Demographics Stats

knower_level_cp_subset age_years n
CP 3 14
CP 4 18
CP 5 16
subset 2 11
subset 3 19
subset 4 10
gender n
F 43
M 45
knower_level_cp_subset n
CP 48
subset 40

Results

Both CP knowers and subset knowers are successful! The CP-knowers perform better than subset-knowers, in both large vs small sets. Subset knowers only succeed with large sets, not small sets.

Subset knowers are only above chance for 5 vs 6??

## `summarise()` has grouped output by 'id', 'knower_level'. You can override
## using the `.groups` argument.

## `summarise()` has grouped output by 'id', 'quantity', 'knower_level_cp_subset'.
## You can override using the `.groups` argument.

## `summarise()` has grouped output by 'id', 'knower_level_cp_subset'. You can
## override using the `.groups` argument.

Only 64.6% of CP-knowers (31/48) were above chance, and 35% of subset knowers (14/40) (following binomial p < .05 –> chose correctly at least 7 out of 8 trials).

## `summarise()` has grouped output by 'id'. You can override using the `.groups`
## argument.
## # A tibble: 2 × 4
##   knower_level_cp_subset n_total n_succeed prop_succeed
##   <chr>                    <int>     <int>        <dbl>
## 1 CP                          48        31        0.646
## 2 subset                      40        14        0.35

Age effect:

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

T-tests

Both subset-knowers and CP knowers perform better than chance.

## Effect sizes were labelled following Cohen's (1988) recommendations.
## 
## The One Sample t-test testing the difference between df.trial %>%
## filter(knower_level_cp_subset == "subset") %>% pull(correct_set_chosen) (mean =
## 0.60) and mu = 0.5 suggests that the effect is positive, statistically
## significant, and very small (difference = 0.10, 95% CI [0.54, 0.65], t(319) =
## 3.53, p < .001; Cohen's d = 0.20, 95% CI [0.09, 0.31])
## Effect sizes were labelled following Cohen's (1988) recommendations.
## 
## The One Sample t-test testing the difference between df.trial %>%
## filter(knower_level_cp_subset == "CP") %>% pull(correct_set_chosen) (mean =
## 0.81) and mu = 0.5 suggests that the effect is positive, statistically
## significant, and medium (difference = 0.31, 95% CI [0.77, 0.85], t(381) =
## 15.34, p < .001; Cohen's d = 0.78, 95% CI [0.67, 0.90])

Regressions

Base model

correct_set_chosen ~ magnitude + age_zscored + (1|id) + (1|quantity) Effect of age, not magnitude. Makes sense – they only need to attend to the last pair.

Registered random effect structure results in overfitting. So I removed quantity as a random effect, and will note any deviance from the registered models (none so far).

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_set_chosen ~ magnitude + age_zscored + (1 | id)
##    Data: df.trial
## 
##      AIC      BIC   logLik deviance df.resid 
##    685.7    703.9   -338.9    677.7      698 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1887 -0.5112  0.2280  0.4162  1.9981 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 3.389    1.841   
## Number of obs: 702, groups:  id, 88
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.7449     0.2885   6.047 1.47e-09 ***
## magnitudesmall  -0.2636     0.2115  -1.246 0.212627    
## age_zscored      0.9300     0.2516   3.697 0.000218 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) mgntds
## magnitdsmll -0.402       
## age_zscored  0.177 -0.022
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_set_chosen
##               Chisq Df Pr(>Chisq)    
## (Intercept) 36.5716  1  1.472e-09 ***
## magnitude    1.5535  1  0.2126267    
## age_zscored 13.6656  1  0.0002184 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Age actually isn’t significant for CP knowers or subset knowers (marginally significant for subset knowers).

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_set_chosen ~ magnitude + age_zscored + (1 | id)
##    Data: df.trial %>% filter(knower_level_cp_subset == "CP")
## 
##      AIC      BIC   logLik deviance df.resid 
##    311.3    327.0   -151.6    303.3      378 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0131  0.1308  0.1685  0.3507  1.8630 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 4.888    2.211   
## Number of obs: 382, groups:  id, 48
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     2.35418    0.57178   4.117 3.83e-05 ***
## magnitudesmall -0.04735    0.32398  -0.146    0.884    
## age_zscored     0.59559    0.48787   1.221    0.222    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) mgntds
## magnitdsmll -0.293       
## age_zscored -0.350 -0.001
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_set_chosen
##               Chisq Df Pr(>Chisq)    
## (Intercept) 16.9520  1  3.834e-05 ***
## magnitude    0.0214  1     0.8838    
## age_zscored  1.4904  1     0.2222    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_set_chosen ~ magnitude + age_zscored + (1 | id)
##    Data: df.trial %>% filter(knower_level_cp_subset == "subset")
## 
##      AIC      BIC   logLik deviance df.resid 
##    377.2    392.3   -184.6    369.2      316 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6748 -0.7127  0.2957  0.5405  1.8487 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 2.364    1.537   
## Number of obs: 320, groups:  id, 40
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)      1.3117     0.4173   3.144  0.00167 **
## magnitudesmall  -0.4221     0.2725  -1.549  0.12147   
## age_zscored      0.7152     0.3902   1.833  0.06682 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) mgntds
## magnitdsmll -0.356       
## age_zscored  0.639 -0.019
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_set_chosen
##              Chisq Df Pr(>Chisq)   
## (Intercept) 9.8828  1   0.001668 **
## magnitude   2.3983  1   0.121469   
## age_zscored 3.3595  1   0.066818 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What if we use specific set size instead of small vs large? (e.g., 1 vs 2 –> quantity = 2). Also not significant.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_set_chosen ~ quantity + age_zscored + (1 | id)
##    Data: df.trial
## 
##      AIC      BIC   logLik deviance df.resid 
##    686.7    704.9   -339.4    678.7      698 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0074 -0.4996  0.2293  0.4063  2.1037 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 3.37     1.836   
## Number of obs: 702, groups:  id, 88
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.47652    0.31485   4.690 2.74e-06 ***
## quantity     0.02523    0.03399   0.742 0.458045    
## age_zscored  0.92779    0.25094   3.697 0.000218 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) quntty
## quantity    -0.547       
## age_zscored  0.147  0.013
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_set_chosen
##               Chisq Df Pr(>Chisq)    
## (Intercept) 21.9920  1  2.738e-06 ***
## quantity     0.5507  1   0.458045    
## age_zscored 13.6695  1   0.000218 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
CP knowledge

correct_set_chosen ~ cp_knowledge + magnitude + age_zscored + (1|id) + (1|quantity). Effect of age, not magnitude or CP knowledge. Including CP knowledge doesn’t improve the model.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## correct_set_chosen ~ knower_level_cp_subset + magnitude + age_zscored +  
##     (1 | id)
##    Data: df.trial
## 
##      AIC      BIC   logLik deviance df.resid 
##    685.0    707.8   -337.5    675.0      697 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2198 -0.5100  0.2107  0.4214  1.9894 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 3.317    1.821   
## Number of obs: 702, groups:  id, 88
## 
## Fixed effects:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    2.1879     0.4153   5.269 1.37e-07 ***
## knower_level_cp_subsetsubset  -0.9559     0.5929  -1.612   0.1069    
## magnitudesmall                -0.2644     0.2116  -1.249   0.2116    
## age_zscored                    0.6293     0.3049   2.064   0.0391 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) knw___ mgntds
## knwr_lvl_c_ -0.724              
## magnitdsmll -0.287  0.012       
## age_zscored -0.319  0.577 -0.011
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_set_chosen
##                          Chisq Df Pr(>Chisq)    
## (Intercept)            27.7590  1  1.374e-07 ***
## knower_level_cp_subset  2.5991  1    0.10693    
## magnitude               1.5606  1    0.21157    
## age_zscored             4.2583  1    0.03906 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial
## Models:
## fit.base: correct_set_chosen ~ magnitude + age_zscored + (1 | id)
## fit.cp: correct_set_chosen ~ knower_level_cp_subset + magnitude + age_zscored + (1 | id)
##          npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.base    4 685.71 703.92 -338.85   677.71                     
## fit.cp      5 685.05 707.82 -337.52   675.05 2.6598  1     0.1029
CP knowledge only

(Not registered)

CP knowledge is significant if we take away age.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_set_chosen ~ knower_level_cp_subset + magnitude + (1 |  
##     id)
##    Data: df.trial
## 
##      AIC      BIC   logLik deviance df.resid 
##    687.3    705.5   -339.6    679.3      698 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0092 -0.5285  0.1964  0.4051  1.8920 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 3.633    1.906   
## Number of obs: 702, groups:  id, 88
## 
## Fixed effects:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    2.5628     0.4083   6.276 3.46e-10 ***
## knower_level_cp_subsetsubset  -1.7327     0.5030  -3.445 0.000572 ***
## magnitudesmall                -0.2650     0.2117  -1.252 0.210665    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) knw___
## knwr_lvl_c_ -0.700       
## magnitdsmll -0.297  0.022
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_set_chosen
##                          Chisq Df Pr(>Chisq)    
## (Intercept)            39.3939  1  3.464e-10 ***
## knower_level_cp_subset 11.8650  1   0.000572 ***
## magnitude               1.5669  1   0.210665    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Interaction

Still, only effect of age. Does not improve the model.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## correct_set_chosen ~ knower_level_cp_subset * magnitude + age_zscored +  
##     (1 | id)
##    Data: df.trial
## 
##      AIC      BIC   logLik deviance df.resid 
##    686.2    713.5   -337.1    674.2      696 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0383 -0.5308  0.2162  0.4030  1.9115 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 3.328    1.824   
## Number of obs: 702, groups:  id, 88
## 
## Fixed effects:
##                                             Estimate Std. Error z value
## (Intercept)                                  2.07444    0.43004   4.824
## knower_level_cp_subsetsubset                -0.75002    0.63230  -1.186
## magnitudesmall                              -0.04389    0.31642  -0.139
## age_zscored                                  0.63086    0.30542   2.066
## knower_level_cp_subsetsubset:magnitudesmall -0.39782    0.42583  -0.934
##                                             Pr(>|z|)    
## (Intercept)                                 1.41e-06 ***
## knower_level_cp_subsetsubset                  0.2355    
## magnitudesmall                                0.8897    
## age_zscored                                   0.0389 *  
## knower_level_cp_subsetsubset:magnitudesmall   0.3502    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) knw___ mgntds ag_zsc
## knwr_lvl_c_ -0.747                     
## magnitdsmll -0.377  0.255              
## age_zscored -0.311  0.546  0.000       
## knwr_lvl__:  0.269 -0.344 -0.743 -0.010
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_set_chosen
##                                    Chisq Df Pr(>Chisq)    
## (Intercept)                      23.2695  1  1.408e-06 ***
## knower_level_cp_subset            1.4070  1    0.23555    
## magnitude                         0.0192  1    0.88968    
## age_zscored                       4.2664  1    0.03887 *  
## knower_level_cp_subset:magnitude  0.8728  1    0.35019    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial
## Models:
## fit.base: correct_set_chosen ~ magnitude + age_zscored + (1 | id)
## fit.cp_int: correct_set_chosen ~ knower_level_cp_subset * magnitude + age_zscored + (1 | id)
##            npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.base      4 685.71 703.92 -338.85   677.71                     
## fit.cp_int    6 686.17 713.50 -337.09   674.17 3.5336  2     0.1709
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## correct_set_chosen ~ knower_level_cp_subset * quantity + age_zscored +  
##     (1 | id)
##    Data: df.trial
## 
##      AIC      BIC   logLik deviance df.resid 
##    687.6    714.9   -337.8    675.6      696 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0037 -0.5258  0.2161  0.4088  2.0846 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 3.304    1.818   
## Number of obs: 702, groups:  id, 88
## 
## Fixed effects:
##                                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)                            2.0520033  0.4775811   4.297 1.73e-05
## knower_level_cp_subsetsubset          -1.1949034  0.6908465  -1.730   0.0837
## quantity                              -0.0005816  0.0507684  -0.011   0.9909
## age_zscored                            0.6288288  0.3044496   2.065   0.0389
## knower_level_cp_subsetsubset:quantity  0.0466700  0.0683095   0.683   0.4945
##                                          
## (Intercept)                           ***
## knower_level_cp_subsetsubset          .  
## quantity                                 
## age_zscored                           *  
## knower_level_cp_subsetsubset:quantity    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) knw___ quntty ag_zsc
## knwr_lvl_c_ -0.752                     
## quantity    -0.555  0.384              
## age_zscored -0.279  0.491 -0.001       
## knwr_lvl__:  0.419 -0.516 -0.743  0.007
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_set_chosen
##                                   Chisq Df Pr(>Chisq)    
## (Intercept)                     18.4613  1  1.734e-05 ***
## knower_level_cp_subset           2.9916  1    0.08370 .  
## quantity                         0.0001  1    0.99086    
## age_zscored                      4.2661  1    0.03888 *  
## knower_level_cp_subset:quantity  0.4668  1    0.49447    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Highest Count

No effect of highest count.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_set_chosen ~ highest_count + magnitude + age_zscored +  
##     (1 | id)
##    Data: df.trial %>% filter(!is.na(highest_count))
## 
##      AIC      BIC   logLik deviance df.resid 
##    599.7    621.6   -294.8    589.7      593 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1490 -0.5804  0.2415  0.4181  1.9491 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 3.338    1.827   
## Number of obs: 598, groups:  id, 75
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     1.36781    0.45081   3.034  0.00241 **
## highest_count   0.01423    0.01993   0.714  0.47527   
## magnitudesmall -0.17490    0.22596  -0.774  0.43893   
## age_zscored     0.59130    0.33876   1.746  0.08089 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) hghst_ mgntds
## highest_cnt -0.741              
## magnitdsmll -0.262 -0.005       
## age_zscored  0.451 -0.559 -0.006
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_set_chosen
##                Chisq Df Pr(>Chisq)   
## (Intercept)   9.2056  1   0.002413 **
## highest_count 0.5097  1   0.475269   
## magnitude     0.5991  1   0.438928   
## age_zscored   3.0468  1   0.080895 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_set_chosen ~ magnitude + age_zscored + (1 | id)
##    Data: df.trial %>% filter(!is.na(highest_count))
## 
##      AIC      BIC   logLik deviance df.resid 
##    598.2    615.8   -295.1    590.2      594 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9693 -0.5729  0.2390  0.4131  1.9846 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 3.346    1.829   
## Number of obs: 598, groups:  id, 75
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.6153     0.3029   5.332  9.7e-08 ***
## magnitudesmall  -0.1745     0.2259  -0.772  0.43995    
## age_zscored      0.7308     0.2805   2.605  0.00918 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) mgntds
## magnitdsmll -0.397       
## age_zscored  0.065 -0.011
## Data: df.trial %>% filter(!is.na(highest_count))
## Models:
## fit.hc_compare: correct_set_chosen ~ magnitude + age_zscored + (1 | id)
## fit.hc: correct_set_chosen ~ highest_count + magnitude + age_zscored + (1 | id)
##                npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.hc_compare    4 598.20 615.77 -295.10   590.20                     
## fit.hc            5 599.67 621.64 -294.84   589.67 0.5207  1     0.4705
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_set_chosen ~ highest_count + magnitude + age_zscored +  
##     (1 | id)
##    Data: df.trial %>% filter(knower_level_cp_subset == "CP")
## 
##      AIC      BIC   logLik deviance df.resid 
##    308.2    327.4   -149.1    298.2      345 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0351  0.1352  0.1901  0.3669  1.8009 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 4.178    2.044   
## Number of obs: 350, groups:  id, 44
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     1.85748    0.69630   2.668  0.00764 **
## highest_count   0.01728    0.02660   0.649  0.51606   
## magnitudesmall -0.04725    0.32336  -0.146  0.88383   
## age_zscored     0.13618    0.59351   0.229  0.81851   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) hghst_ mgntds
## highest_cnt -0.649              
## magnitdsmll -0.237 -0.004       
## age_zscored  0.169 -0.610  0.003
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_set_chosen
##                Chisq Df Pr(>Chisq)   
## (Intercept)   7.1164  1   0.007638 **
## highest_count 0.4218  1   0.516061   
## magnitude     0.0214  1   0.883827   
## age_zscored   0.0526  1   0.818515   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Exploratory

Just for funsies, I check whether kids perform better in mismatch or match trials. There is no difference.

## `summarise()` has grouped output by 'id', 'is_mismatch'. You can override using
## the `.groups` argument.