About the dataset

There are 24 items used for the AVI measurements:

SEM: Examining using whole sample

When modelling two quadrants (e.g., ideal HAN and avoided HAN), the model has 6(6+1)/2 = 21 Number of unique pieces of information (variance and covariance between the 6 observed/ manifest variables).

Degrees of freedom = Number of unique pieces of information − Number of estimated parameters

iHAN & aaHAN

  • model1.0 = iHAN and aaHAN allowed to covary
  • model1.1 = iHAN and aaHAN covariance set to 0
  • model1.2 = iHAN and aaHAN covariance set to -1

From the three models estimated, the model with the estimated covariation between iHAN and aaHAN (model1.0) fit the data best.

[Click for details]
summary(model1.0, standardized = TRUE, fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##                                                   Used       Total
##   Number of observations                           983         997
## 
## Model Test User Model:
##                                                       
##   Test statistic                                68.829
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1345.288
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.954
##   Tucker-Lewis Index (TLI)                       0.914
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6344.979
##   Loglikelihood unrestricted model (H1)      -6310.565
##                                                       
##   Akaike (AIC)                               12715.958
##   Bayesian (BIC)                             12779.536
##   Sample-size adjusted Bayesian (SABIC)      12738.248
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.088
##   90 Percent confidence interval - lower         0.069
##   90 Percent confidence interval - upper         0.108
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.772
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.036
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_HAN =~                                                             
##     aa.fear           1.000                               0.929    0.837
##     aa.host           0.850    0.047   18.032    0.000    0.790    0.711
##     aa.nerv           0.696    0.041   17.146    0.000    0.647    0.645
##   i_HAN =~                                                              
##     i.fear2           1.000                               0.359    0.652
##     i.host2           0.769    0.071   10.829    0.000    0.276    0.524
##     i.nerv2           1.218    0.108   11.281    0.000    0.438    0.644
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_HAN ~~                                                             
##     i_HAN            -0.145    0.017   -8.449    0.000   -0.434   -0.434
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.fear           0.368    0.042    8.719    0.000    0.368    0.299
##    .aa.host           0.610    0.040   15.372    0.000    0.610    0.494
##    .aa.nerv           0.588    0.033   17.816    0.000    0.588    0.584
##    .i.fear2           0.174    0.013   13.169    0.000    0.174    0.574
##    .i.host2           0.202    0.011   17.747    0.000    0.202    0.725
##    .i.nerv2           0.271    0.020   13.535    0.000    0.271    0.586
##     aa_HAN            0.863    0.066   13.148    0.000    1.000    1.000
##     i_HAN             0.129    0.015    8.354    0.000    1.000    1.000

Now, we’ll look at model fit indices to check what other “uninteresting” covariation paths we might need.

[Click for details]
modificationIndices(model1.0, sort = TRUE, minimum.value = 10)
##        lhs op     rhs     mi    epc sepc.lv sepc.all sepc.nox
## 33 aa.nerv ~~ i.nerv2 42.362 -0.103  -0.103   -0.259   -0.259
## 29 aa.host ~~ i.host2 24.596 -0.067  -0.067   -0.191   -0.191
## 30 aa.host ~~ i.nerv2 13.307  0.062   0.062    0.152    0.152
# model 1.0a: modified based on top 2 modification indices [editing top 2 made the chi square non-significant]

fullsample_sem1.0a <- ' 

 # latent variables; paths = 6
    aa_HAN =~ aa.fear + aa.host + aa.nerv
    i_HAN =~ i.fear2 + i.host2 + i.nerv2
    
 # latent variable covariance; paths = 1
    i_HAN ~~ aa_HAN
    
  # item covariances
    aa.nerv ~~ i.nerv2
    aa.host ~~ i.host2
'
  
model1.0a <- sem(fullsample_sem1.0a, data = data)
summary(model1.0a, standardized = TRUE , fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        15
## 
##                                                   Used       Total
##   Number of observations                           983         997
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 3.891
##   Degrees of freedom                                 6
##   P-value (Chi-square)                           0.691
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1345.288
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.004
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6312.510
##   Loglikelihood unrestricted model (H1)      -6310.565
##                                                       
##   Akaike (AIC)                               12655.020
##   Bayesian (BIC)                             12728.380
##   Sample-size adjusted Bayesian (SABIC)      12680.739
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.032
##   P-value H_0: RMSEA <= 0.050                    0.997
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.008
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_HAN =~                                                             
##     aa.fear           1.000                               0.946    0.853
##     aa.host           0.827    0.047   17.495    0.000    0.783    0.704
##     aa.nerv           0.668    0.040   16.647    0.000    0.633    0.631
##   i_HAN =~                                                              
##     i.fear2           1.000                               0.369    0.670
##     i.host2           0.734    0.069   10.650    0.000    0.271    0.513
##     i.nerv2           1.175    0.107   11.019    0.000    0.434    0.637
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_HAN ~~                                                             
##     i_HAN            -0.137    0.017   -7.965    0.000   -0.392   -0.392
##  .aa.nerv ~~                                                            
##    .i.nerv2          -0.100    0.016   -6.090    0.000   -0.100   -0.246
##  .aa.host ~~                                                            
##    .i.host2          -0.064    0.014   -4.630    0.000   -0.064   -0.179
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.fear           0.335    0.045    7.443    0.000    0.335    0.272
##    .aa.host           0.622    0.041   15.339    0.000    0.622    0.504
##    .aa.nerv           0.604    0.033   18.054    0.000    0.604    0.601
##    .i.fear2           0.167    0.014   12.087    0.000    0.167    0.551
##    .i.host2           0.205    0.011   17.964    0.000    0.205    0.736
##    .i.nerv2           0.275    0.020   13.561    0.000    0.275    0.594
##     aa_HAN            0.896    0.068   13.136    0.000    1.000    1.000
##     i_HAN             0.136    0.016    8.363    0.000    1.000    1.000

Adding the following two covariance paths:

  • aa.nerv ~~ i.nerv2
  • aa.host ~~ i.host2

Made the chi-square statistic non-significant. HOWEVER, note that CFI and TLI are both 1, and RMSEA is 0, meaning that the model may be overfitted.

Fitting only the first item covariance, the chi square statistic is still significant, but CFI = 0.986, TLI = 0.969, RMSEA = 0.053, SRMR = 0.024. Based on chi-squared difference test, the model is significantly worse (Δchi-square = 22.40, p < .001) than modelling the two covariances in items (as presented above).

Hence, if we take it that we should model the two item covariance pathways (instead of just one), the final model (standardized coefficients) looks like this:

iLAN & aaLAN

  • model2.0 = iLAN and aaLAN allowed to covary
  • model2.1 = iLAN and aaLAN covariance set to 0
  • model2.2 = iLAN and aaLAN covariance set to -1

From the three models estimated, the model with the estimated covariation between iLAN and aaLAN (model2.0) fit the data best.

[Click for details]
summary(model2.0, standardized = TRUE , fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##                                                   Used       Total
##   Number of observations                           986         997
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.617
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1560.864
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.974
##   Tucker-Lewis Index (TLI)                       0.952
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6811.226
##   Loglikelihood unrestricted model (H1)      -6787.417
##                                                       
##   Akaike (AIC)                               13648.452
##   Bayesian (BIC)                             13712.070
##   Sample-size adjusted Bayesian (SABIC)      13670.781
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.071
##   90 Percent confidence interval - lower         0.052
##   90 Percent confidence interval - upper         0.091
##   P-value H_0: RMSEA <= 0.050                    0.034
##   P-value H_0: RMSEA >= 0.080                    0.240
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.026
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_LAN =~                                                             
##     aa.slug           1.000                               0.856    0.747
##     aa.slee           0.842    0.050   16.995    0.000    0.720    0.689
##     aa.dull           0.882    0.051   17.238    0.000    0.754    0.728
##   i_LAN =~                                                              
##     i.slug2           1.000                               0.509    0.747
##     i.slee2           1.048    0.066   15.984    0.000    0.533    0.671
##     i.dull2           0.890    0.055   16.167    0.000    0.453    0.701
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_LAN ~~                                                             
##     i_LAN            -0.161    0.020   -7.944    0.000   -0.369   -0.369
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.slug           0.579    0.044   13.175    0.000    0.579    0.441
##    .aa.slee           0.573    0.036   15.825    0.000    0.573    0.525
##    .aa.dull           0.503    0.036   14.096    0.000    0.503    0.469
##    .i.slug2           0.205    0.016   12.498    0.000    0.205    0.442
##    .i.slee2           0.347    0.022   15.948    0.000    0.347    0.550
##    .i.dull2           0.212    0.014   14.691    0.000    0.212    0.509
##     aa_LAN            0.732    0.064   11.495    0.000    1.000    1.000
##     i_LAN             0.259    0.023   11.202    0.000    1.000    1.000

Now, we’ll look at model fit indices to check what other “uninteresting” covariation paths we might need.

[Click for details]
modificationIndices(model2.0, sort = TRUE, minimum.value = 10)
##        lhs op     rhs     mi    epc sepc.lv sepc.all sepc.nox
## 24 aa.slug ~~ i.slug2 18.408 -0.068  -0.068   -0.198   -0.198
## 29 aa.slee ~~ i.slee2 15.267 -0.070  -0.070   -0.157   -0.157
## 33 aa.dull ~~ i.dull2 13.908 -0.052  -0.052   -0.159   -0.159
# model 2.0a: modified based on top 3 modification indices [editing top 3 made the chi square non-significant]

fullsample_sem2.0a <- ' 

 # latent variables; paths = 6
    aa_LAN =~ aa.slug + aa.slee + aa.dull
    i_LAN =~ i.slug2 + i.slee2 + i.dull2
    
 # latent variable covariance; paths = 1
    i_LAN ~~ aa_LAN
'
  
model2.0a <- sem(fullsample_sem2.0a, data = data)
summary(model2.0a, standardized = TRUE , fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##                                                   Used       Total
##   Number of observations                           986         997
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.617
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1560.864
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.974
##   Tucker-Lewis Index (TLI)                       0.952
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6811.226
##   Loglikelihood unrestricted model (H1)      -6787.417
##                                                       
##   Akaike (AIC)                               13648.452
##   Bayesian (BIC)                             13712.070
##   Sample-size adjusted Bayesian (SABIC)      13670.781
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.071
##   90 Percent confidence interval - lower         0.052
##   90 Percent confidence interval - upper         0.091
##   P-value H_0: RMSEA <= 0.050                    0.034
##   P-value H_0: RMSEA >= 0.080                    0.240
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.026
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_LAN =~                                                             
##     aa.slug           1.000                               0.856    0.747
##     aa.slee           0.842    0.050   16.995    0.000    0.720    0.689
##     aa.dull           0.882    0.051   17.238    0.000    0.754    0.728
##   i_LAN =~                                                              
##     i.slug2           1.000                               0.509    0.747
##     i.slee2           1.048    0.066   15.984    0.000    0.533    0.671
##     i.dull2           0.890    0.055   16.167    0.000    0.453    0.701
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_LAN ~~                                                             
##     i_LAN            -0.161    0.020   -7.944    0.000   -0.369   -0.369
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.slug           0.579    0.044   13.175    0.000    0.579    0.441
##    .aa.slee           0.573    0.036   15.825    0.000    0.573    0.525
##    .aa.dull           0.503    0.036   14.096    0.000    0.503    0.469
##    .i.slug2           0.205    0.016   12.498    0.000    0.205    0.442
##    .i.slee2           0.347    0.022   15.948    0.000    0.347    0.550
##    .i.dull2           0.212    0.014   14.691    0.000    0.212    0.509
##     aa_LAN            0.732    0.064   11.495    0.000    1.000    1.000
##     i_LAN             0.259    0.023   11.202    0.000    1.000    1.000

Adding the following three covariance paths:

  • aa.slug ~~ i.slug2
  • aa.slee ~~ i.slee2
  • aa.dull ~~ i.dull2

Made the chi-square statistic non-significant (CFI = 0.998, TLI = 0.995, RMSEA = 0.023, SRMR = 0.016).
Hence, the final model (standardized coefficients) looks like this:

iLAN & iHAN & iNeg & aaLAN & aaHAN & aaNeg

When modelling the four quadrants and the two neutral valence affect, the model has 18*(18+1)/2 = 171 number of unique pieces of information.

  • model3.0 = aa and ia allowed to covary
  • model3.1 = aa and ia covariance set to 0
  • model3.2 = aa and ia covariance set to -1

From the three models estimated, the model with the estimated covariation between aa and ia (model3.0) fit the data best. Now, let’s see if modelling the individual covariances between avoided and ideal NEG, HAN and LAN significantly improves the fit.
* model3.0a = aa and ia allowed to covary, as well as iNEG & aaNEG, iHAN & aaHAN, iLAN & aaLAN.

[Click for details]
compareFit(model3.0, model3.0a) %>% summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##            Df   AIC   BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)    
## model3.0a 125 35356 35580 385.14                                          
## model3.0  128 35403 35612 438.35      53.21 0.13176       3  1.654e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##              chisq  df pvalue rmsea   cfi   tli  srmr        aic        bic
## model3.0a 385.141† 125   .000 .046† .965† .957† .029† 35355.735† 35579.805†
## model3.0  438.351  128   .000 .050  .958  .950  .032  35402.945  35612.402 
## 
## ################## Differences in Fit Indices #######################
##                      df rmsea    cfi    tli  srmr   aic    bic
## model3.0 - model3.0a  3 0.004 -0.007 -0.007 0.003 47.21 32.597

Comparing the two models, model3.0a fits better (Δchi-square = 53.21, p < .001). So we’ll see the modification indices for that. I used the modification indices in two different ways:

  • model3.0b: editing the model based on all modification indices
  • model3.0c: editing the model based on modification indices only for item covariances (no changes to latent)
[Click for details]
##         lhs op     rhs     mi    epc sepc.lv sepc.all sepc.nox
## 264 aa.nerv ~~ i.nerv2 34.628 -0.084  -0.084   -0.226   -0.226
## 327 i.host2 ~~ i.unha2 27.230 -0.035  -0.035   -0.208   -0.208
## 251 aa.host ~~ i.host2 22.176 -0.060  -0.060   -0.172   -0.172
## 287 aa.lone ~~ i.lone2 21.184 -0.062  -0.062   -0.173   -0.173
## 297 aa.unha ~~ i.unha2 19.976 -0.043  -0.043   -0.192   -0.192
## 269 aa.sadx ~~ aa.unha 19.281  0.098   0.098    0.314    0.314
## 177   i_NEG =~ i.dull2 17.950  0.495   0.220    0.341    0.341
## 189 aa.slug ~~ i.slug2 16.546 -0.060  -0.060   -0.168   -0.168
## 206 aa.slee ~~ i.slee2 15.880 -0.070  -0.070   -0.150   -0.150
## 281 aa.lone ~~ i.slee2 14.117  0.063   0.063    0.140    0.140
## 243 aa.host ~~ aa.nerv 13.238 -0.083  -0.083   -0.147   -0.147
## 318 i.dull2 ~~ i.unha2 13.230  0.026   0.026    0.160    0.160
## 252 aa.host ~~ i.nerv2 13.096  0.055   0.055    0.143    0.143
## 321 i.fear2 ~~ i.sadx2 12.067  0.023   0.023    0.143    0.143
## 62       aa =~ aa.lone 11.192  0.517   0.377    0.336    0.336
## 218 aa.dull ~~ aa.lone 11.024  0.067   0.067    0.130    0.130
## 313 i.dull2 ~~ i.fear2 10.724 -0.025  -0.025   -0.134   -0.134
## 148   i_LAN =~ i.sadx2  9.848 -0.269  -0.133   -0.226   -0.226
## 92   aa_HAN =~ aa.lone  9.261  0.334   0.293    0.261    0.261
## 221 aa.dull ~~ i.slee2  8.986  0.049   0.049    0.119    0.119
## 77   aa_LAN =~ aa.lone  8.906  0.237   0.197    0.176    0.176
## 145   i_LAN =~ i.fear2  8.704 -0.303  -0.150   -0.273   -0.273
## 301 i.slug2 ~~ i.host2  8.187  0.023   0.023    0.110    0.110
## 262 aa.nerv ~~ i.fear2  7.917  0.033   0.033    0.107    0.107
## 222 aa.dull ~~ i.dull2  7.516 -0.035  -0.035   -0.114   -0.114
## 63       aa =~ aa.unha  7.002 -0.404  -0.295   -0.277   -0.277
## 278 aa.sadx ~~ i.unha2  6.987  0.024   0.024    0.123    0.123
## 149   i_LAN =~ i.lone2  6.784  0.248   0.122    0.184    0.184
## 276 aa.sadx ~~ i.sadx2  6.703 -0.023  -0.023   -0.116   -0.116
## 233 aa.fear ~~ aa.unha  6.658 -0.046  -0.046   -0.113   -0.113
## 317 i.dull2 ~~ i.lone2  6.602  0.022   0.022    0.103    0.103
## 178   i_NEG =~ i.fear2  6.526  0.313   0.139    0.253    0.253
## 93   aa_HAN =~ aa.unha  6.512 -0.271  -0.238   -0.224   -0.224
## 229 aa.fear ~~ aa.host  6.261  0.068   0.068    0.131    0.131
## 277 aa.sadx ~~ i.lone2  6.197  0.026   0.026    0.106    0.106
## 225 aa.dull ~~ i.nerv2  6.080 -0.034  -0.034   -0.098   -0.098
## 182 aa.slug ~~ aa.dull  5.989 -0.072  -0.072   -0.137   -0.137
## 167   i_NEG =~ aa.slee  5.879  0.177   0.079    0.076    0.076
## 134      ia =~ i.lone2  5.807  0.505   0.219    0.329    0.329
## 268 aa.sadx ~~ aa.lone  5.625 -0.049  -0.049   -0.127   -0.127
## 309 i.slee2 ~~ i.nerv2  5.601  0.028   0.028    0.094    0.094
## 257 aa.nerv ~~ aa.lone  5.311  0.048   0.048    0.085    0.085
## 90   aa_HAN =~ aa.dull  5.300  0.302   0.265    0.260    0.260
## 175   i_NEG =~ i.slug2  5.290 -0.283  -0.126   -0.185   -0.185
## 191 aa.slug ~~ i.dull2  5.250  0.032   0.032    0.095    0.095
## 119      ia =~ aa.slee  5.225  0.177   0.077    0.074    0.074
## 56       aa =~ aa.slee  5.210 -0.377  -0.275   -0.266   -0.266
## 85   aa_LAN =~ i.sadx2  5.173  0.047   0.039    0.067    0.067
## 179   i_NEG =~ i.host2  4.956 -0.236  -0.105   -0.199   -0.199
## 213 aa.slee ~~ i.unha2  4.893  0.026   0.026    0.088    0.088
## 57       aa =~ aa.dull  4.801  0.403   0.294    0.288    0.288
## 295 aa.unha ~~ i.sadx2  4.799  0.021   0.021    0.091    0.091
## 105  aa_NEG =~ aa.dull  4.759  0.185   0.164    0.161    0.161
## 152   i_HAN =~ aa.slee  4.552  0.204   0.072    0.070    0.070
## 202 aa.slee ~~ aa.sadx  4.528  0.036   0.036    0.091    0.091
## 201 aa.slee ~~ aa.nerv  4.510  0.045   0.045    0.079    0.079
## 311 i.slee2 ~~ i.lone2  4.508 -0.023  -0.023   -0.082   -0.082
## 89   aa_HAN =~ aa.slee  4.410 -0.253  -0.222   -0.215   -0.215
## 296 aa.unha ~~ i.lone2  4.327  0.024   0.024    0.083    0.083
## 303 i.slug2 ~~ i.sadx2  4.114 -0.015  -0.015   -0.086   -0.086
## 207 aa.slee ~~ i.dull2  4.111  0.027   0.027    0.080    0.080
## 129      ia =~ i.dull2  4.018  0.411   0.178    0.276    0.276
## 279 aa.lone ~~ aa.unha  3.941 -0.042  -0.042   -0.091   -0.091
## 137   i_LAN =~ aa.slee  3.936  0.137   0.068    0.065    0.065
## 339      aa ~~   i_NEG  3.892  0.020   0.148    0.148    0.148
## 355   i_LAN ~~   i_HAN  3.892 -0.022  -0.596   -0.596   -0.596
## 354      ia ~~   i_NEG  3.892  0.029   0.356    0.356    0.356
## 176   i_NEG =~ i.slee2  3.838 -0.268  -0.119   -0.150   -0.150
## 186 aa.slug ~~ aa.sadx  3.737 -0.034  -0.034   -0.087   -0.087
## 205 aa.slee ~~ i.slug2  3.722  0.028   0.028    0.076    0.076
## 208 aa.slee ~~ i.fear2  3.635 -0.023  -0.023   -0.072   -0.072
## 199 aa.slee ~~ aa.fear  3.560 -0.040  -0.040   -0.076   -0.076
## 165   i_HAN =~ i.unha2  3.367 -0.254  -0.090   -0.149   -0.149
## 325 i.host2 ~~ i.sadx2  3.362  0.012   0.012    0.071    0.071
## 332 i.sadx2 ~~ i.unha2  3.348  0.016   0.016    0.112    0.112
## 70       aa =~ i.sadx2  3.312  0.043   0.032    0.054    0.054
## 181 aa.slug ~~ aa.slee  3.103  0.048   0.048    0.081    0.081
## 194 aa.slug ~~ i.nerv2  3.000  0.027   0.027    0.069    0.069
## 282 aa.lone ~~ i.dull2  2.948 -0.022  -0.022   -0.067   -0.067
## 288 aa.lone ~~ i.unha2  2.938  0.019   0.019    0.069    0.069
## 104  aa_NEG =~ aa.slee  2.926 -0.138  -0.123   -0.119   -0.119
## 263 aa.nerv ~~ i.host2  2.883  0.020   0.020    0.061    0.061
## 344  aa_LAN ~~   i_NEG  2.797  0.015   0.207    0.207    0.207
## 260 aa.nerv ~~ i.slee2  2.696  0.027   0.027    0.061    0.061
## 100  aa_HAN =~ i.sadx2  2.518  0.031   0.028    0.047    0.047
## 298 i.slug2 ~~ i.slee2  2.461  0.021   0.021    0.076    0.076
## 283 aa.lone ~~ i.fear2  2.454  0.019   0.019    0.059    0.059
## 259 aa.nerv ~~ i.slug2  2.450  0.021   0.021    0.060    0.060
## 111  aa_NEG =~ i.dull2  2.430 -0.033  -0.030   -0.046   -0.046
## 106  aa_NEG =~ aa.fear  2.334 -0.190  -0.168   -0.152   -0.152
## 289 aa.unha ~~ i.slug2  2.279  0.018   0.018    0.062    0.062
## 246 aa.host ~~ aa.unha  2.255  0.028   0.028    0.062    0.062
## 172   i_NEG =~ aa.sadx  2.240  0.089   0.039    0.038    0.038
## 78   aa_LAN =~ aa.unha  2.205 -0.111  -0.092   -0.087   -0.087
## 319 i.fear2 ~~ i.host2  2.144  0.011   0.011    0.060    0.060
## 204 aa.slee ~~ aa.unha  2.132 -0.027  -0.027   -0.058   -0.058
## 196 aa.slug ~~ i.lone2  2.129 -0.021  -0.021   -0.057   -0.057
## 86   aa_LAN =~ i.lone2  2.091 -0.035  -0.029   -0.044   -0.044
## 162   i_HAN =~ i.dull2  2.082 -0.222  -0.079   -0.123   -0.123
## 238 aa.fear ~~ i.host2  2.055  0.017   0.017    0.055    0.055
## lavaan 0.6.15 ended normally after 142 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        68
## 
##                                                   Used       Total
##   Number of observations                           964         997
## 
## Model Test User Model:
##                                                       
##   Test statistic                               124.172
##   Degrees of freedom                               103
##   P-value (Chi-square)                           0.076
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7538.217
##   Degrees of freedom                               153
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997
##   Tucker-Lewis Index (TLI)                       0.996
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -17501.383
##   Loglikelihood unrestricted model (H1)     -17439.297
##                                                       
##   Akaike (AIC)                               35138.766
##   Bayesian (BIC)                             35470.000
##   Sample-size adjusted Bayesian (SABIC)      35254.033
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.015
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.023
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.018
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa =~                                                                 
##     aa_LAN            1.000                               0.875    0.875
##     aa_HAN            1.183    0.062   19.041    0.000    0.974    0.974
##     aa_NEG            1.085    0.055   19.727    0.000    0.973    0.973
##     aa.lone           3.789    5.789    0.655    0.513    2.755    2.462
##   aa_LAN =~                                                             
##     aa.slug           1.000                               0.831    0.734
##     aa.slee           0.820    0.044   18.534    0.000    0.681    0.659
##     aa.dull           0.911    0.045   20.455    0.000    0.757    0.741
##     aa.lone          -0.545    0.722   -0.755    0.450   -0.453   -0.405
##   aa_HAN =~                                                             
##     aa.fear           1.000                               0.883    0.795
##     aa.host           0.928    0.040   23.217    0.000    0.819    0.740
##     aa.nerv           0.775    0.036   21.247    0.000    0.685    0.685
##     aa.lone          -2.352    3.557   -0.661    0.508   -2.077   -1.856
##   aa_NEG =~                                                             
##     aa.sadx           1.000                               0.811    0.791
##     aa.lone           0.693    0.789    0.878    0.380    0.561    0.502
##     aa.unha           0.974    0.032   30.502    0.000    0.789    0.742
##   ia =~                                                                 
##     i_LAN             1.000                               0.881    0.881
##     i_HAN             1.194    0.188    6.359    0.000    0.958    0.958
##     i_NEG             1.091    0.116    9.408    0.000    0.884    0.884
##   i_LAN =~                                                              
##     i.slug2           1.000                               0.504    0.742
##     i.slee2           1.085    0.059   18.305    0.000    0.547    0.684
##     i.dull2           0.699    0.090    7.811    0.000    0.353    0.547
##     i.sadx2          -0.233    0.098   -2.386    0.017   -0.117   -0.200
##     i.fear2          -0.428    0.173   -2.474    0.013   -0.216   -0.393
##   i_HAN =~                                                              
##     i.fear2           1.000                               0.554    1.008
##     i.host2           0.482    0.082    5.858    0.000    0.267    0.507
##     i.nerv2           0.789    0.131    6.036    0.000    0.437    0.643
##   i_NEG =~                                                              
##     i.sadx2           1.000                               0.548    0.933
##     i.lone2           0.838    0.082   10.279    0.000    0.459    0.690
##     i.unha2           0.860    0.083   10.319    0.000    0.472    0.777
##     i.dull2           0.228    0.078    2.925    0.003    0.125    0.194
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa ~~                                                                 
##     ia               -0.135    0.015   -8.862    0.000   -0.417   -0.417
##  .aa_NEG ~~                                                             
##    .i_NEG            -0.035    0.010   -3.586    0.000   -0.729   -0.729
##  .aa_HAN ~~                                                             
##    .i_HAN            -0.010    0.007   -1.454    0.146   -0.324   -0.324
##  .aa_LAN ~~                                                             
##    .i_LAN            -0.018    0.010   -1.809    0.070   -0.187   -0.187
##  .aa.nerv ~~                                                            
##    .i.nerv2          -0.083    0.014   -5.735    0.000   -0.083   -0.219
##  .i.host2 ~~                                                            
##    .i.unha2          -0.030    0.006   -4.692    0.000   -0.030   -0.174
##  .aa.host ~~                                                            
##    .i.host2          -0.056    0.013   -4.426    0.000   -0.056   -0.166
##  .aa.lone ~~                                                            
##    .i.lone2          -0.046    0.014   -3.274    0.001   -0.046   -0.215
##  .aa.unha ~~                                                            
##    .i.unha2          -0.046    0.010   -4.702    0.000   -0.046   -0.167
##  .aa.sadx ~~                                                            
##    .aa.unha           0.156    0.139    1.121    0.262    0.156    0.348
##  .aa.slug ~~                                                            
##    .i.slug2          -0.060    0.015   -4.014    0.000   -0.060   -0.172
##  .aa.slee ~~                                                            
##    .i.slee2          -0.057    0.018   -3.188    0.001   -0.057   -0.127
##  .aa.lone ~~                                                            
##    .i.slee2           0.059    0.018    3.301    0.001    0.059    0.231
##  .aa.host ~~                                                            
##    .aa.nerv          -0.077    0.022   -3.543    0.000   -0.077   -0.143
##  .i.dull2 ~~                                                            
##    .i.unha2           0.012    0.008    1.646    0.100    0.012    0.072
##  .aa.host ~~                                                            
##    .i.nerv2           0.026    0.015    1.799    0.072    0.026    0.069
##  .i.sadx2 ~~                                                            
##    .i.fear2           0.012    0.008    1.503    0.133    0.012    0.082
##  .aa.lone ~~                                                            
##    .aa.dull           0.059    0.023    2.590    0.010    0.059    0.195
##  .i.dull2 ~~                                                            
##    .i.fear2          -0.014    0.008   -1.830    0.067   -0.014   -0.078
##  .aa.dull ~~                                                            
##    .i.slee2           0.044    0.017    2.637    0.008    0.044    0.109
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.lone           0.194    0.913    0.212    0.832    0.194    0.155
##    .aa.slug           0.591    0.036   16.516    0.000    0.591    0.461
##    .aa.slee           0.606    0.033   18.452    0.000    0.606    0.566
##    .aa.dull           0.470    0.029   16.238    0.000    0.470    0.451
##    .aa.fear           0.453    0.028   16.280    0.000    0.453    0.367
##    .aa.host           0.554    0.032   17.080    0.000    0.554    0.452
##    .aa.nerv           0.529    0.029   18.262    0.000    0.529    0.530
##    .aa.sadx           0.393    0.143    2.750    0.006    0.393    0.374
##    .aa.unha           0.507    0.137    3.712    0.000    0.507    0.449
##    .i.slug2           0.208    0.014   14.566    0.000    0.208    0.450
##    .i.slee2           0.340    0.020   16.755    0.000    0.340    0.532
##    .i.dull2           0.207    0.012   16.931    0.000    0.207    0.498
##    .i.sadx2           0.131    0.012   10.892    0.000    0.131    0.380
##    .i.fear2           0.150    0.016    9.458    0.000    0.150    0.498
##    .i.host2           0.206    0.010   20.070    0.000    0.206    0.743
##    .i.nerv2           0.270    0.015   17.968    0.000    0.270    0.586
##    .i.lone2           0.232    0.013   18.295    0.000    0.232    0.523
##    .i.unha2           0.146    0.010   14.757    0.000    0.146    0.396
##     aa                0.529    0.049   10.693    0.000    1.000    1.000
##    .aa_LAN            0.162    0.025    6.355    0.000    0.234    0.234
##    .aa_HAN            0.039    0.023    1.703    0.089    0.050    0.050
##    .aa_NEG            0.035    0.144    0.243    0.808    0.053    0.053
##     ia                0.197    0.019   10.262    0.000    1.000    1.000
##    .i_LAN             0.057    0.012    4.662    0.000    0.223    0.223
##    .i_HAN             0.025    0.012    2.122    0.034    0.081    0.081
##    .i_NEG             0.066    0.012    5.446    0.000    0.218    0.218
## lavaan 0.6.15 ended normally after 81 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        69
## 
##                                                   Used       Total
##   Number of observations                           964         997
## 
## Model Test User Model:
##                                                       
##   Test statistic                               116.896
##   Degrees of freedom                               102
##   P-value (Chi-square)                           0.149
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7538.217
##   Degrees of freedom                               153
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998
##   Tucker-Lewis Index (TLI)                       0.997
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -17497.745
##   Loglikelihood unrestricted model (H1)     -17439.297
##                                                       
##   Akaike (AIC)                               35133.490
##   Bayesian (BIC)                             35469.595
##   Sample-size adjusted Bayesian (SABIC)      35250.453
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.012
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.022
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.019
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa =~                                                                 
##     aa_LAN            1.000                               0.870    0.870
##     aa_HAN            1.199    0.063   19.139    0.000    0.977    0.977
##     aa_NEG            1.095    0.056   19.723    0.000    0.926    0.926
##   aa_LAN =~                                                             
##     aa.slug           1.000                               0.830    0.735
##     aa.slee           0.821    0.044   18.520    0.000    0.681    0.659
##     aa.dull           0.907    0.044   20.424    0.000    0.753    0.738
##   aa_HAN =~                                                             
##     aa.fear           1.000                               0.886    0.799
##     aa.host           0.921    0.040   23.170    0.000    0.817    0.738
##     aa.nerv           0.773    0.036   21.246    0.000    0.685    0.685
##   aa_NEG =~                                                             
##     aa.sadx           1.000                               0.854    0.833
##     aa.lone           0.980    0.041   23.940    0.000    0.838    0.748
##     aa.unha           0.986    0.032   30.332    0.000    0.842    0.792
##   ia =~                                                                 
##     i_LAN             1.000                               0.865    0.865
##     i_HAN             0.765    0.053   14.420    0.000    0.924    0.924
##     i_NEG             0.920    0.059   15.649    0.000    0.889    0.889
##   i_LAN =~                                                              
##     i.slug2           1.000                               0.494    0.727
##     i.slee2           1.102    0.061   18.209    0.000    0.544    0.680
##     i.dull2           0.928    0.050   18.533    0.000    0.458    0.712
##   i_HAN =~                                                              
##     i.fear2           1.000                               0.354    0.643
##     i.host2           0.772    0.060   12.843    0.000    0.273    0.518
##     i.nerv2           1.274    0.080   15.855    0.000    0.451    0.665
##   i_NEG =~                                                              
##     i.sadx2           1.000                               0.442    0.753
##     i.lone2           1.033    0.052   19.840    0.000    0.457    0.689
##     i.unha2           1.084    0.049   22.046    0.000    0.479    0.792
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa ~~                                                                 
##     ia               -0.130    0.015   -8.738    0.000   -0.421   -0.421
##  .aa_NEG ~~                                                             
##    .i_NEG            -0.024    0.008   -2.862    0.004   -0.361   -0.361
##  .aa_HAN ~~                                                             
##    .i_HAN            -0.016    0.008   -2.027    0.043   -0.630   -0.630
##  .aa_LAN ~~                                                             
##    .i_LAN            -0.013    0.010   -1.274    0.203   -0.130   -0.130
##  .aa.nerv ~~                                                            
##    .i.nerv2          -0.071    0.015   -4.661    0.000   -0.071   -0.192
##  .i.host2 ~~                                                            
##    .i.unha2          -0.032    0.006   -4.881    0.000   -0.032   -0.190
##  .aa.host ~~                                                            
##    .i.host2          -0.052    0.013   -3.994    0.000   -0.052   -0.153
##  .aa.lone ~~                                                            
##    .i.lone2          -0.045    0.014   -3.362    0.001   -0.045   -0.128
##  .aa.unha ~~                                                            
##    .i.unha2          -0.041    0.011   -3.662    0.000   -0.041   -0.170
##  .aa.sadx ~~                                                            
##    .aa.unha           0.077    0.023    3.336    0.001    0.077    0.208
##  .aa.slug ~~                                                            
##    .i.slug2          -0.061    0.015   -4.083    0.000   -0.061   -0.171
##  .aa.slee ~~                                                            
##    .i.slee2          -0.059    0.018   -3.284    0.001   -0.059   -0.129
##  .aa.lone ~~                                                            
##    .i.slee2           0.058    0.017    3.509    0.000    0.058    0.134
##  .aa.host ~~                                                            
##    .aa.nerv          -0.073    0.022   -3.293    0.001   -0.073   -0.133
##  .i.dull2 ~~                                                            
##    .i.unha2           0.029    0.008    3.809    0.000    0.029    0.174
##  .aa.host ~~                                                            
##    .i.nerv2           0.030    0.015    1.924    0.054    0.030    0.079
##  .i.fear2 ~~                                                            
##    .i.sadx2           0.021    0.007    3.079    0.002    0.021    0.127
##  .aa.dull ~~                                                            
##    .aa.lone           0.053    0.021    2.550    0.011    0.053    0.103
##  .i.dull2 ~~                                                            
##    .i.fear2          -0.018    0.007   -2.458    0.014   -0.018   -0.095
##  .aa.dull ~~                                                            
##    .i.slee2           0.033    0.017    1.942    0.052    0.033    0.082
##  .i.slug2 ~~                                                            
##    .i.host2           0.013    0.008    1.633    0.102    0.013    0.063
##  .aa.nerv ~~                                                            
##    .i.fear2           0.020    0.012    1.678    0.093    0.020    0.065
##  .aa.dull ~~                                                            
##    .i.dull2          -0.023    0.013   -1.792    0.073   -0.023   -0.074
##  .aa.sadx ~~                                                            
##    .i.unha2           0.001    0.011    0.128    0.898    0.001    0.007
##    .i.sadx2          -0.021    0.009   -2.173    0.030   -0.021   -0.093
##  .aa.fear ~~                                                            
##    .aa.unha          -0.035    0.017   -2.014    0.044   -0.035   -0.081
##  .i.dull2 ~~                                                            
##    .i.lone2           0.032    0.009    3.630    0.000    0.032    0.148
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.slug           0.588    0.036   16.441    0.000    0.588    0.460
##    .aa.slee           0.605    0.033   18.417    0.000    0.605    0.566
##    .aa.dull           0.474    0.029   16.298    0.000    0.474    0.455
##    .aa.fear           0.446    0.028   15.997    0.000    0.446    0.362
##    .aa.host           0.558    0.033   17.156    0.000    0.558    0.455
##    .aa.nerv           0.530    0.029   18.269    0.000    0.530    0.531
##    .aa.sadx           0.323    0.026   12.432    0.000    0.323    0.307
##    .aa.lone           0.551    0.031   17.588    0.000    0.551    0.440
##    .aa.unha           0.421    0.031   13.815    0.000    0.421    0.373
##    .i.slug2           0.218    0.014   15.707    0.000    0.218    0.471
##    .i.slee2           0.344    0.020   17.211    0.000    0.344    0.537
##    .i.dull2           0.204    0.013   16.050    0.000    0.204    0.493
##    .i.fear2           0.178    0.010   17.224    0.000    0.178    0.587
##    .i.host2           0.203    0.010   19.438    0.000    0.203    0.731
##    .i.nerv2           0.256    0.015   16.598    0.000    0.256    0.557
##    .i.sadx2           0.150    0.009   16.089    0.000    0.150    0.433
##    .i.lone2           0.231    0.013   18.030    0.000    0.231    0.525
##    .i.unha2           0.137    0.010   14.188    0.000    0.137    0.373
##     aa                0.522    0.049   10.698    0.000    1.000    1.000
##    .aa_LAN            0.168    0.025    6.674    0.000    0.243    0.243
##    .aa_HAN            0.036    0.024    1.485    0.138    0.046    0.046
##    .aa_NEG            0.105    0.024    4.413    0.000    0.143    0.143
##     ia                0.183    0.018    9.918    0.000    1.000    1.000
##    .i_LAN             0.061    0.011    5.772    0.000    0.252    0.252
##    .i_HAN             0.018    0.006    2.845    0.004    0.147    0.147
##    .i_NEG             0.041    0.008    5.320    0.000    0.209    0.209

These were the two models computed based on the modification indices.

[Click for details]
compareFit(model3.0b, model3.0c) %>% summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##            Df   AIC   BIC  Chisq Chisq diff    RMSEA Df diff Pr(>Chisq)   
## model3.0c 102 35133 35470 116.90                                          
## model3.0b 103 35139 35470 124.17     7.2758 0.080686       1   0.006989 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##              chisq  df pvalue rmsea    cfi    tli  srmr        aic        bic
## model3.0c 116.896† 102   .149 .012† 0.998† 0.997† .019  35133.490† 35469.595†
## model3.0b 124.172  103   .076 .015  0.997  0.996  .018† 35138.766  35470.000 
## 
## ################## Differences in Fit Indices #######################
##                       df rmsea    cfi    tli   srmr   aic   bic
## model3.0b - model3.0c  1 0.002 -0.001 -0.001 -0.001 5.276 0.405

Based on the model fit indices, model3.0c was significantly better (Δchi-square = 7.28, p = .007). Hence, we’ll be using that model. Here is the model, diagrammatically:

Looking at only the latent variables:

Now, we examine to see if the one factor model (whereby the covariance between aa and ia are set to -1) or the two factor model (as above) fits the data better. Based on the results, the two factor model fit better (Δchi-square = 482.25, p < .001).

[Click for details]
compareFit(model3.0c, model3.0c1) %>% summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##             Df   AIC   BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)    
## model3.0c  102 35133 35470 116.90                                          
## model3.0c1 103 35614 35945 599.15     482.25 0.70656       1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##               chisq  df pvalue rmsea    cfi    tli  srmr        aic        bic
## model3.0c  116.896† 102   .149 .012† 0.998† 0.997† .019† 35133.490† 35469.595†
## model3.0c1 599.149  103   .000 .071   .933   .900  .618  35613.743  35944.977 
## 
## ################## Differences in Fit Indices #######################
##                        df rmsea    cfi    tli  srmr     aic     bic
## model3.0c1 - model3.0c  1 0.058 -0.065 -0.097 0.599 480.253 475.382

iHAP & aaLAN

Moving on, let’s see if the relationship of ideal and avoided affect of opposing quadrants. i.e., here we ask the question of whether avoided LAN simply reflects ideal HAP.

  • model4.0 = iHAP and aaLAN allowed to covary
  • model4.1 = iHAP and aaLAN covariance set to 0
  • model4.2 = iHAP and aaLAN covariance set to 1
[Click for details]
# compare models
compareFit(model4.0, model4.1, model4.2) %>% summary()
## Warning in (function (object, ..., method = "default", A.method = "delta", :
## lavaan WARNING: some models have the same degrees of freedom
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##          Df   AIC   BIC   Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)    
## model4.0  8 15209 15272  12.915                                          
## model4.1  9 15240 15299  46.287      33.37 0.18184       1  7.609e-09 ***
## model4.2  9 15602 15661 408.537     362.25 0.00000       0               
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##             chisq df pvalue rmsea    cfi   tli  srmr        aic        bic
## model4.0  12.915†  8   .115 .025† 0.996† .993† .023† 15208.652† 15272.177†
## model4.1  46.287   9   .000 .065   .971  .952  .081  15240.024  15298.663 
## model4.2 408.537   9   .000 .213   .694  .490  .579  15602.274  15660.913 
## 
## ################## Differences in Fit Indices #######################
##                     df rmsea    cfi    tli  srmr     aic     bic
## model4.1 - model4.0  1 0.040 -0.025 -0.041 0.057  31.373  26.486
## model4.2 - model4.1  0 0.148 -0.278 -0.463 0.499 362.250 362.250

From the three models estimated, the model with the estimated covariation between iHAN and aaHAN (model4.0) fit the data best. Additionally, the chi-squared statistic was also non-significant for model 4.0. Hence, no modification was needed. Here is the final model:

iLAP & aaHAN

Moving on, let’s see if the relationship of ideal and avoided affect of opposing quadrants. i.e., here we ask the question of whether avoided HAN simply reflects ideal LAP.

  • model5.0 = iLAP and aaHAN allowed to covary
  • model5.1 = iLAP and aaHAN covariance set to 0
  • model5.2 = iLAP and aaHAN covariance set to 1
[Click for details]
# compare models
compareFit(model5.0, model5.1, model5.2) %>% summary()
## Warning in (function (object, ..., method = "default", A.method = "delta", :
## lavaan WARNING: some models have the same degrees of freedom
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##          Df   AIC   BIC   Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)    
## model5.0  8 15028 15092  16.816                                          
## model5.1  9 15084 15143  74.668     57.852 0.24049       1  2.826e-14 ***
## model5.2  9 15339 15397 328.984    254.316 0.00000       0               
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##             chisq df pvalue rmsea   cfi   tli  srmr        aic        bic
## model5.0  16.816†  8   .032 .033† .994† .988† .023† 15028.464† 15092.042†
## model5.1  74.668   9   .000 .086  .953  .921  .108  15084.317  15143.004 
## model5.2 328.984   9   .000 .190  .770  .617  .514  15338.632  15397.320 
## 
## ################## Differences in Fit Indices #######################
##                     df rmsea    cfi    tli  srmr     aic     bic
## model5.1 - model5.0  1 0.053 -0.041 -0.067 0.085  55.852  50.961
## model5.2 - model5.1  0 0.104 -0.183 -0.304 0.406 254.316 254.316

From the three models estimated, the model with the estimated covariation between iLAP and aaHAN (model5.0) fit the data best.

[Click for details]
modificationIndices(model5.0, sort = TRUE, minimum.value = 5)
##        lhs op     rhs    mi    epc sepc.lv sepc.all sepc.nox
## 16  aa_HAN =~ i.peac2 7.401 -0.094  -0.089   -0.102   -0.102
## 36 i.calm2 ~~ i.rela2 7.401 -0.130  -0.130   -0.281   -0.281
## 33 aa.nerv ~~ i.rela2 5.615  0.047   0.047    0.090    0.090
# model 5.0a: latent covariance modelled with item covariances

fullsample_sem5.0a <- ' 

 # latent variables; paths = 6
    aa_HAN =~ aa.fear + aa.host + aa.nerv
    i_LAP =~ i.peac2 + i.calm2 + i.rela2
    
 # latent variable covariance; paths = 1
    i_LAP ~~ aa_HAN

 # item covariances
   i.calm2  ~~  i.rela2
'
  
model5.0a <- sem(fullsample_sem5.0a, data = data)
summary(model5.0a, standardized = TRUE , fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##                                                   Used       Total
##   Number of observations                           983         997
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 9.187
##   Degrees of freedom                                 7
##   P-value (Chi-square)                           0.239
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1407.245
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998
##   Tucker-Lewis Index (TLI)                       0.997
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -7497.418
##   Loglikelihood unrestricted model (H1)      -7492.824
##                                                       
##   Akaike (AIC)                               15022.835
##   Bayesian (BIC)                             15091.304
##   Sample-size adjusted Bayesian (SABIC)      15046.840
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.018
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.046
##   P-value H_0: RMSEA <= 0.050                    0.976
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.014
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_HAN =~                                                             
##     aa.fear           1.000                               0.944    0.849
##     aa.host           0.833    0.047   17.672    0.000    0.786    0.706
##     aa.nerv           0.680    0.040   16.850    0.000    0.642    0.640
##   i_LAP =~                                                              
##     i.peac2           1.000                               0.512    0.591
##     i.calm2           1.402    0.238    5.881    0.000    0.717    0.797
##     i.rela2           1.272    0.218    5.828    0.000    0.651    0.751
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_HAN ~~                                                             
##     i_LAP             0.146    0.029    4.954    0.000    0.303    0.303
##  .i.calm2 ~~                                                            
##    .i.rela2          -0.161    0.076   -2.118    0.034   -0.161   -0.518
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.fear           0.345    0.044    7.823    0.000    0.345    0.279
##    .aa.host           0.621    0.040   15.407    0.000    0.621    0.501
##    .aa.nerv           0.594    0.033   17.871    0.000    0.594    0.590
##    .i.peac2           0.489    0.048   10.258    0.000    0.489    0.651
##    .i.calm2           0.296    0.088    3.348    0.001    0.296    0.365
##    .i.rela2           0.328    0.075    4.374    0.000    0.328    0.436
##     aa_HAN            0.891    0.068   13.183    0.000    1.000    1.000
##     i_LAP             0.262    0.049    5.294    0.000    1.000    1.000

Modelling the item covariance between

  • i.calm2 ~~ i.rela2

made the chi square statistic of the model non-significant. Hence, here is the final model:

iLAP & iHAP & iPos & aaLAN & aaHAN & aaNeg

When modelling the four quadrants and the two neutral valence affect, the model has 18*(18+1)/2 = 171 number of unique pieces of information.

  • model6.0 = aa and ia allowed to covary
  • model6.1 = aa and ia covariance set to 0
  • model6.2 = aa and ia covariance set to -1

From the three models estimated, the model with the estimated covariation between an and ip (model6.0) fit the data best. Now, let’s see if modelling the individual covariances between avoided NEG, HAN, and LAN, and ideal POS, HAP, and HAP respectively significantly improves the fit.

  • model6.0a = aa and ia allowed to covary, as well as iPOS & aaNEG, iLAP & aaHAN, iHAP & aaLAN.
[Click for details]
compareFit(model6.0, model6.0a) %>% summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##            Df   AIC   BIC  Chisq Chisq diff     RMSEA Df diff Pr(>Chisq)
## model6.0a 125 41330 41554 331.06                                        
## model6.0  128 41327 41537 334.17     3.1062 0.0060839       3     0.3755
## 
## ####################### Model Fit Indices ###########################
##              chisq  df pvalue rmsea   cfi   tli  srmr        aic        bic
## model6.0a 331.061† 125   .000 .042  .970† .964  .032  41330.392  41554.079 
## model6.0  334.167  128   .000 .041† .970  .964† .032† 41327.498† 41536.597†
## 
## ################## Differences in Fit Indices #######################
##                      df rmsea cfi   tli srmr    aic     bic
## model6.0 - model6.0a  3     0   0 0.001    0 -2.894 -17.482

Comparing the two models, model6.0a did not fit the data better (Δchi-square = 3.11, p = .376). So we’ll see the modification indices for model 6.0 instead. Initially, I used all the modification indices, regardless of whether it modified the factor loadings on latent variables. However, the model failed to identify before the model fit was acceptable (based on chi-square).

However, after editing the model based on modification indices only for item covariances (no changes to latent; Model 6.0b), the model fit also failed to be acceptable (based on chi-square) before the model failed to identify. Nonetheless, the CFI, TLI, RMSEA, and SRMR were good (CFI = .991, TLI = .988, RMSEA = 0.024, SRMR = 0.023).

It is also noteworthy that the original model without editing based on modification indices were also acceptable (CFI = .970, TLI = .964, RMSEA = 0.041, SRMR = 0.032), but the modified model was significantly better than the original model (Δchi-square = 156.21, p < .001).

[Click for details]
modificationindices(model6.0, sort = TRUE, minimum.value = 2)
##         lhs op     rhs     mi    epc sepc.lv sepc.all sepc.nox
## 295 i.peac2 ~~ i.calm2 39.349  0.141   0.141    0.295    0.295
## 126      ip =~ i.rela2 39.348  1.360   0.602    0.693    0.693
## 160   i_HAP =~ i.happ2 33.849  0.425   0.222    0.275    0.275
## 330 i.sati2 ~~ i.cont2 31.898  0.137   0.137    0.406    0.406
## 130      ip =~ i.happ2 31.898  2.212   0.980    1.213    1.213
## 174   i_POS =~ i.rela2 31.246  0.724   0.414    0.476    0.476
## 158   i_HAP =~ i.calm2 18.400 -0.356  -0.186   -0.206   -0.206
## 159   i_HAP =~ i.rela2 17.508  0.350   0.183    0.210    0.210
## 59       an =~ aa.lone 16.864  0.649   0.481    0.429    0.429
## 266 aa.sadx ~~ aa.unha 16.864  0.095   0.095    0.306    0.306
## 89   aa_HAN =~ aa.lone 15.486  0.461   0.410    0.365    0.365
## 240 aa.host ~~ aa.nerv 13.900 -0.086  -0.086   -0.151   -0.151
## 55       an =~ aa.fear 13.892 -5.030  -3.732   -3.343   -3.343
## 275 aa.sadx ~~ i.cont2 13.007 -0.051  -0.051   -0.161   -0.161
## 296 i.peac2 ~~ i.rela2 12.407 -0.092  -0.092   -0.231   -0.231
## 125      ip =~ i.calm2 12.406 -0.641  -0.284   -0.315   -0.315
## 74   aa_LAN =~ aa.lone 11.867  0.288   0.242    0.215    0.215
## 329 i.happ2 ~~ i.cont2 11.518 -0.064  -0.064   -0.179   -0.179
## 131      ip =~ i.sati2 11.518 -1.657  -0.734   -0.808   -0.808
## 161   i_HAP =~ i.sati2 11.319 -0.278  -0.145   -0.160   -0.160
## 215 aa.dull ~~ aa.lone 10.884  0.067   0.067    0.130    0.130
## 312 i.rela2 ~~ i.elat2 10.841  0.066   0.066    0.134    0.134
## 324 i.exci2 ~~ i.cont2  9.987 -0.053  -0.053   -0.145   -0.145
## 112  aa_NEG =~ i.happ2  9.987  0.085   0.076    0.094    0.094
## 173   i_POS =~ i.calm2  8.887 -0.330  -0.188   -0.209   -0.209
## 194 aa.slug ~~ i.cont2  8.350  0.057   0.057    0.118    0.118
## 285 aa.lone ~~ i.cont2  8.022  0.052   0.052    0.111    0.111
## 230 aa.fear ~~ aa.unha  7.570 -0.050  -0.050   -0.122   -0.122
## 326 i.elat2 ~~ i.sati2  7.266 -0.050  -0.050   -0.114   -0.114
## 124      ip =~ i.peac2  7.075 -0.517  -0.229   -0.265   -0.265
## 303 i.calm2 ~~ i.rela2  7.075 -0.064  -0.064   -0.144   -0.144
## 319 i.enth2 ~~ i.sati2  7.027 -0.039  -0.039   -0.115   -0.115
## 232 aa.fear ~~ i.calm2  6.831  0.050   0.050    0.102    0.102
## 143   i_LAP =~ i.exci2  6.717 -0.221  -0.125   -0.141   -0.141
## 226 aa.fear ~~ aa.host  6.690  0.071   0.071    0.138    0.138
## 57       an =~ aa.nerv  6.688  2.411   1.789    1.785    1.785
## 293 aa.unha ~~ i.sati2  6.511  0.037   0.037    0.111    0.111
## 172   i_POS =~ i.peac2  6.382 -0.296  -0.169   -0.196   -0.196
## 90   aa_HAN =~ aa.unha  6.326 -0.303  -0.269   -0.252   -0.252
## 169   i_POS =~ aa.sadx  5.922 -0.105  -0.060   -0.058   -0.058
## 322 i.exci2 ~~ i.happ2  5.792  0.035   0.035    0.105    0.105
## 313 i.rela2 ~~ i.happ2  5.759  0.035   0.035    0.101    0.101
## 265 aa.sadx ~~ aa.lone  5.670 -0.051  -0.051   -0.130   -0.130
## 60       an =~ aa.unha  5.670 -0.389  -0.288   -0.270   -0.270
## 103  aa_NEG =~ aa.fear  5.662 -0.327  -0.292   -0.262   -0.262
## 86   aa_HAN =~ aa.slee  5.539 -0.316  -0.281   -0.271   -0.271
## 305 i.calm2 ~~ i.exci2  5.246 -0.042  -0.042   -0.097   -0.097
## 53       an =~ aa.slee  5.229 -0.404  -0.300   -0.289   -0.289
## 179 aa.slug ~~ aa.dull  5.228 -0.068  -0.068   -0.128   -0.128
## 102  aa_NEG =~ aa.dull  5.158  0.205   0.183    0.179    0.179
## 306 i.calm2 ~~ i.elat2  5.123 -0.050  -0.050   -0.085   -0.085
## 254 aa.nerv ~~ aa.lone  4.923  0.046   0.046    0.083    0.083
## 346  aa_HAN ~~   i_HAP  4.892 -0.024  -0.371   -0.371   -0.371
## 259 aa.nerv ~~ i.enth2  4.807 -0.038  -0.038   -0.082   -0.082
## 178 aa.slug ~~ aa.slee  4.737  0.060   0.060    0.100    0.100
## 54       an =~ aa.dull  4.737  0.439   0.326    0.318    0.318
## 284 aa.lone ~~ i.sati2  4.648 -0.036  -0.036   -0.089   -0.089
## 171   i_POS =~ aa.unha  4.610  0.102   0.058    0.054    0.054
## 142   i_LAP =~ i.enth2  4.579  0.155   0.087    0.106    0.106
## 132      ip =~ i.cont2  4.565 -1.043  -0.462   -0.482   -0.482
## 328 i.happ2 ~~ i.sati2  4.565 -0.040  -0.040   -0.129   -0.129
## 199 aa.slee ~~ aa.sadx  4.378  0.036   0.036    0.090    0.090
## 170   i_POS =~ aa.lone  4.305  0.115   0.065    0.058    0.058
## 67       an =~ i.happ2  4.204  0.069   0.051    0.063    0.063
## 121      ip =~ aa.sadx  4.198 -0.121  -0.054   -0.052   -0.052
## 278 aa.lone ~~ i.calm2  4.143 -0.042  -0.042   -0.075   -0.075
## 252 aa.host ~~ i.cont2  4.103  0.038   0.038    0.080    0.080
## 350  aa_NEG ~~   i_HAP  4.100  0.022   0.148    0.148    0.148
## 183 aa.slug ~~ aa.sadx  4.099 -0.036  -0.036   -0.092   -0.092
## 87   aa_HAN =~ aa.dull  4.090  0.308   0.274    0.268    0.268
## 106  aa_NEG =~ i.peac2  4.018 -0.062  -0.055   -0.064   -0.064
## 260 aa.nerv ~~ i.exci2  4.010  0.036   0.036    0.083    0.083
## 145   i_LAP =~ i.happ2  3.983  0.172   0.097    0.121    0.121
## 156   i_HAP =~ aa.unha  3.972  0.104   0.054    0.051    0.051
## 198 aa.slee ~~ aa.nerv  3.945  0.043   0.043    0.074    0.074
## 283 aa.lone ~~ i.happ2  3.927  0.032   0.032    0.075    0.075
## 79   aa_LAN =~ i.enth2  3.913  0.063   0.052    0.064    0.064
## 196 aa.slee ~~ aa.fear  3.902 -0.042  -0.042   -0.081   -0.081
## 287 aa.unha ~~ i.calm2  3.893 -0.034  -0.034   -0.077   -0.077
## 325 i.elat2 ~~ i.happ2  3.879  0.035   0.035    0.076    0.076
## 97   aa_HAN =~ i.happ2  3.727  0.054   0.048    0.059    0.059
## 162   i_HAP =~ i.cont2  3.718 -0.167  -0.087   -0.091   -0.091
## 123      ip =~ aa.unha  3.691  0.124   0.055    0.051    0.051
## 122      ip =~ aa.lone  3.689  0.145   0.064    0.057    0.057
## 81   aa_LAN =~ i.elat2  3.509 -0.074  -0.062   -0.061   -0.061
## 248 aa.host ~~ i.exci2  3.471 -0.035  -0.035   -0.078   -0.078
## 220 aa.dull ~~ i.enth2  3.454  0.032   0.032    0.074    0.074
## 152   i_HAP =~ aa.host  3.432 -0.117  -0.061   -0.055   -0.055
## 297 i.peac2 ~~ i.enth2  3.370  0.030   0.030    0.073    0.073
## 318 i.enth2 ~~ i.happ2  3.367  0.026   0.026    0.072    0.072
## 269 aa.sadx ~~ i.rela2  3.337  0.026   0.026    0.083    0.083
## 61       an =~ i.peac2  3.265 -0.069  -0.051   -0.059   -0.059
## 308 i.calm2 ~~ i.sati2  3.188 -0.030  -0.030   -0.076   -0.076
## 91   aa_HAN =~ i.peac2  3.120 -0.056  -0.050   -0.058   -0.058
## 96   aa_HAN =~ i.elat2  3.106 -0.065  -0.058   -0.057   -0.057
## 191 aa.slug ~~ i.elat2  3.088 -0.042  -0.042   -0.068   -0.068
## 292 aa.unha ~~ i.happ2  3.058  0.024   0.024    0.070    0.070
## 309 i.calm2 ~~ i.cont2  2.995  0.032   0.032    0.070    0.070
## 294 aa.unha ~~ i.cont2  2.954 -0.027  -0.027   -0.072   -0.072
## 244 aa.host ~~ i.peac2  2.950  0.033   0.033    0.066    0.066
## 66       an =~ i.elat2  2.950 -0.076  -0.056   -0.056   -0.056
## 201 aa.slee ~~ aa.unha  2.928 -0.032  -0.032   -0.068   -0.068
## 75   aa_LAN =~ aa.unha  2.860 -0.136  -0.114   -0.107   -0.107
## 108  aa_NEG =~ i.rela2  2.758  0.051   0.045    0.052    0.052
## 58       an =~ aa.sadx  2.742 -0.281  -0.208   -0.202   -0.202
## 276 aa.lone ~~ aa.unha  2.741 -0.035  -0.035   -0.077   -0.077
## 73   aa_LAN =~ aa.sadx  2.733 -0.132  -0.110   -0.107   -0.107
## 251 aa.host ~~ i.sati2  2.720 -0.028  -0.028   -0.068   -0.068
## 345  aa_HAN ~~   i_LAP  2.663  0.019   0.315    0.315    0.315
## 321 i.exci2 ~~ i.elat2  2.523  0.051   0.051    0.108    0.108
## 127      ip =~ i.enth2  2.523  0.192   0.085    0.104    0.104
## 256 aa.nerv ~~ i.peac2  2.497 -0.029  -0.029   -0.060   -0.060
## 128      ip =~ i.exci2  2.457 -0.240  -0.106   -0.120   -0.120
## 317 i.enth2 ~~ i.elat2  2.457 -0.040  -0.040   -0.078   -0.078
## 155   i_HAP =~ aa.lone  2.329  0.094   0.049    0.043    0.043
## 76   aa_LAN =~ i.peac2  2.314 -0.052  -0.043   -0.050   -0.050
## 101  aa_NEG =~ aa.slee  2.313 -0.130  -0.116   -0.112   -0.112
## 243 aa.host ~~ aa.unha  2.207  0.028   0.028    0.061    0.061
## 83   aa_LAN =~ i.sati2  2.184 -0.047  -0.039   -0.043   -0.043
## 114  aa_NEG =~ i.cont2  2.139 -0.045  -0.040   -0.042   -0.042
## 64       an =~ i.enth2  2.137  0.052   0.038    0.047    0.047
## 72   aa_LAN =~ aa.nerv  2.108  0.175   0.146    0.146    0.146
## 105  aa_NEG =~ aa.nerv  2.085  0.166   0.148    0.148    0.148
## 68       an =~ i.sati2  2.075 -0.052  -0.039   -0.042   -0.042
## 197 aa.slee ~~ aa.host  2.036 -0.032  -0.032   -0.055   -0.055
fullsample_sem6.0b <- ' 

 # latent variables; paths = 24
  an =~ aa_LAN + aa_HAN + aa_NEG
    aa_LAN =~ aa.slug + aa.slee + aa.dull
    aa_HAN =~ aa.fear + aa.host + aa.nerv
    aa_NEG =~ aa.sadx + aa.lone + aa.unha
  ip =~ i_LAP + i_HAP + i_POS
    i_LAP =~ i.peac2 + i.calm2 + i.rela2
    i_HAP =~ i.enth2 + i.exci2 + i.elat2 
    i_POS =~ i.happ2 + i.sati2 + i.cont2
    
 # latent variable covariance; paths = 1
 an ~~ ip

# item covariances
 i.peac2 ~~ i.calm2
 i.sati2    ~~  i.cont2
 aa.sadx    ~~  aa.unha
 aa.host    ~~  aa.nerv
 aa.sadx    ~~  i.cont2
 i.peac2    ~~  i.rela2
 i.happ2    ~~  i.cont2
 aa.dull    ~~  aa.lone
 i.rela2    ~~  i.elat2
 i.exci2    ~~  i.cont2
 aa.slug    ~~  i.cont2
 aa.lone    ~~  i.cont2
 aa.fear    ~~  aa.unha
 i.elat2    ~~  i.sati2
'
  
model6.0b <- sem(fullsample_sem6.0b, data = data)
summary(model6.0b, standardized = TRUE , fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 54 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        57
## 
##                                                   Used       Total
##   Number of observations                           956         997
## 
## Model Test User Model:
##                                                       
##   Test statistic                               177.957
##   Degrees of freedom                               114
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7073.897
##   Degrees of freedom                               153
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.991
##   Tucker-Lewis Index (TLI)                       0.988
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -20542.644
##   Loglikelihood unrestricted model (H1)     -20453.666
##                                                       
##   Akaike (AIC)                               41199.288
##   Bayesian (BIC)                             41476.465
##   Sample-size adjusted Bayesian (SABIC)      41295.435
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.024
##   90 Percent confidence interval - lower         0.017
##   90 Percent confidence interval - upper         0.031
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.023
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   an =~                                                                 
##     aa_LAN            1.000                               0.879    0.879
##     aa_HAN            1.177    0.061   19.285    0.000    0.973    0.973
##     aa_NEG            1.083    0.054   19.918    0.000    0.929    0.929
##   aa_LAN =~                                                             
##     aa.slug           1.000                               0.838    0.737
##     aa.slee           0.822    0.044   18.651    0.000    0.689    0.666
##     aa.dull           0.907    0.044   20.572    0.000    0.761    0.742
##   aa_HAN =~                                                             
##     aa.fear           1.000                               0.892    0.799
##     aa.host           0.918    0.040   22.904    0.000    0.818    0.738
##     aa.nerv           0.777    0.037   21.189    0.000    0.693    0.692
##   aa_NEG =~                                                             
##     aa.sadx           1.000                               0.860    0.836
##     aa.lone           0.976    0.041   23.764    0.000    0.839    0.748
##     aa.unha           0.988    0.033   30.016    0.000    0.849    0.796
##   ip =~                                                                 
##     i_LAP             1.000                               0.772    0.772
##     i_HAP             0.906    0.088   10.296    0.000    0.703    0.703
##     i_POS             1.509    0.135   11.179    0.000    0.989    0.989
##   i_LAP =~                                                              
##     i.peac2           1.000                               0.519    0.601
##     i.calm2           0.880    0.079   11.194    0.000    0.456    0.507
##     i.rela2           1.281    0.097   13.190    0.000    0.665    0.765
##   i_HAP =~                                                              
##     i.enth2           1.000                               0.516    0.630
##     i.exci2           1.296    0.085   15.209    0.000    0.669    0.755
##     i.elat2           1.162    0.084   13.877    0.000    0.600    0.596
##   i_POS =~                                                              
##     i.happ2           1.000                               0.611    0.757
##     i.sati2           1.085    0.059   18.310    0.000    0.663    0.730
##     i.cont2           1.101    0.065   16.840    0.000    0.673    0.705
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   an ~~                                                                 
##     ip                0.122    0.016    7.714    0.000    0.412    0.412
##  .i.peac2 ~~                                                            
##    .i.calm2           0.126    0.025    5.026    0.000    0.126    0.235
##  .i.sati2 ~~                                                            
##    .i.cont2           0.107    0.026    4.108    0.000    0.107    0.254
##  .aa.sadx ~~                                                            
##    .aa.unha           0.070    0.023    2.991    0.003    0.070    0.191
##  .aa.host ~~                                                            
##    .aa.nerv          -0.080    0.022   -3.588    0.000   -0.080   -0.149
##  .aa.sadx ~~                                                            
##    .i.cont2          -0.030    0.014   -2.112    0.035   -0.030   -0.079
##  .i.peac2 ~~                                                            
##    .i.rela2          -0.019    0.028   -0.668    0.504   -0.019   -0.049
##  .i.happ2 ~~                                                            
##    .i.cont2          -0.024    0.020   -1.205    0.228   -0.024   -0.067
##  .aa.dull ~~                                                            
##    .aa.lone           0.057    0.021    2.730    0.006    0.057    0.111
##  .i.rela2 ~~                                                            
##    .i.elat2           0.057    0.020    2.797    0.005    0.057    0.126
##  .i.exci2 ~~                                                            
##    .i.cont2          -0.050    0.017   -2.901    0.004   -0.050   -0.126
##  .aa.slug ~~                                                            
##    .i.cont2           0.054    0.019    2.789    0.005    0.054    0.104
##  .aa.lone ~~                                                            
##    .i.cont2           0.045    0.019    2.437    0.015    0.045    0.089
##  .aa.fear ~~                                                            
##    .aa.unha          -0.035    0.018   -1.958    0.050   -0.035   -0.081
##  .i.elat2 ~~                                                            
##    .i.sati2          -0.039    0.018   -2.096    0.036   -0.039   -0.077
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.slug           0.591    0.036   16.480    0.000    0.591    0.457
##    .aa.slee           0.596    0.033   18.337    0.000    0.596    0.557
##    .aa.dull           0.471    0.029   16.302    0.000    0.471    0.449
##    .aa.fear           0.451    0.028   15.948    0.000    0.451    0.362
##    .aa.host           0.559    0.033   17.032    0.000    0.559    0.455
##    .aa.nerv           0.524    0.029   18.056    0.000    0.524    0.522
##    .aa.sadx           0.319    0.026   12.166    0.000    0.319    0.301
##    .aa.lone           0.556    0.032   17.576    0.000    0.556    0.441
##    .aa.unha           0.418    0.031   13.533    0.000    0.418    0.367
##    .i.peac2           0.475    0.037   12.805    0.000    0.475    0.638
##    .i.calm2           0.602    0.032   18.701    0.000    0.602    0.743
##    .i.rela2           0.313    0.038    8.255    0.000    0.313    0.415
##    .i.enth2           0.405    0.024   17.083    0.000    0.405    0.603
##    .i.exci2           0.337    0.028   12.049    0.000    0.337    0.429
##    .i.elat2           0.653    0.037   17.833    0.000    0.653    0.645
##    .i.happ2           0.278    0.021   13.338    0.000    0.278    0.427
##    .i.sati2           0.385    0.026   14.625    0.000    0.385    0.467
##    .i.cont2           0.459    0.039   11.891    0.000    0.459    0.503
##     an                0.543    0.050   10.791    0.000    1.000    1.000
##    .aa_LAN            0.159    0.025    6.478    0.000    0.227    0.227
##    .aa_HAN            0.043    0.024    1.807    0.071    0.054    0.054
##    .aa_NEG            0.102    0.023    4.336    0.000    0.137    0.137
##     ip                0.161    0.024    6.624    0.000    1.000    1.000
##    .i_LAP             0.109    0.026    4.246    0.000    0.404    0.404
##    .i_HAP             0.135    0.018    7.551    0.000    0.506    0.506
##    .i_POS             0.008    0.023    0.346    0.729    0.021    0.021
compareFit(model6.0, model6.0b) %>% summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##            Df   AIC   BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)    
## model6.0b 114 41199 41476 177.96                                          
## model6.0  128 41327 41537 334.17     156.21 0.10308      14  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##              chisq  df pvalue rmsea   cfi   tli  srmr        aic        bic
## model6.0b 177.957† 114   .000 .024† .991† .988† .023† 41199.288† 41476.465†
## model6.0  334.167  128   .000 .041  .970  .964  .032  41327.498  41536.597 
## 
## ################## Differences in Fit Indices #######################
##                      df rmsea    cfi    tli  srmr    aic    bic
## model6.0 - model6.0b 14 0.017 -0.021 -0.023 0.009 128.21 60.132

Here is the modified model, diagrammatically:

Looking at only the latent variables:

Now, we examine to see if the one factor model (whereby the covariance between an and ip are set to 1) or the two factor model (as above) fits the data better. Based on the results, the two factor model fit better (Δchi-square = 439.43, p < .001).

[Click for details]
compareFit(model6.0b, model6.0b1) %>% summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##             Df   AIC   BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)    
## model6.0b  114 41199 41476 177.96                                          
## model6.0b1 115 41637 41909 617.39     439.43 0.67721       1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##               chisq  df pvalue rmsea   cfi   tli  srmr        aic        bic
## model6.0b  177.957† 114   .000 .024† .991† .988† .023† 41199.288† 41476.465†
## model6.0b1 617.390  115   .000 .068  .927  .903  .508  41636.721  41909.035 
## 
## ################## Differences in Fit Indices #######################
##                        df rmsea    cfi    tli  srmr     aic    bic
## model6.0b1 - model6.0b  1 0.043 -0.063 -0.084 0.484 437.433 432.57

SEM: Examining using sub samples (EA)

Now we’re going to repeat the analyses but looking only at EA.

iHAN & aaHAN

  • modelCA1.0 = iHAN and aaHAN allowed to covary
  • modelCA1.1 = iHAN and aaHAN covariance set to 0
  • modelCA1.2 = iHAN and aaHAN covariance set to -1

From the three modelCAs estimated, the model with the estimated covariation between iHAN and aaHAN (modelCA1.0) fit the data best.

[Click for details]
summary(modelCA1.0, standardized = TRUE, fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##                                                   Used       Total
##   Number of observations                           262         263
## 
## Model Test User Model:
##                                                       
##   Test statistic                                29.704
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               298.419
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.923
##   Tucker-Lewis Index (TLI)                       0.856
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1460.483
##   Loglikelihood unrestricted model (H1)      -1445.631
##                                                       
##   Akaike (AIC)                                2946.966
##   Bayesian (BIC)                              2993.355
##   Sample-size adjusted Bayesian (SABIC)       2952.139
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.102
##   90 Percent confidence interval - lower         0.064
##   90 Percent confidence interval - upper         0.142
##   P-value H_0: RMSEA <= 0.050                    0.014
##   P-value H_0: RMSEA >= 0.080                    0.843
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.059
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_HAN =~                                                             
##     aa.fear           1.000                               0.707    0.719
##     aa.host           0.763    0.115    6.653    0.000    0.540    0.596
##     aa.nerv           0.819    0.121    6.778    0.000    0.579    0.642
##   i_HAN =~                                                              
##     i.fear2           1.000                               0.276    0.643
##     i.host2           0.782    0.133    5.881    0.000    0.216    0.504
##     i.nerv2           1.591    0.257    6.193    0.000    0.439    0.733
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_HAN ~~                                                             
##     i_HAN            -0.085    0.021   -4.076    0.000   -0.437   -0.437
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.fear           0.467    0.077    6.065    0.000    0.467    0.483
##    .aa.host           0.530    0.061    8.673    0.000    0.530    0.645
##    .aa.nerv           0.478    0.061    7.806    0.000    0.478    0.588
##    .i.fear2           0.108    0.015    7.318    0.000    0.108    0.587
##    .i.host2           0.136    0.014    9.661    0.000    0.136    0.746
##    .i.nerv2           0.166    0.032    5.226    0.000    0.166    0.462
##     aa_HAN            0.500    0.099    5.065    0.000    1.000    1.000
##     i_HAN             0.076    0.017    4.406    0.000    1.000    1.000

Now, we’ll look at modelCA fit indices to check what other “uninteresting” covariation paths we might need.

[Click for details]
modificationIndices(modelCA1.0, sort = TRUE, minimum.value = 5)
##        lhs op     rhs     mi    epc sepc.lv sepc.all sepc.nox
## 22 aa.fear ~~ aa.host 15.102  0.371   0.371    0.747    0.747
## 21   i_HAN =~ aa.nerv 15.102 -1.102  -0.304   -0.337   -0.337
## 33 aa.nerv ~~ i.nerv2  9.366 -0.077  -0.077   -0.275   -0.275
## 26 aa.fear ~~ i.nerv2  7.445  0.076   0.076    0.271    0.271
## 34 i.fear2 ~~ i.host2  5.663 -0.036  -0.036   -0.299   -0.299
## 18  aa_HAN =~ i.nerv2  5.662  0.204   0.144    0.241    0.241
## 30 aa.host ~~ i.nerv2  5.348  0.059   0.059    0.200    0.200
# modelCA 1.0a: modified based on top 2 modification indices [editing top 4 made the chi square non-significant]

CAsample_sem1.0a <- ' 

 # latent variables; paths = 6
    aa_HAN =~ aa.fear + aa.host + aa.nerv
    i_HAN =~ i.fear2 + i.host2 + i.nerv2
    
 # latent variable covariance; paths = 1
    i_HAN ~~ aa_HAN
    
  # item covariances
    aa.fear ~~  aa.host
    aa.nerv ~~  i.nerv2
    aa.fear ~~  i.nerv2
    i.fear2 ~~  i.host2
'
  
modelCA1.0a <- sem(CAsample_sem1.0a, data = dataCA)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
summary(modelCA1.0a, standardized = TRUE, fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 51 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        17
## 
##                                                   Used       Total
##   Number of observations                           262         263
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 4.962
##   Degrees of freedom                                 4
##   P-value (Chi-square)                           0.291
## 
## Model Test Baseline Model:
## 
##   Test statistic                               298.419
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997
##   Tucker-Lewis Index (TLI)                       0.987
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1448.112
##   Loglikelihood unrestricted model (H1)      -1445.631
##                                                       
##   Akaike (AIC)                                2930.224
##   Bayesian (BIC)                              2990.886
##   Sample-size adjusted Bayesian (SABIC)       2936.989
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.030
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.102
##   P-value H_0: RMSEA <= 0.050                    0.582
##   P-value H_0: RMSEA >= 0.080                    0.157
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.021
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_HAN =~                                                             
##     aa.fear           1.000                               0.584    0.594
##     aa.host           0.726    0.116    6.257    0.000    0.424    0.468
##     aa.nerv           1.155    0.260    4.450    0.000    0.675    0.748
##   i_HAN =~                                                              
##     i.fear2           1.000                               0.462    1.077
##     i.host2           0.826    0.134    6.177    0.000    0.382    0.892
##     i.nerv2           0.572    0.429    1.333    0.183    0.264    0.442
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_HAN ~~                                                             
##     i_HAN            -0.092    0.023   -4.002    0.000   -0.342   -0.342
##  .aa.fear ~~                                                            
##    .aa.host           0.172    0.067    2.574    0.010    0.172    0.272
##  .aa.nerv ~~                                                            
##    .i.nerv2          -0.112    0.045   -2.483    0.013   -0.112   -0.349
##  .aa.fear ~~                                                            
##    .i.nerv2          -0.019    0.037   -0.514    0.607   -0.019   -0.045
##  .i.fear2 ~~                                                            
##    .i.host2          -0.126    0.130   -0.968    0.333   -0.126   -3.792
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.fear           0.626    0.092    6.777    0.000    0.626    0.647
##    .aa.host           0.641    0.072    8.851    0.000    0.641    0.781
##    .aa.nerv           0.358    0.101    3.555    0.000    0.358    0.440
##    .i.fear2          -0.029    0.159   -0.186    0.853   -0.029   -0.160
##    .i.host2           0.037    0.110    0.339    0.735    0.037    0.204
##    .i.nerv2           0.289    0.057    5.049    0.000    0.289    0.805
##     aa_HAN            0.341    0.098    3.469    0.001    1.000    1.000
##     i_HAN             0.214    0.159    1.341    0.180    1.000    1.000

Adding the following four covariance paths:

  • aa.fear ~~ aa.host
  • aa.nerv ~~ i.nerv2
  • aa.fear ~~ i.nerv2
  • i.fear2 ~~ i.host2

Made the chi-square statistic non-significant. The change in latent variable composition (to load aa_nerv into i_HAN) was not added as the model could not be identified if so.

Hence, if we take it that we should model the two item covariance pathways (instead of just one), the final model (standardized coefficients) looks like this:

iLAN & aaLAN

  • modelCA2.0 = iLAN and aaLAN allowed to covary
  • modelCA2.1 = iLAN and aaLAN covariance set to 0
  • modelCA2.2 = iLAN and aaLAN covariance set to -1

From the three models estimated, the model with the estimated covariation between iLAN and aaLAN (modelCA2.0) fit the data best.

[Click for details]
summary(modelCA2.0, standardized = TRUE, fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##                                                   Used       Total
##   Number of observations                           261         263
## 
## Model Test User Model:
##                                                       
##   Test statistic                                28.896
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               270.064
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.918
##   Tucker-Lewis Index (TLI)                       0.846
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1415.558
##   Loglikelihood unrestricted model (H1)      -1401.110
##                                                       
##   Akaike (AIC)                                2857.116
##   Bayesian (BIC)                              2903.454
##   Sample-size adjusted Bayesian (SABIC)       2862.239
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.100
##   90 Percent confidence interval - lower         0.062
##   90 Percent confidence interval - upper         0.141
##   P-value H_0: RMSEA <= 0.050                    0.017
##   P-value H_0: RMSEA >= 0.080                    0.824
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.051
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_LAN =~                                                             
##     aa.slug           1.000                               0.757    0.819
##     aa.slee           0.740    0.099    7.512    0.000    0.560    0.592
##     aa.dull           0.866    0.109    7.934    0.000    0.656    0.703
##   i_LAN =~                                                              
##     i.slug2           1.000                               0.252    0.667
##     i.slee2           0.909    0.278    3.268    0.001    0.229    0.411
##     i.dull2           0.767    0.233    3.299    0.001    0.193    0.460
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_LAN ~~                                                             
##     i_LAN            -0.047    0.019   -2.471    0.013   -0.244   -0.244
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.slug           0.282    0.067    4.185    0.000    0.282    0.329
##    .aa.slee           0.582    0.062    9.421    0.000    0.582    0.650
##    .aa.dull           0.442    0.061    7.234    0.000    0.442    0.506
##    .i.slug2           0.079    0.020    3.950    0.000    0.079    0.554
##    .i.slee2           0.259    0.028    9.265    0.000    0.259    0.831
##    .i.dull2           0.139    0.017    8.344    0.000    0.139    0.788
##     aa_LAN            0.574    0.094    6.071    0.000    1.000    1.000
##     i_LAN             0.063    0.021    2.960    0.003    1.000    1.000

Now, we’ll look at model fit indices to check what other “uninteresting” covariation paths we might need.

[Click for details]
modificationIndices(modelCA2.0, sort = TRUE, minimum.value = 10)
##        lhs op     rhs    mi    epc sepc.lv sepc.all sepc.nox
## 29 aa.slee ~~ i.slee2 14.36 -0.102  -0.102   -0.262   -0.262
# modelCA 2.0a: modified based on top 3 modification indices [editing top 1 made the chi square non-significant]

CAsample_sem2.0a <- ' 

 # latent variables; paths = 6
    aa_LAN =~ aa.slug + aa.slee + aa.dull
    i_LAN =~ i.slug2 + i.slee2 + i.dull2
    
 # latent variable covariance; paths = 1
    i_LAN ~~ aa_LAN

  # item covariances
    aa.slee ~~  i.slee2
'
  
modelCA2.0a <- sem(CAsample_sem2.0a, data = dataCA)
summary(modelCA2.0a, standardized = TRUE, fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##                                                   Used       Total
##   Number of observations                           261         263
## 
## Model Test User Model:
##                                                       
##   Test statistic                                13.882
##   Degrees of freedom                                 7
##   P-value (Chi-square)                           0.053
## 
## Model Test Baseline Model:
## 
##   Test statistic                               270.064
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.973
##   Tucker-Lewis Index (TLI)                       0.942
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1408.051
##   Loglikelihood unrestricted model (H1)      -1401.110
##                                                       
##   Akaike (AIC)                                2844.102
##   Bayesian (BIC)                              2894.005
##   Sample-size adjusted Bayesian (SABIC)       2849.619
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.061
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.109
##   P-value H_0: RMSEA <= 0.050                    0.297
##   P-value H_0: RMSEA >= 0.080                    0.294
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.045
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_LAN =~                                                             
##     aa.slug           1.000                               0.761    0.822
##     aa.slee           0.749    0.097    7.737    0.000    0.570    0.598
##     aa.dull           0.861    0.107    8.082    0.000    0.655    0.702
##   i_LAN =~                                                              
##     i.slug2           1.000                               0.266    0.705
##     i.slee2           0.907    0.272    3.340    0.001    0.242    0.429
##     i.dull2           0.697    0.209    3.330    0.001    0.186    0.442
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa_LAN ~~                                                             
##     i_LAN            -0.042    0.019   -2.225    0.026   -0.209   -0.209
##  .aa.slee ~~                                                            
##    .i.slee2          -0.104    0.028   -3.737    0.000   -0.104   -0.267
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.slug           0.277    0.066    4.176    0.000    0.277    0.324
##    .aa.slee           0.583    0.062    9.390    0.000    0.583    0.642
##    .aa.dull           0.443    0.060    7.364    0.000    0.443    0.508
##    .i.slug2           0.072    0.021    3.334    0.001    0.072    0.502
##    .i.slee2           0.258    0.029    9.054    0.000    0.258    0.816
##    .i.dull2           0.142    0.016    8.817    0.000    0.142    0.805
##     aa_LAN            0.579    0.094    6.159    0.000    1.000    1.000
##     i_LAN             0.071    0.023    3.057    0.002    1.000    1.000

Adding the following covariance path:

  • aa.slee ~~ i.slee2

Made the chi-square statistic non-significant (CFI = 0.973, TLI = 0.942, RMSEA = 0.061, SRMR = 0.045).
Hence, the final modelCA (standardized coefficients) looks like this:

iLAN & iHAN & iNeg & aaLAN & aaHAN & aaNeg

When modelling the four quadrants and the two neutral valence affect, the model has 18*(18+1)/2 = 171 number of unique pieces of information.

  • modelCA3.0 = aa and ia allowed to covary
  • modelCA3.1 = aa and ia covariance set to 0
  • modelCA3.2 = aa and ia covariance set to -1

From the three modelCAs estimated, the model with the estimated covariation between aa and ia (modelCA3.0) fit the data best. Notably however, in modelCA3.0 and modelCA3.1, the variance of aa_HAN is negative.

[Click for details]
summary(modelCA3.0, standardized = TRUE, fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 67 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        43
## 
##                                                   Used       Total
##   Number of observations                           256         263
## 
## Model Test User Model:
##                                                       
##   Test statistic                               279.068
##   Degrees of freedom                               128
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1651.093
##   Degrees of freedom                               153
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.899
##   Tucker-Lewis Index (TLI)                       0.879
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3845.975
##   Loglikelihood unrestricted model (H1)      -3706.441
##                                                       
##   Akaike (AIC)                                7777.950
##   Bayesian (BIC)                              7930.392
##   Sample-size adjusted Bayesian (SABIC)       7794.070
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.068
##   90 Percent confidence interval - lower         0.057
##   90 Percent confidence interval - upper         0.079
##   P-value H_0: RMSEA <= 0.050                    0.004
##   P-value H_0: RMSEA >= 0.080                    0.033
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.059
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa =~                                                                 
##     aa_LAN            1.000                               0.859    0.859
##     aa_HAN            1.037    0.128    8.076    0.000    1.020    1.020
##     aa_NEG            1.007    0.110    9.128    0.000    0.840    0.840
##   aa_LAN =~                                                             
##     aa.slug           1.000                               0.694    0.770
##     aa.slee           0.763    0.093    8.177    0.000    0.529    0.569
##     aa.dull           0.924    0.093    9.981    0.000    0.641    0.708
##   aa_HAN =~                                                             
##     aa.fear           1.000                               0.606    0.625
##     aa.host           0.831    0.110    7.591    0.000    0.504    0.577
##     aa.nerv           0.974    0.115    8.471    0.000    0.590    0.665
##   aa_NEG =~                                                             
##     aa.sadx           1.000                               0.715    0.828
##     aa.lone           0.932    0.086   10.859    0.000    0.666    0.672
##     aa.unha           0.946    0.072   13.154    0.000    0.676    0.806
##   ia =~                                                                 
##     i_LAN             1.000                               0.873    0.873
##     i_HAN             1.129    0.166    6.803    0.000    0.900    0.900
##     i_NEG             1.778    0.234    7.586    0.000    0.970    0.970
##   i_LAN =~                                                              
##     i.slug2           1.000                               0.246    0.646
##     i.slee2           0.752    0.175    4.290    0.000    0.185    0.331
##     i.dull2           0.908    0.143    6.354    0.000    0.223    0.531
##   i_HAN =~                                                              
##     i.fear2           1.000                               0.269    0.630
##     i.host2           0.895    0.127    7.063    0.000    0.241    0.558
##     i.nerv2           1.589    0.191    8.339    0.000    0.428    0.713
##   i_NEG =~                                                              
##     i.sadx2           1.000                               0.393    0.778
##     i.lone2           0.790    0.081    9.774    0.000    0.311    0.670
##     i.unha2           0.622    0.072    8.619    0.000    0.245    0.589
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa ~~                                                                 
##     ia               -0.050    0.012   -4.180    0.000   -0.395   -0.395
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .aa.slug           0.331    0.046    7.232    0.000    0.331    0.407
##    .aa.slee           0.585    0.058   10.032    0.000    0.585    0.676
##    .aa.dull           0.408    0.048    8.532    0.000    0.408    0.499
##    .aa.fear           0.573    0.060    9.622    0.000    0.573    0.610
##    .aa.host           0.509    0.051   10.052    0.000    0.509    0.667
##    .aa.nerv           0.438    0.048    9.111    0.000    0.438    0.557
##    .aa.sadx           0.233    0.033    6.965    0.000    0.233    0.314
##    .aa.lone           0.537    0.055    9.731    0.000    0.537    0.548
##    .aa.unha           0.246    0.032    7.598    0.000    0.246    0.350
##    .i.slug2           0.084    0.011    7.523    0.000    0.084    0.583
##    .i.slee2           0.278    0.026   10.786    0.000    0.278    0.890
##    .i.dull2           0.127    0.013    9.478    0.000    0.127    0.718
##    .i.fear2           0.110    0.012    9.200    0.000    0.110    0.603
##    .i.host2           0.129    0.013    9.892    0.000    0.129    0.689
##    .i.nerv2           0.178    0.023    7.849    0.000    0.178    0.492
##    .i.sadx2           0.101    0.014    7.199    0.000    0.101    0.395
##    .i.lone2           0.119    0.013    9.226    0.000    0.119    0.551
##    .i.unha2           0.113    0.011    9.979    0.000    0.113    0.653
##     aa                0.356    0.065    5.468    0.000    1.000    1.000
##    .aa_LAN            0.126    0.040    3.168    0.002    0.262    0.262
##    .aa_HAN           -0.015    0.032   -0.463    0.643   -0.041   -0.041
##    .aa_NEG            0.150    0.036    4.142    0.000    0.294    0.294
##     ia                0.046    0.010    4.408    0.000    1.000    1.000
##    .i_LAN             0.014    0.008    1.701    0.089    0.237    0.237
##    .i_HAN             0.014    0.007    1.935    0.053    0.191    0.191
##    .i_NEG             0.009    0.014    0.656    0.512    0.059    0.059

Now, let’s see if modelling the individual covariances between avoided and ideal NEG, HAN and LAN significantly improves the fit.

  • modelCA3.0a = aa and ia allowed to covary, as well as iNEG & aaNEG, iHAN & aaHAN, iLAN & aaLAN.
[Click for details]
compareFit(modelCA3.0, modelCA3.0a) %>% summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##              Df    AIC    BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)    
## modelCA3.0a 125 7743.1 7906.1 238.19                                          
## modelCA3.0  128 7777.9 7930.4 279.07     40.882 0.22209       3  6.928e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##                chisq  df pvalue rmsea   cfi   tli  srmr       aic       bic
## modelCA3.0a 238.186† 125   .000 .059† .924† .908† .056† 7743.068† 7906.146†
## modelCA3.0  279.068  128   .000 .068  .899  .879  .059  7777.950  7930.392 
## 
## ################## Differences in Fit Indices #######################
##                          df rmsea    cfi    tli  srmr    aic    bic
## modelCA3.0 - modelCA3.0a  3 0.008 -0.025 -0.028 0.003 34.882 24.246

Comparing the two models, modelCA3.0a fits better (Δchi-square = 40.882, p < .001). The variance of aa_HAN is still negative, however. So we’ll see the modification indices for that. I used the modification indices in two different ways:

  • modelCA3.0b: editing the model based on all modification indices
  • modelCA3.0c: editing the model based on modification indices only for item covariances (no changes to latent)

However, ModelCA3.0c failed to identify before the fit was acceptable (based on chi squared statistics).

[Click for details]
modificationindices(modelCA3.0a, sort = TRUE, minimum.value = 8.6)
## Warning in lav_start_check_cov(lavpartable = lavpartable, start = START): lavaan WARNING: starting values imply a correlation larger than 1;
##                    variables involved are:  aa_NEG   i_NEG
## Warning in sqrt(var.lhs.value * var.rhs.value): NaNs produced
## Warning in lav_start_check_cov(lavpartable = lavpartable, start = START): lavaan WARNING: starting values imply NaN for a correlation value;
##                   variables involved are: aa_HAN i_HAN
##         lhs op     rhs     mi    epc sepc.lv sepc.all sepc.nox
## 341  aa_LAN ~~  aa_NEG 84.883 -2.515 -17.720  -17.720  -17.720
## 243 aa.host ~~ aa.nerv 46.368 -0.617  -0.617   -1.320   -1.320
## 350  aa_NEG ~~   i_LAN 40.959  0.099   2.285    2.285    2.285
## 356   i_LAN ~~   i_NEG 30.348 -0.259 -33.597  -33.597  -33.597
## 115  aa_NEG =~ i.sadx2 21.535 -0.201  -0.146   -0.287   -0.287
## 339      aa ~~   i_NEG 18.757 -0.100  -2.348   -2.348   -2.348
## 70       aa =~ i.sadx2 18.057 -0.242  -0.146   -0.285   -0.285
## 276 aa.sadx ~~ i.sadx2 16.051 -0.059  -0.059   -0.391   -0.391
## 297 aa.unha ~~ i.unha2 15.531 -0.052  -0.052   -0.306   -0.306
## 344  aa_LAN ~~   i_NEG 15.491  0.094   3.745    3.745    3.745
## 206 aa.slee ~~ i.slee2 15.459 -0.107  -0.107   -0.264   -0.264
## 269 aa.sadx ~~ aa.unha 15.044  0.162   0.162    0.679    0.679
## 319 i.fear2 ~~ i.host2 13.689 -0.077  -0.077   -0.646   -0.646
## 127      ia =~ i.slug2 12.460 -2.422  -0.528   -1.389   -1.389
## 109  aa_NEG =~ i.slug2 12.061  0.117   0.085    0.224    0.224
## 77   aa_LAN =~ aa.lone 11.025  0.469   0.328    0.331    0.331
## 217 aa.dull ~~ aa.sadx 10.909 -0.091  -0.091   -0.306   -0.306
## 349  aa_NEG ~~      ia 10.872 -0.046  -0.533   -0.533   -0.533
## 85   aa_LAN =~ i.sadx2 10.561 -0.148  -0.103   -0.203   -0.203
## 128      ia =~ i.slee2  9.999 -2.052  -0.447   -0.801   -0.801
## 304 i.slug2 ~~ i.lone2  9.927  0.027   0.027    0.267    0.267
## 62       aa =~ aa.lone  9.830  0.790   0.474    0.479    0.479
## 218 aa.dull ~~ aa.lone  9.784  0.112   0.112    0.238    0.238
## 340  aa_LAN ~~  aa_HAN  9.093  0.162   0.454    0.454    0.454
## 345  aa_HAN ~~  aa_NEG  8.902  0.164   0.411    0.411    0.411
## 332 i.sadx2 ~~ i.unha2  8.695  0.033   0.033    0.312    0.312
CAsample_sem3.0b <- ' 

 # latent variables; paths = 24
  aa =~ aa_LAN + aa_HAN + aa_NEG + i.sadx2 + aa.lone # NOTE
    aa_LAN =~ aa.slug + aa.slee + aa.dull + aa.lone + i.sadx2 # NOTE
    aa_HAN =~ aa.fear + aa.host + aa.nerv
    aa_NEG =~ aa.sadx + aa.lone + aa.unha + i.sadx2 + i.slug2 # NOTE
  ia =~ i_LAN + i_HAN + i_NEG + i.slug2 + i.slee2
    i_LAN =~ i.slug2 + i.slee2 + i.dull2
    i_HAN =~ i.fear2 + i.host2 + i.nerv2
    i_NEG =~ i.sadx2 + i.lone2 + i.unha2
    
 # latent variable covariance; paths = 4
 aa ~~ ia
   aa_NEG ~~ i_NEG
   aa_HAN ~~ i_HAN
   aa_LAN ~~ i_LAN

# item and latent variable covariances
  aa_LAN    ~~  aa_NEG
  aa.host   ~~  aa.nerv
  aa_NEG    ~~  i_LAN
  i_LAN ~~  i_NEG
  aa    ~~  i_NEG
  aa.sadx   ~~  i.sadx2
  aa.unha   ~~  i.unha2
  aa_LAN    ~~  i_NEG
  aa.slee   ~~  i.slee2
  aa.sadx   ~~  aa.unha
  i.fear2   ~~  i.host2
    aa.dull ~~  aa.sadx
  aa_NEG    ~~  ia
  i.slug2   ~~  i.lone2
  aa.dull   ~~  aa.lone
  aa_LAN    ~~  aa_HAN
  aa_HAN    ~~  aa_NEG
  i.sadx2   ~~  i.unha2
'

  modelCA3.0b <- sem(CAsample_sem3.0b, data = dataCA)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
  summary(modelCA3.0b, standardized = TRUE, fit.measure = TRUE)
## lavaan 0.6.15 ended normally after 297 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        72
## 
##                                                   Used       Total
##   Number of observations                           256         263
## 
## Model Test User Model:
##                                                       
##   Test statistic                               121.839
##   Degrees of freedom                                99
##   P-value (Chi-square)                           0.059
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1651.093
##   Degrees of freedom                               153
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.985
##   Tucker-Lewis Index (TLI)                       0.976
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3767.361
##   Loglikelihood unrestricted model (H1)      -3706.441
##                                                       
##   Akaike (AIC)                                7678.721
##   Bayesian (BIC)                              7933.974
##   Sample-size adjusted Bayesian (SABIC)       7705.715
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.030
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.047
##   P-value H_0: RMSEA <= 0.050                    0.979
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.039
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa =~                                                                 
##     aa_LAN            1.000                               0.319    0.319
##     aa_HAN            0.704    0.224    3.147    0.002    0.251    0.251
##     aa_NEG            0.858    0.518    1.655    0.098    0.291    0.291
##     i.sadx2           3.578    6.977    0.513    0.608    0.784    1.554
##     aa.lone           0.211    0.257    0.822    0.411    0.046    0.047
##   aa_LAN =~                                                             
##     aa.slug           1.000                               0.687    0.763
##     aa.slee           0.773    0.093    8.337    0.000    0.531    0.568
##     aa.dull           0.938    0.093   10.064    0.000    0.645    0.714
##     aa.lone           0.061    0.233    0.263    0.792    0.042    0.043
##     i.sadx2          -0.750    1.321   -0.567    0.570   -0.515   -1.021
##   aa_HAN =~                                                             
##     aa.fear           1.000                               0.616    0.635
##     aa.host           0.892    0.111    8.065    0.000    0.549    0.629
##     aa.nerv           1.021    0.115    8.867    0.000    0.628    0.709
##   aa_NEG =~                                                             
##     aa.sadx           1.000                               0.646    0.751
##     aa.lone           1.008    0.249    4.040    0.000    0.651    0.659
##     aa.unha           0.914    0.070   13.150    0.000    0.591    0.708
##     i.sadx2           0.712    1.283    0.555    0.579    0.460    0.912
##     i.slug2           0.040    0.043    0.936    0.349    0.026    0.069
##   ia =~                                                                 
##     i_LAN             1.000                               0.988    0.988
##     i_HAN             0.315    0.301    1.045    0.296    0.792    0.792
##     i_NEG             1.998    3.290    0.607    0.544    1.111    1.111
##     i.slug2          -0.641    0.343   -1.867    0.062   -0.440   -1.156
##     i.slee2          -1.276    0.675   -1.890    0.059   -0.875   -1.556
##   i_LAN =~                                                              
##     i.slug2           1.000                               0.694    1.825
##     i.slee2           1.552    0.651    2.385    0.017    1.077    1.916
##     i.dull2           0.302    0.299    1.012    0.312    0.210    0.499
##   i_HAN =~                                                              
##     i.fear2           1.000                               0.273    0.637
##     i.host2           0.986    0.135    7.293    0.000    0.269    0.622
##     i.nerv2           1.550    0.183    8.459    0.000    0.422    0.703
##   i_NEG =~                                                              
##     i.sadx2           1.000                               1.233    2.443
##     i.lone2           0.254    0.347    0.731    0.465    0.313    0.674
##     i.unha2           0.181    0.248    0.728    0.467    0.223    0.535
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   aa ~~                                                                 
##     ia               -0.192    0.187   -1.030    0.303   -1.282   -1.282
##  .aa_NEG ~~                                                             
##    .i_NEG            -0.091    0.147   -0.616    0.538   -0.246   -0.246
##  .aa_HAN ~~                                                             
##    .i_HAN            -0.036    0.012   -2.854    0.004   -0.359   -0.359
##  .aa_LAN ~~                                                             
##    .i_LAN             0.014    0.015    0.920    0.358    0.201    0.201
##    .aa_NEG            0.309    0.053    5.852    0.000    0.766    0.766
##  .aa.host ~~                                                            
##    .aa.nerv          -0.106    0.037   -2.864    0.004   -0.106   -0.250
##  .aa_NEG ~~                                                             
##    .i_LAN             0.025    0.016    1.587    0.112    0.373    0.373
##  .i_LAN ~~                                                              
##    .i_NEG            -0.036    0.021   -1.749    0.080   -0.558   -0.558
##   aa ~~                                                                 
##    .i_NEG             0.106    0.121    0.871    0.384    0.809    0.809
##  .i.sadx2 ~~                                                            
##    .aa.sadx          -0.049    0.017   -2.925    0.003   -0.049   -0.189
##  .aa.unha ~~                                                            
##    .i.unha2          -0.037    0.014   -2.680    0.007   -0.037   -0.177
##  .aa_LAN ~~                                                             
##    .i_NEG             0.104    0.152    0.685    0.494    0.269    0.269
##  .aa.slee ~~                                                            
##    .i.slee2          -0.106    0.028   -3.818    0.000   -0.106   -0.276
##  .aa.sadx ~~                                                            
##    .aa.unha           0.118    0.039    3.058    0.002    0.118    0.352
##  .i.fear2 ~~                                                            
##    .i.host2          -0.021    0.009   -2.312    0.021   -0.021   -0.186
##  .aa.dull ~~                                                            
##    .aa.sadx          -0.052    0.025   -2.092    0.036   -0.052   -0.145
##  .aa_NEG ~~                                                             
##     ia                0.020    0.092    0.221    0.825    0.048    0.048
##  .i.slug2 ~~                                                            
##    .i.lone2           0.009    0.010    0.880    0.379    0.009    0.091
##  .aa.lone ~~                                                            
##    .aa.dull           0.046    0.038    1.236    0.216    0.046    0.105
##  .aa_LAN ~~                                                             
##    .aa_HAN            0.318    0.055    5.791    0.000    0.820    0.820
##  .aa_HAN ~~                                                             
##    .aa_NEG            0.321    0.051    6.347    0.000    0.872    0.872
##  .i.sadx2 ~~                                                            
##    .i.unha2           0.027    0.010    2.607    0.009    0.027    0.170
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .i.sadx2           0.210    0.450    0.466    0.641    0.210    0.824
##    .aa.lone           0.487    0.057    8.509    0.000    0.487    0.498
##    .aa.slug           0.338    0.045    7.525    0.000    0.338    0.417
##    .aa.slee           0.591    0.058   10.102    0.000    0.591    0.677
##    .aa.dull           0.399    0.047    8.452    0.000    0.399    0.490
##    .aa.fear           0.560    0.056    9.923    0.000    0.560    0.596
##    .aa.host           0.460    0.050    9.140    0.000    0.460    0.604
##    .aa.nerv           0.391    0.048    8.067    0.000    0.391    0.497
##    .aa.sadx           0.322    0.047    6.870    0.000    0.322    0.435
##    .aa.unha           0.348    0.045    7.683    0.000    0.348    0.499
##    .i.slug2           0.074    0.013    5.550    0.000    0.074    0.510
##    .i.slee2           0.252    0.030    8.372    0.000    0.252    0.796
##    .i.dull2           0.133    0.013   10.171    0.000    0.133    0.751
##    .i.fear2           0.109    0.012    8.946    0.000    0.109    0.594
##    .i.host2           0.114    0.013    9.104    0.000    0.114    0.613
##    .i.nerv2           0.183    0.021    8.708    0.000    0.183    0.506
##    .i.lone2           0.118    0.016    7.461    0.000    0.118    0.546
##    .i.unha2           0.124    0.013    9.843    0.000    0.124    0.713
##     aa                0.048    0.045    1.072    0.284    1.000    1.000
##    .aa_LAN            0.424    0.078    5.462    0.000    0.898    0.898
##    .aa_HAN            0.355    0.071    5.034    0.000    0.937    0.937
##    .aa_NEG            0.382    0.076    5.003    0.000    0.915    0.915
##     ia                0.470    0.908    0.517    0.605    1.000    1.000
##    .i_LAN             0.012    0.011    1.040    0.298    0.025    0.025
##    .i_HAN             0.028    0.010    2.746    0.006    0.373    0.373
##    .i_NEG            -0.356    0.826   -0.431    0.666   -0.234   -0.234
compareFit(modelCA3.0a, modelCA3.0b) %>% summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##              Df    AIC    BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)    
## modelCA3.0b  99 7678.7 7934.0 121.84                                          
## modelCA3.0a 125 7743.1 7906.1 238.19     116.35 0.11651      26  2.138e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##                chisq  df pvalue rmsea   cfi   tli  srmr       aic       bic
## modelCA3.0b 121.839†  99   .059 .030† .985† .976† .039† 7678.721† 7933.974 
## modelCA3.0a 238.186  125   .000 .059  .924  .908  .056  7743.068  7906.146†
## 
## ################## Differences in Fit Indices #######################
##                           df rmsea   cfi    tli  srmr    aic     bic
## modelCA3.0a - modelCA3.0b 26 0.029 -0.06 -0.069 0.017 64.347 -27.828

modelCA3.0b was significantly better than the original model (model3.0a; Δchi-square = 109.97, p < .001). Hence, we’ll be using that model. However, as you will notice from the plot, the magnitude of the correlation between the two latent variables were estimated to be greater than 1… Here is the model, diagrammatically:

Looking at only the latent variables:

Now, we examine to see if the one factor modelCA (whereby the covariance between aa and ia are set to -1) or the two factor modelCA (as above) fits the data better.

Surprisingly (or not, given that the freely estimated correlation waas greater than 1), based on the results, the one factor modelCA fit better (Δchi-square = -4.9924, p < .001).

[Click for details]
compareFit(modelCA3.0b, modelCA3.0b1) %>% summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##               Df    AIC    BIC  Chisq Chisq diff    RMSEA Df diff Pr(>Chisq)
## modelCA3.0b   99 7678.7 7934.0 121.84                                       
## modelCA3.0b1 100 7678.1 7929.8 123.22     1.3828 0.038671       1     0.2396
## 
## ####################### Model Fit Indices ###########################
##                 chisq  df pvalue rmsea   cfi   tli  srmr       aic       bic
## modelCA3.0b  121.839†  99   .059 .030† .985† .976† .039† 7678.721  7933.974 
## modelCA3.0b1 123.222  100   .057 .030  .984  .976  .039  7678.104† 7929.812†
## 
## ################## Differences in Fit Indices #######################
##                            df rmsea cfi tli  srmr    aic    bic
## modelCA3.0b1 - modelCA3.0b  1     0   0   0 0.001 -0.617 -4.162

Hence, here is the one-factor model, diagrammatically:

Looking at only the latent variables: