packages

##
library(ggbreak)
library(scales)
library(tidyverse)
library(googlesheets4)
library(googledrive)
library(plotly)
library(lme4)
library(fitdistrplus)
library(goft)
library(data.table)

Data

ss= "https://docs.google.com/spreadsheets/d/1dr6LCQJevHdeS08zrdkbeONfhxU7etsojqVvBU7ryfs/edit?usp=sharing"
hoja = 1
rango = "A1:N193"

Descriptive

Proportion of infested pigs

##   infested  n
## 1       Si 47
## 2       No 70

Number of “quistes”

Types of ‘quistes’

Associations

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Generalized Logistic Model

mod <- glm(data=df,
           fertile.bin ~ size_cm * Sexo , family = "binomial")
summary(mod) # No interaction
## 
## Call:
## glm(formula = fertile.bin ~ size_cm * Sexo, family = "binomial", 
##     data = df)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -2.941051   0.789402  -3.726 0.000195 ***
## size_cm            0.431272   0.390205   1.105 0.269054    
## SexoMacho          1.275366   0.892428   1.429 0.152976    
## size_cm:SexoMacho -0.001491   0.429234  -0.003 0.997228    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 213.71  on 191  degrees of freedom
## Residual deviance: 194.76  on 188  degrees of freedom
## AIC: 202.76
## 
## Number of Fisher Scoring iterations: 5
#
mod <- glm(data=df,
           fertile.bin ~ Sexo , family = "binomial")
summary(mod) # Sex association
## 
## Call:
## glm(formula = fertile.bin ~ Sexo, family = "binomial", data = df)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.3224     0.4685  -4.957 7.16e-07 ***
## SexoMacho     1.5168     0.5039   3.010  0.00261 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 213.71  on 191  degrees of freedom
## Residual deviance: 201.84  on 190  degrees of freedom
## AIC: 205.84
## 
## Number of Fisher Scoring iterations: 4
##
mod <- glm(data=df,
           fertile.bin ~ size_cm + Sexo , family = "binomial")
summary(mod)
## 
## Call:
## glm(formula = fertile.bin ~ size_cm + Sexo, family = "binomial", 
##     data = df)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.9391     0.5424  -5.418 6.02e-08 ***
## size_cm       0.4300     0.1626   2.645  0.00817 ** 
## SexoMacho     1.2728     0.5165   2.464  0.01373 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 213.71  on 191  degrees of freedom
## Residual deviance: 194.76  on 189  degrees of freedom
## AIC: 200.76
## 
## Number of Fisher Scoring iterations: 5

Generalized Logistic Mixed Model

## Justifying Random effects inclution (Baseline glm  Vs. baseine mixed-model )
m0.glm <- glm(data= df,
             fertile.bin ~ 1, family = "binomial")
m0.glmer <- glmer(data=df,
           fertile.bin ~ (1|code), family = "binomial")
##
aic.glmer <- AIC(logLik(m0.glmer))
aic.glm <- AIC(logLik(m0.glm))
aic.glmer ; aic.glm
## [1] 160.6177
## [1] 215.7116
#
null.id = -2 * logLik(m0.glm) + 2 * logLik(m0.glmer)
pchisq(as.numeric(null.id), df=1, lower.tail = FALSE)
## [1] 4.155105e-14
  • Se justifica el uso del efecto aleatorio (cerdo), ya que el AIC del modelo basal (nulo) con el efecto elatorio es menor (P< 0.001) que sin dicho efecto aleatorio. *
### SEX 
mod <- glmer(data=df,
           fertile.bin ~ (1|code) + Sexo, family = "binomial") # "Pig" as `random effect`
summary(mod)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: fertile.bin ~ (1 | code) + Sexo
##    Data: df
## 
##      AIC      BIC   logLik deviance df.resid 
##    162.1    171.9    -78.0    156.1      189 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1186 -0.2690 -0.1283 -0.1030  3.7174 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  code   (Intercept) 5.794    2.407   
## Number of obs: 192, groups:  code, 39
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  -4.1193     1.3264  -3.106   0.0019 **
## SexoMacho     0.8578     1.1719   0.732   0.4642   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr)
## SexoMacho -0.561
## Size-CM
mod <- glmer(data=df,
           fertile.bin ~ (1|code) + size_cm , family = "binomial") # "Pig" as `random effect`
summary(mod)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: fertile.bin ~ (1 | code) + size_cm
##    Data: df
## 
##      AIC      BIC   logLik deviance df.resid 
##    158.3    168.1    -76.2    152.3      189 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3304 -0.2820 -0.1102 -0.0700  3.1833 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  code   (Intercept) 6.386    2.527   
## Number of obs: 192, groups:  code, 39
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -4.8529     1.3814  -3.513 0.000443 ***
## size_cm       0.6644     0.3358   1.979 0.047857 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##         (Intr)
## size_cm -0.592
## `geom_smooth()` using formula = 'y ~ x'

Generalized Linear Model: GROUP comparison

mod <- glmer(data=df,
          size_cm  ~ as.factor(fertile.bin) + (1|code) , family = "Gamma")
summary(mod) 
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Gamma  ( inverse )
## Formula: size_cm ~ as.factor(fertile.bin) + (1 | code)
##    Data: df
## 
##      AIC      BIC   logLik deviance df.resid 
##    385.6    398.6   -188.8    377.6      188 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.25221 -0.45171 -0.01108  0.42757  2.48162 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  code     (Intercept) 0.1289   0.3590  
##  Residual             0.1656   0.4069  
## Number of obs: 192, groups:  code, 39
## 
## Fixed effects:
##                         Estimate Std. Error t value Pr(>|z|)    
## (Intercept)              1.14513    0.13502   8.481   <2e-16 ***
## as.factor(fertile.bin)1 -0.04955    0.03756  -1.319    0.187    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## as.fctr(.)1 -0.010
#
mod <- glmer(data=df,
           size_cm ~ Sexo  + (1|code), family = "Gamma")
summary(mod) # Sex association
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Gamma  ( inverse )
## Formula: size_cm ~ Sexo + (1 | code)
##    Data: df
## 
##      AIC      BIC   logLik deviance df.resid 
##    387.3    400.3   -189.6    379.3      188 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.24258 -0.47387 -0.03492  0.39087  2.75095 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  code     (Intercept) 0.1303   0.3609  
##  Residual             0.1671   0.4088  
## Number of obs: 192, groups:  code, 39
## 
## Fixed effects:
##             Estimate Std. Error t value Pr(>|z|)    
## (Intercept)  1.16202    0.18130   6.409 1.46e-10 ***
## SexoMacho   -0.04097    0.22134  -0.185    0.853    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr)
## SexoMacho -0.666