Floral Abundance and Richness

RichCountLM <- lmer(FloralCountMean ~ FloralRichnessMean + (1|Plot), data=SRFsummary2, REML = FALSE)
summary(RichCountLM)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: FloralCountMean ~ FloralRichnessMean + (1 | Plot)
##    Data: SRFsummary2
## 
##      AIC      BIC   logLik deviance df.resid 
##    384.8    392.8   -188.4    376.8       50 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.99518 -0.55628 -0.08825  0.45792  2.90368 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Plot     (Intercept) 35.23    5.935   
##  Residual             41.08    6.410   
## Number of obs: 54, groups:  Plot, 18
## 
## Fixed effects:
##                    Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)         -20.433      3.126  22.281  -6.537 1.33e-06 ***
## FloralRichnessMean   15.985      1.155  24.985  13.843 3.20e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## FlrlRchnssM -0.850
car::Anova(RichCountLM)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: FloralCountMean
##                     Chisq Df Pr(>Chisq)    
## FloralRichnessMean 191.63  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RichCountLM <- lmer(log(FloralCountMean+1) ~ log(FloralRichnessMean+1) + (1|Plot), data=SRFsummary2, REML = FALSE)
summary(RichCountLM)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: log(FloralCountMean + 1) ~ log(FloralRichnessMean + 1) + (1 |  
##     Plot)
##    Data: SRFsummary2
## 
##      AIC      BIC   logLik deviance df.resid 
##     82.8     90.8    -37.4     74.8       50 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.03343 -0.72966 -0.07385  0.42038  2.24884 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Plot     (Intercept) 0.01978  0.1407  
##  Residual             0.21593  0.4647  
## Number of obs: 54, groups:  Plot, 18
## 
## Fixed effects:
##                             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)                  -0.2486     0.2606 23.1212  -0.954     0.35    
## log(FloralRichnessMean + 1)   2.3005     0.2208 23.6070  10.420 2.62e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## lg(FlrRM+1) -0.962
car::Anova(RichCountLM)
## Warning in printHypothesis(L, rhs, names(b)): one or more coefficients in the hypothesis include
##      arithmetic operators in their names;
##   the printed representation of the hypothesis will be omitted
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: log(FloralCountMean + 1)
##                              Chisq Df Pr(>Chisq)    
## log(FloralRichnessMean + 1) 108.58  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ggplot(SRFsummary2, aes(x=FloralRichnessMean, y=FloralCountMean, color=PlotType))+
  geom_point(size=3)+
  labs(y="Floral Density ", x="Floral Richness", title = "Transect Level")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=10, face="bold"), 
        axis.text=element_text(size=10),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())

ggplot(SRFsummary2, aes(x=FloralRichnessMean, y=FloralCountMean))+
  geom_point(size=3, aes(color=PlotType))+
  geom_smooth(method = lm, se=FALSE)+
  labs(y="Floral Density ", x="Floral Richness", title = "Transect Level")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=10, face="bold"), 
        axis.text=element_text(size=10),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())
## `geom_smooth()` using formula = 'y ~ x'

ggplot(SRFsummary2, aes(x=log(FloralRichnessMean+1), y=log(FloralCountMean+1)))+
  geom_point(size=3, aes(color=PlotType))+
  geom_smooth(method = lm, se=FALSE)+
  labs(y="log Floral Density ", x="log Floral Richness", title = "Transect Level")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=10, face="bold"), 
        axis.text=element_text(size=10),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())
## `geom_smooth()` using formula = 'y ~ x'

Top Species

cowplot::plot_grid( TP1, TP2, TP3, TP4, nrow = 4)

cowplot::plot_grid( TP1, TP2, TP3, TP4, nrow = 2)

Plot Type Ordination

## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1173949 
## Run 1 stress 0.1180226 
## Run 2 stress 0.1193567 
## Run 3 stress 0.1157013 
## ... New best solution
## ... Procrustes: rmse 0.06892919  max resid 0.2496462 
## Run 4 stress 0.1157015 
## ... Procrustes: rmse 0.0003843736  max resid 0.001236102 
## ... Similar to previous best
## Run 5 stress 0.1157016 
## ... Procrustes: rmse 0.0003775107  max resid 0.00204173 
## ... Similar to previous best
## Run 6 stress 0.1176667 
## Run 7 stress 0.1193567 
## Run 8 stress 0.1176663 
## Run 9 stress 0.1173957 
## Run 10 stress 0.117395 
## Run 11 stress 0.1157012 
## ... New best solution
## ... Procrustes: rmse 0.0003633391  max resid 0.00137761 
## ... Similar to previous best
## Run 12 stress 0.1193607 
## Run 13 stress 0.1180205 
## Run 14 stress 0.1157018 
## ... Procrustes: rmse 0.0002536976  max resid 0.000897079 
## ... Similar to previous best
## Run 15 stress 0.1157012 
## ... Procrustes: rmse 0.0004397649  max resid 0.001306728 
## ... Similar to previous best
## Run 16 stress 0.117395 
## Run 17 stress 0.1159858 
## ... Procrustes: rmse 0.01018069  max resid 0.06507441 
## Run 18 stress 0.1157016 
## ... Procrustes: rmse 0.0005735584  max resid 0.001910943 
## ... Similar to previous best
## Run 19 stress 0.1173947 
## Run 20 stress 0.1208159 
## *** Best solution repeated 4 times
## 
## Call:
## metaMDS(comm = OrdiFlowerProp5, distance = "bray", k = 3, trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(sqrt(OrdiFlowerProp5)) 
## Distance: bray 
## 
## Dimensions: 3 
## Stress:     0.1157012 
## Stress type 1, weak ties
## Best solution was repeated 4 times in 20 tries
## The best solution was from try 11 (random start)
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'wisconsin(sqrt(OrdiFlowerProp5))'
## Square root transformation
## Wisconsin double standardization
## Using step-across dissimilarities:
## Too long or NA distances: 397 out of 1431 (27.7%)
## Stepping across 1431 dissimilarities...
## Connectivity of distance matrix with threshold dissimilarity 1 
## Data are connected
## 
## Call:
## capscale(formula = OrdiFlowerProp5 ~ 1, distance = "bray", metaMDSdist = "true") 
## 
## Partitioning of squared Bray shortest distance:
##               Inertia Proportion
## Total           27.36          1
## Unconstrained   27.36          1
## 
## Eigenvalues, and their contribution to the squared Bray shortest distance 
## 
## Importance of components:
##                         MDS1   MDS2   MDS3   MDS4    MDS5    MDS6    MDS7
## Eigenvalue            8.7040 4.7469 2.9521 2.8259 1.91533 1.23264 0.86399
## Proportion Explained  0.3182 0.1735 0.1079 0.1033 0.07002 0.04506 0.03158
## Cumulative Proportion 0.3182 0.4917 0.5996 0.7029 0.77295 0.81801 0.84959
##                          MDS8    MDS9   MDS10   MDS11   MDS12    MDS13    MDS14
## Eigenvalue            0.67818 0.65154 0.57064 0.43976 0.39439 0.244935 0.219884
## Proportion Explained  0.02479 0.02382 0.02086 0.01608 0.01442 0.008954 0.008038
## Cumulative Proportion 0.87438 0.89820 0.91906 0.93513 0.94955 0.958506 0.966544
##                          MDS15    MDS16    MDS17    MDS18    MDS19    MDS20
## Eigenvalue            0.205423 0.147601 0.111641 0.110741 0.088447 0.065533
## Proportion Explained  0.007509 0.005396 0.004081 0.004048 0.003233 0.002396
## Cumulative Proportion 0.974053 0.979449 0.983530 0.987578 0.990811 0.993207
##                          MDS21    MDS22    MDS23     MDS24     MDS25     MDS26
## Eigenvalue            0.052422 0.039417 0.033547 0.0254858 0.0209051 0.0140497
## Proportion Explained  0.001916 0.001441 0.001226 0.0009317 0.0007642 0.0005136
## Cumulative Proportion 0.995123 0.996564 0.997791 0.9987222 0.9994864 1.0000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  5.727091 
## 
## 
## Species scores
## 
##          MDS1     MDS2      MDS3     MDS4       MDS5      MDS6
## ACMIO  1.7536  1.12629  0.296182  1.76740  0.0439169 -0.425027
## ANAN2  0.9157  0.90010 -0.914576 -0.50861  0.2518268 -0.154936
## ANMI3 -0.4367  0.21896  0.155369 -0.09545 -0.0802496 -0.027410
## ANRO2 -0.2721  0.04711  0.001101 -0.01601 -0.1303093 -0.017306
## CAFL7 -0.6755  0.43161 -0.018710 -0.16354  0.1639007 -0.062752
## ERCO4 -0.3033  0.12424 -0.010827 -0.03502 -0.0693305  0.018794
## GETR  -0.5840  0.58299 -0.020672 -0.13082  0.1992779  0.081269
## GEVI2  0.2044 -1.15218 -1.038886  0.21732 -0.2931006  0.240098
## LUCA  -2.1042 -1.32470 -0.390632  0.34850  0.1203834 -0.536088
## LUSE4  1.4660 -1.26738  0.738900 -0.71858  0.8883028  0.082543
## PEGA3  0.6446 -0.25014  0.888376 -0.47876 -1.2146982 -0.346348
## PHMU3 -0.4457  0.14737 -0.040159 -0.05831 -0.0211250  0.008171
## PHLO2 -0.2905  0.35339 -0.123909 -0.15193  0.2009611  0.030070
## POGR9  0.8227 -0.05849 -0.365374  0.21588 -0.6024668  1.073460
## PSJA2  0.4671  0.15113 -0.332246 -0.35345  0.0002673 -0.302088
## RAES  -0.8146 -0.20926  0.199692  0.03479  0.1740181  0.138167
## TOPA2 -0.3476  0.17898  0.976374  0.12658  0.3684249  0.199382
## 
## 
## Site scores (weighted sums of species scores)
## 
##        MDS1     MDS2      MDS3     MDS4     MDS5      MDS6
## 1  -1.79274  0.84181  0.012804 -0.36223 -0.63854  0.326644
## 2  -1.84547  0.74536  0.008705 -0.29122 -0.64218  0.408153
## 3  -1.74079  0.98917 -0.050994 -0.63707 -0.66756  0.548637
## 4   0.25159  0.99463 -0.050654 -0.29595 -0.51523  0.345271
## 5   0.69527  0.45175  0.051084  1.26390 -0.64958  1.736954
## 6   0.68587  0.46087  0.076729  1.44854 -0.35162  1.140012
## 7  -0.59306  1.27377 -0.736483 -1.28582  1.30581 -0.042186
## 8  -0.25596  1.25446 -0.751881 -0.43421  1.08511  0.122539
## 9  -0.60177  1.22268 -0.058712 -0.54435  0.73847  0.094650
## 10  0.14537 -0.42517 -0.941326 -0.23886 -0.72205  1.360792
## 11  0.45638 -0.70744 -0.677675 -0.19358  0.87865 -0.273619
## 12  0.52302 -0.58199 -0.449090 -0.25974  1.03945 -0.748559
## 13  0.45446  0.69446 -0.272633 -0.36093 -0.93668 -0.317997
## 14  0.53808  0.51209  0.101424  0.10790 -0.94152  0.276445
## 15  0.42144  0.24087 -0.974875  0.13976  0.07664  0.395099
## 16  0.33303 -0.78425 -0.466558  0.33935  0.19500  0.984696
## 17  0.46258 -0.35426 -0.998062 -0.38663  0.62445  0.600599
## 18  0.30569 -0.52998 -1.154508 -0.42368  0.43124  1.187986
## 19 -0.49923 -0.63210  0.048070  0.39101 -0.90739 -0.989820
## 20 -0.41203 -1.29074 -0.067445  0.18020 -1.67421 -0.989339
## 21 -0.99195 -1.33528 -1.030265  0.63236  0.12369 -0.148757
## 22  0.52313 -0.77874  1.375607 -0.87663 -0.07411  1.022873
## 23 -0.31861  0.09578  2.102311 -0.69843 -1.19960 -0.744263
## 24  0.70162 -1.09085  1.264944 -1.37281 -0.38798 -0.520553
## 25  0.55462 -0.41590  0.076529 -0.53297 -0.93727 -0.059303
## 26  0.61264  0.57844 -0.444845 -1.05742 -0.84499 -0.714668
## 27  0.73355  1.20577 -1.052803 -1.37367  0.24942 -0.938051
## 28 -1.49790 -0.99929  0.988800  0.23049  1.28109  0.417810
## 29 -1.47548 -0.88834  1.265492  0.26649  1.04986  0.411330
## 30 -0.96817 -1.24559 -1.324120  0.38964  0.16681 -0.665015
## 31 -0.98746  0.67265 -0.341344  0.10478  0.29128 -0.964069
## 32 -1.28035  0.44871  0.918688 -0.27370  0.59596 -0.607261
## 33 -1.62371 -1.42558 -0.895003  0.59116 -0.05580 -1.138948
## 34  0.56546  0.66665  0.188809  1.93560 -0.08310 -1.154524
## 35  0.56546  0.66665  0.188809  1.93560 -0.08310 -1.154524
## 36  1.22940 -1.39201  1.241344 -0.90704  1.30843  0.191352
## 37  0.45448  0.40531 -0.688522  0.78605  0.51788 -0.884746
## 38  0.64241  0.54377  0.074718  0.03568  1.07763  0.012134
## 39  0.57413  0.81045 -0.315254  0.68867  0.23173 -0.002005
## 40  0.64075 -0.04112 -0.065340 -0.32772 -0.25149 -0.594731
## 41  0.48546  0.59963  0.240571 -0.44512 -0.82500 -0.561736
## 42  0.69630  0.02620  0.463489 -0.86390 -0.27468 -1.214803
## 43  0.49320 -0.11931  1.240231  0.60668  1.35877  0.314595
## 44  0.25757 -0.44042 -0.226045  0.61507 -1.02953  0.219933
## 45  0.33475 -0.32147 -0.461810  1.80006  0.27554 -0.569427
## 46  0.55397 -0.27433 -0.433108 -0.62499  0.20440 -0.022248
## 47  0.50137 -0.71321 -0.357530 -1.18941  0.34932 -0.684204
## 48  0.48780 -0.73555 -0.390659  0.11493  0.81866  0.443321
## 49  0.38151  0.13548  1.597664  0.74331 -0.43250 -0.973234
## 50 -0.19254  0.91685  1.291837  0.79522  0.68906  0.716606
## 51 -0.04782  1.02662  0.906041  0.42757  0.87377  0.523901
## 52 -0.14732 -0.34372 -0.371818  0.14833 -0.92937  1.495841
## 53  0.03979 -0.22423 -0.143605 -0.22068 -1.48669  1.168846
## 54 -0.02982 -0.39002  0.468267 -0.23960 -0.29631  1.211573
## 
## ***FACTORS:
## 
## Centroids:
##                        NMDS1   NMDS2   NMDS3
## PlotTypeGrass        -0.5176  0.5460 -0.1464
## PlotTypeOpen Conifer  0.3278 -0.1403 -0.3443
## PlotTypeSagebrush     0.1572 -0.3889  0.0179
## PlotTypeTall Forb     0.0109 -0.0056  0.1576
## 
## Goodness of fit:
##              r2 Pr(>r)   
## PlotType 0.1766  0.006 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 499
## 
##  Pairwise comparisons using factor fitting to an ordination 
## 
## data:  OrdiFlower5.MDSb by OrdiEnvLines$PlotType
## 999 permutations 
## 
##              Grass Open Conifer Sagebrush
## Open Conifer 0.009 -            -        
## Sagebrush    0.009 0.402        -        
## Tall Forb    0.038 0.402        0.402    
## 
## P value adjustment method: fdr
## 
## ***VECTORS
## 
##                     NMDS1    NMDS2    NMDS3     r2 Pr(>r)   
## Slope_percent    -0.50668 -0.34384  0.79060 0.2965  0.002 **
## Aspect_degrees   -0.39470 -0.16107 -0.90458 0.2230  0.012 * 
## Elevation_meters -0.93732  0.27653 -0.21205 0.6830  0.002 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 499