -0.11    0.916    
## ladder_perpetrator        0.08912    0.08296    1.07    0.285    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.8 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.127,  Adjusted R-squared:  0.044 
## F-statistic: 1.53 on 9 and 95 DF,  p-value: 0.148
## 
## 
## $`as dv: sincere`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.416 -0.928  0.171  0.985  2.813 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.98461    0.71070    7.01  3.4e-10 ***
## condwoman                -0.47209    0.29705   -1.59    0.115    
## cond2sexist               0.06667    0.30264    0.22    0.826    
## Age                      -0.00707    0.01070   -0.66    0.510    
## participant_genderFemale  0.52954    0.28164    1.88    0.063 .  
## participant_genderOther   0.21897    1.03400    0.21    0.833    
## sentiment_1               0.54346    0.10223    5.32  7.0e-07 ***
## ladder_participant       -0.23860    0.09263   -2.58    0.012 *  
## ladder_confronter         0.08142    0.08307    0.98    0.330    
## ladder_perpetrator        0.10512    0.06351    1.66    0.101    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.4 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.333,  Adjusted R-squared:  0.27 
## F-statistic: 5.28 on 9 and 95 DF,  p-value: 7.99e-06
## 
## 
## $`as dv: assertive`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.373 -0.663  0.141  1.075  2.077 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.24858    0.66597    7.88  5.4e-12 ***
## condwoman                -0.37733    0.27836   -1.36    0.178    
## cond2sexist              -0.17677    0.28360   -0.62    0.535    
## Age                       0.00438    0.01002    0.44    0.663    
## participant_genderFemale  0.05224    0.26391    0.20    0.844    
## participant_genderOther   0.92527    0.96893    0.95    0.342    
## sentiment_1               0.19592    0.09580    2.05    0.044 *  
## ladder_participant       -0.16730    0.08680   -1.93    0.057 .  
## ladder_confronter         0.10063    0.07785    1.29    0.199    
## ladder_perpetrator        0.10841    0.05951    1.82    0.072 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.152,  Adjusted R-squared:  0.0714 
## F-statistic: 1.89 on 9 and 95 DF,  p-value: 0.0629
## 
## 
## $`as dv: dominant`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.947 -0.907  0.113  1.011  2.696 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.45468    0.75114    5.93  4.9e-08 ***
## condwoman                -0.04073    0.31395   -0.13   0.8970    
## cond2sexist              -0.27967    0.31986   -0.87   0.3841    
## Age                       0.00373    0.01131    0.33   0.7423    
## participant_genderFemale  0.06125    0.29766    0.21   0.8374    
## participant_genderOther   1.01821    1.09284    0.93   0.3538    
## sentiment_1               0.23680    0.10805    2.19   0.0309 *  
## ladder_participant       -0.19627    0.09791   -2.00   0.0478 *  
## ladder_confronter         0.07200    0.08780    0.82   0.4142    
## ladder_perpetrator        0.17872    0.06712    2.66   0.0091 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.5 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.171,  Adjusted R-squared:  0.0925 
## F-statistic: 2.18 on 9 and 95 DF,  p-value: 0.0302
## 
## 
## $`as dv: compass.`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.169 -0.894  0.042  0.984  2.856 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.83642    0.81397    4.71  8.3e-06 ***
## condwoman                -0.48252    0.34021   -1.42    0.159    
## cond2sexist               0.60112    0.34662    1.73    0.086 .  
## Age                       0.00735    0.01225    0.60    0.550    
## participant_genderFemale  0.83668    0.32256    2.59    0.011 *  
## participant_genderOther   1.51167    1.18426    1.28    0.205    
## sentiment_1               0.27900    0.11709    2.38    0.019 *  
## ladder_participant       -0.16173    0.10610   -1.52    0.131    
## ladder_confronter        -0.05687    0.09515   -0.60    0.551    
## ladder_perpetrator        0.10563    0.07274    1.45    0.150    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.6 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.217,  Adjusted R-squared:  0.143 
## F-statistic: 2.93 on 9 and 95 DF,  p-value: 0.00418
## 
## 
## $`as dv: caring`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.835 -0.945  0.101  1.222  3.487 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.72038    0.83634    4.45  2.3e-05 ***
## condwoman                -0.43490    0.34956   -1.24   0.2165    
## cond2sexist               0.82360    0.35614    2.31   0.0229 *  
## Age                       0.00984    0.01259    0.78   0.4362    
## participant_genderFemale  0.94979    0.33142    2.87   0.0051 ** 
## participant_genderOther   1.41918    1.21679    1.17   0.2464    
## sentiment_1               0.30204    0.12031    2.51   0.0137 *  
## ladder_participant       -0.14356    0.10901   -1.32   0.1910    
## ladder_confronter         0.00307    0.09776    0.03   0.9750    
## ladder_perpetrator        0.01670    0.07474    0.22   0.8237    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.6 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.223,  Adjusted R-squared:  0.15 
## F-statistic: 3.03 on 9 and 95 DF,  p-value: 0.00315
## 
## 
## $`as dv: lmx_aff`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.017 -0.939  0.075  0.878  2.676 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.31755    0.68843    6.27  1.1e-08 ***
## condwoman                -0.00587    0.28774   -0.02   0.9838    
## cond2sexist               0.17499    0.29316    0.60   0.5520    
## Age                      -0.00622    0.01036   -0.60   0.5498    
## participant_genderFemale  0.80963    0.27281    2.97   0.0038 ** 
## participant_genderOther   0.27831    1.00160    0.28   0.7817    
## sentiment_1               0.72433    0.09903    7.31  8.2e-11 ***
## ladder_participant       -0.09909    0.08973   -1.10   0.2723    
## ladder_confronter        -0.04239    0.08047   -0.53   0.5996    
## ladder_perpetrator        0.02937    0.06152    0.48   0.6341    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.4 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.449,  Adjusted R-squared:  0.396 
## F-statistic: 8.59 on 9 and 95 DF,  p-value: 2.58e-09
## 
## 
## $`as dv: lmx_resp`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1093 -1.1837  0.0615  1.1419  2.7671 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.297104   0.755354    4.36  3.2e-05 ***
## condwoman                 0.264567   0.315714    0.84  0.40414    
## cond2sexist               0.458170   0.321658    1.42  0.15761    
## Age                      -0.000722   0.011370   -0.06  0.94951    
## participant_genderFemale  0.341932   0.299332    1.14  0.25619    
## participant_genderOther   0.776984   1.098971    0.71  0.48129    
## sentiment_1               0.541365   0.108658    4.98  2.8e-06 ***
## ladder_participant       -0.367615   0.098455   -3.73  0.00032 ***
## ladder_confronter         0.139607   0.088294    1.58  0.11717    
## ladder_perpetrator        0.152471   0.067501    2.26  0.02618 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.5 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.394,  Adjusted R-squared:  0.336 
## F-statistic: 6.85 on 9 and 95 DF,  p-value: 1.54e-07
## 
## 
## $`as dv: lmx_loy`
## 
## Call:
## lm(formula = y ~ cond + cond2 + Age + participant_gender + sentiment_1 + 
##     ladder_participant + ladder_confronter + ladder_perpetrator, 
##     data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.565 -0.832  0.002  1.150  2.721 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.57196    0.71593    6.39  6.2e-09 ***
## condwoman                 0.24863    0.29924    0.83    0.408    
## cond2sexist               0.16776    0.30487    0.55    0.583    
## Age                      -0.01229    0.01078   -1.14    0.257    
## participant_genderFemale  0.58603    0.28371    2.07    0.042 *  
## participant_genderOther  -0.39364    1.04161   -0.38    0.706    
## sentiment_1               0.61801    0.10299    6.00  3.6e-08 ***
## ladder_participant       -0.29587    0.09332   -3.17    0.002 ** 
## ladder_confronter         0.00305    0.08369    0.04    0.971    
## ladder_perpetrator        0.15358    0.06398    2.40    0.018 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.4 on 95 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.429,  Adjusted R-squared:  0.375 
## F-statistic: 7.93 on 9 and 95 DF,  p-value: 1.18e-08

Moderations

Note: I wrote a function which will output all marginal and significant results.

Sexism Manipulation by Gender Manipulation

## 
## Call:
## lm(formula = warm_2 ~ cond2 * cond, data = g_i1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.455 -0.769 -0.318  1.545  2.682 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              4.769      0.262   18.17   <2e-16 ***
## cond2sexist             -0.341      0.511   -0.67    0.506    
## condwoman               -0.451      0.437   -1.03    0.304    
## cond2sexist:condwoman    1.477      0.681    2.17    0.032 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.6 on 104 degrees of freedom
## Multiple R-squared:  0.07,   Adjusted R-squared:  0.0432 
## F-statistic: 2.61 on 3 and 104 DF,  p-value: 0.0555

Men vs. Women

Sexism vs. Rude

Mediation

psych::mediate(lmx_resp~cond_num+(perceptions_1), z = "cond2_num", data = g_i1_clean) # Does not cross zero

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = lmx_resp ~ cond_num + (perceptions_1), data = g_i1_clean, 
##     z = "cond2_num")
## 
## The DV (Y) was  lmx_resp . The IV (X) was  cond_num . The mediating variable(s) =  perceptions_1 .
## 
## Total effect(c) of  cond_num  on  lmx_resp  =  -0.86   S.E. =  0.35  t  =  -2.5  df=  106   with p =  0.014
## Direct effect (c') of  cond_num  on  lmx_resp  removing  perceptions_1  =  -0.47   S.E. =  0.31  t  =  -1.5  df=  105   with p =  0.14
## Indirect effect (ab) of  cond_num  on  lmx_resp  through  perceptions_1   =  -0.39 
## Mean bootstrapped indirect effect =  -0.39  with standard error =  0.18  Lower CI =  -0.77    Upper CI =  -0.07
## R = 0.52 R2 = 0.28   F = 20 on 2 and 105 DF   p-value:  2.6e-10 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary
psych::mediate(lmx_loy~cond_num+(perceptions_1), z = "cond2_num", data = g_i1_clean) # Does not cross zero

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = lmx_loy ~ cond_num + (perceptions_1), data = g_i1_clean, 
##     z = "cond2_num")
## 
## The DV (Y) was  lmx_loy . The IV (X) was  cond_num . The mediating variable(s) =  perceptions_1 .
## 
## Total effect(c) of  cond_num  on  lmx_loy  =  -0.55   S.E. =  0.34  t  =  -1.6  df=  106   with p =  0.11
## Direct effect (c') of  cond_num  on  lmx_loy  removing  perceptions_1  =  -0.1   S.E. =  0.29  t  =  -0.34  df=  105   with p =  0.73
## Indirect effect (ab) of  cond_num  on  lmx_loy  through  perceptions_1   =  -0.45 
## Mean bootstrapped indirect effect =  -0.44  with standard error =  0.19  Lower CI =  -0.84    Upper CI =  -0.07
## R = 0.57 R2 = 0.32   F = 25 on 2 and 105 DF   p-value:  2.2e-12 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary
psych::mediate(lmx_aff~cond_num+(perceptions_1), z = "cond2_num", data = g_i1_clean) # Does not cross zero

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = lmx_aff ~ cond_num + (perceptions_1), data = g_i1_clean, 
##     z = "cond2_num")
## 
## The DV (Y) was  lmx_aff . The IV (X) was  cond_num . The mediating variable(s) =  perceptions_1 .
## 
## Total effect(c) of  cond_num  on  lmx_aff  =  -0.51   S.E. =  0.34  t  =  -1.5  df=  106   with p =  0.13
## Direct effect (c') of  cond_num  on  lmx_aff  removing  perceptions_1  =  -0.01   S.E. =  0.27  t  =  -0.03  df=  105   with p =  0.97
## Indirect effect (ab) of  cond_num  on  lmx_aff  through  perceptions_1   =  -0.5 
## Mean bootstrapped indirect effect =  -0.5  with standard error =  0.2  Lower CI =  -0.9    Upper CI =  -0.09
## R = 0.64 R2 = 0.41   F = 36 on 2 and 105 DF   p-value:  4e-16 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary