#package

library("tidyverse")
library("irr")

#df

#normalidad

shapiro.test(df$Puntaje) # presenta distribución no parametrica

    Shapiro-Wilk normality test

data:  df$Puntaje
W = 0.57158, p-value < 2.2e-16

#diferencia entre tiempos

wilcox.test(df$Tiempo.min.~df$Tipo.sistema)

    Wilcoxon rank sum test with continuity correction

data:  df$Tiempo.min. by df$Tipo.sistema
W = 316162, p-value = 0.07199
alternative hypothesis: true location shift is not equal to 0

#abro df para realizar análisis según parametros

df2 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRUEklsVX0xAs9IIKJmE9ZOwxk77dLwhQhsTFNqrMUBCUjrtHSkYWfWCt1tQiaTDA/pub?gid=1278946760&single=true&output=csv")

#diferencias entre sistema y nitidez/definición

wilcox.test(df2$Puntaje1~df2$Tipo_sistema)

    Wilcoxon rank sum test with continuity correction

data:  df2$Puntaje1 by df2$Tipo_sistema
W = 11990, p-value = 0.9512
alternative hypothesis: true location shift is not equal to 0

#diferencias entre sistema y brillo/contraste

wilcox.test(df2$Puntaje2~df2$Tipo_sistema)

    Wilcoxon rank sum test with continuity correction

data:  df2$Puntaje2 by df2$Tipo_sistema
W = 11453, p-value = 0.1732
alternative hypothesis: true location shift is not equal to 0

#diferencias entre sistema y error de colocación

wilcox.test(df2$Puntaje3~df2$Tipo_sistema)

    Wilcoxon rank sum test with continuity correction

data:  df2$Puntaje3 by df2$Tipo_sistema
W = 8468, p-value = 1.682e-06
alternative hypothesis: true location shift is not equal to 0

#diferencias entre sistema y error de angulación

wilcox.test(df2$Puntaje4~df2$Tipo_sistema)

    Wilcoxon rank sum test with continuity correction

data:  df2$Puntaje4 by df2$Tipo_sistema
W = 12586, p-value = 0.3104
alternative hypothesis: true location shift is not equal to 0

#diferencias entre sistema y error de corte de cono

wilcox.test(df2$Puntaje5~df2$Tipo_sistema)

    Wilcoxon rank sum test with continuity correction

data:  df2$Puntaje5 by df2$Tipo_sistema
W = 12370, p-value = 0.4956
alternative hypothesis: true location shift is not equal to 0

#Kappa

df2 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRUEklsVX0xAs9IIKJmE9ZOwxk77dLwhQhsTFNqrMUBCUjrtHSkYWfWCt1tQiaTDA/pub?gid=81972993&single=true&output=csv")

#kappa (inter)

kappam.fleiss(df2, detail=TRUE)
 Fleiss' Kappa for m Raters

 Subjects = 50 
   Raters = 2 
    Kappa = 0.831 

        z = 6.25 
  p-value = 4.04e-10 

  Kappa     z p.value
0 1.000 7.071   0.000
1 0.822 5.811   0.000
2 0.826 5.843   0.000

#kappa (intra-observador)

df3 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRUEklsVX0xAs9IIKJmE9ZOwxk77dLwhQhsTFNqrMUBCUjrtHSkYWfWCt1tQiaTDA/pub?gid=1840162596&single=true&output=csv")

#kappa intra-observador

kappam.fleiss(df3, detail=TRUE) #kappa intra-observador 
 Fleiss' Kappa for m Raters

 Subjects = 50 
   Raters = 2 
    Kappa = 0.878 

        z = 6.78 
  p-value = 1.2e-11 

  Kappa     z p.value
0 0.656 4.641   0.000
1 0.868 6.139   0.000
2 0.915 6.471   0.000
LS0tCnRpdGxlOiAiMjAyM19DQUxJREFEIFkgUFJFQ0lTScOTTiBERSBJTcOBR0VORVMgUkFESU9HUsOBRklDQVMgT0JURU5JREFTIFBPUiBFU1RVRElBTlRFUyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojcGFja2FnZQpgYGB7cn0KbGlicmFyeSgidGlkeXZlcnNlIikKbGlicmFyeSgiaXJyIikKYGBgCiNkZgpgYGB7cn0KZGYgPC0gcmVhZC5jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZSVUVrbHNWWDB4QXM5SUlLSm1FOVpPd3hrNzdkTHdoUWhzVEZOcXJNVUJDVWpydEhTa1lXZldDdDF0UWlhVERBL3B1Yj9naWQ9MTE1NzU1OTUzMiZzaW5nbGU9dHJ1ZSZvdXRwdXQ9Y3N2IikKYGBgCiNub3JtYWxpZGFkCmBgYHtyfQpzaGFwaXJvLnRlc3QoZGYkUHVudGFqZSkgIyBwcmVzZW50YSBkaXN0cmlidWNpw7NuIG5vIHBhcmFtZXRyaWNhCmBgYAojZGlmZXJlbmNpYSBlbnRyZSB0aWVtcG9zCmBgYHtyfQp3aWxjb3gudGVzdChkZiRUaWVtcG8ubWluLn5kZiRUaXBvLnNpc3RlbWEpICNObyBleGlzdGVuIGRpZmVyZW5jaWFzIGVudHJlIHNpc3RlbWFzIGFsIGV2YWx1YXIgbG9zIHRpZW1wb3MKYGBgCiNhYnJvIGRmIHBhcmEgcmVhbGl6YXIgYW7DoWxpc2lzIHNlZ8O6biBwYXJhbWV0cm9zIApgYGB7cn0KZGYyIDwtIHJlYWRfY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2UlVFa2xzVlgweEFzOUlJS0ptRTlaT3d4azc3ZEx3aFFoc1RGTnFyTVVCQ1VqcnRIU2tZV2ZXQ3QxdFFpYVREQS9wdWI/Z2lkPTEyNzg5NDY3NjAmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojZGlmZXJlbmNpYXMgZW50cmUgc2lzdGVtYSB5IG5pdGlkZXovZGVmaW5pY2nDs24KYGBge3J9CndpbGNveC50ZXN0KGRmMiRQdW50YWplMX5kZjIkVGlwb19zaXN0ZW1hKQpgYGAKI2RpZmVyZW5jaWFzIGVudHJlIHNpc3RlbWEgeSBicmlsbG8vY29udHJhc3RlCmBgYHtyfQp3aWxjb3gudGVzdChkZjIkUHVudGFqZTJ+ZGYyJFRpcG9fc2lzdGVtYSkKYGBgCiNkaWZlcmVuY2lhcyBlbnRyZSBzaXN0ZW1hIHkgZXJyb3IgZGUgY29sb2NhY2nDs24KYGBge3J9CndpbGNveC50ZXN0KGRmMiRQdW50YWplM35kZjIkVGlwb19zaXN0ZW1hKQpgYGAKI2RpZmVyZW5jaWFzIGVudHJlIHNpc3RlbWEgeSBlcnJvciBkZSBhbmd1bGFjacOzbgpgYGB7cn0Kd2lsY294LnRlc3QoZGYyJFB1bnRhamU0fmRmMiRUaXBvX3Npc3RlbWEpCmBgYAojZGlmZXJlbmNpYXMgZW50cmUgc2lzdGVtYSB5IGVycm9yIGRlIGNvcnRlIGRlIGNvbm8KYGBge3J9CndpbGNveC50ZXN0KGRmMiRQdW50YWplNX5kZjIkVGlwb19zaXN0ZW1hKQpgYGAKI0thcHBhCmBgYHtyfQpkZjIgPC0gcmVhZF9jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZSVUVrbHNWWDB4QXM5SUlLSm1FOVpPd3hrNzdkTHdoUWhzVEZOcXJNVUJDVWpydEhTa1lXZldDdDF0UWlhVERBL3B1Yj9naWQ9ODE5NzI5OTMmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAoja2FwcGEgKGludGVyKQpgYGB7cn0Ka2FwcGFtLmZsZWlzcyhkZjIsIGRldGFpbD1UUlVFKSAja2FwcGEgaW50cmEtb2JzZXJ2YWRvciAKYGBgCiNrYXBwYSAoaW50cmEtb2JzZXJ2YWRvcikKYGBge3J9CmRmMyA8LSByZWFkX2NzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlJVRWtsc1ZYMHhBczlJSUtKbUU5Wk93eGs3N2RMd2hRaHNURk5xck1VQkNVanJ0SFNrWVdmV0N0MXRRaWFUREEvcHViP2dpZD0xODQwMTYyNTk2JnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKI2thcHBhIGludHJhLW9ic2VydmFkb3IKYGBge3J9CmthcHBhbS5mbGVpc3MoZGYzLCBkZXRhaWw9VFJVRSkKYGBgCgo=