Una empresa de telefonía local, constantemente evalua la satisfacción de sus cliente cuando visitan el CAC (Centro de atención al cliente). La compañia registra datos de :
La compañia registra datos de :
El género del cliente
La sucursal donde fue atendido
Numero de reclamos hasta la fecha
Numero de llamada que ha realizado al CAC
Edad
Minutos consumidos de su plan
Monto de pago del cliente
Tiempo de espera el cliente hasta ser atendido en el CAC
Opinion frente a la atencion
# Carga de datos
telefonia<- read.csv("https://raw.githubusercontent.com/VictorGuevaraP/Estadistica-R/master/Caso_telefon%C3%ADa.csv",
encoding = "latin1", sep = ";", stringsAsFactors = T)
# Mostrar datos
head(telefonia)
## Código Género Sucursal Reclamos Llamadas Edad Minutos Monto Tiempo
## 1 CLIPE1 Masculino Suc. Este 5 7 27 33.0 90.7 16.9
## 2 CLIPE2 Femenino Suc. Este 2 4 28 31.7 95.7 1.5
## 3 CLIPE3 Masculino Suc. Este 5 7 28 39.9 114.5 4.0
## 4 CLIPE4 Masculino Suc. Este 3 5 21 39.3 106.0 14.5
## 5 CLIPE5 Femenino Suc. Este 2 3 29 37.8 99.0 2.7
## 6 CLIPE6 Masculino Suc. Este 3 4 26 43.7 90.2 11.5
## Opinión
## 1 Regular
## 2 Bueno
## 3 Pésimo
## 4 Muy Bueno
## 5 Pésimo
## 6 Bueno
# Original
hist(telefonia$Reclamos, 12)
Para sacar la raiz cuadrada, simplemente se puede utilizar la función sqrt
sqrt(telefonia$Reclamos)
## [1] 2.236068 1.414214 2.236068 1.732051 1.414214 1.732051 2.449490 1.414214
## [9] 1.732051 1.000000 1.732051 1.732051 1.414214 1.000000 2.000000 1.732051
## [17] 1.732051 2.000000 2.000000 1.000000 1.732051 1.000000 2.645751 1.732051
## [25] 1.732051 1.414214 2.000000 2.236068 1.000000 2.236068 1.414214 1.732051
## [33] 1.732051 2.000000 1.000000 1.414214 1.414214 1.000000 2.000000 2.000000
## [41] 1.732051 1.000000 1.732051 1.000000 1.414214 2.645751 1.732051 2.236068
## [49] 1.732051 2.645751 2.828427 2.236068 2.828427 2.000000 2.000000 1.732051
## [57] 2.645751 2.236068 1.414214 1.732051 2.828427 2.000000 2.828427 3.316625
## [65] 2.236068 2.000000 3.000000 2.828427 1.732051 1.414214 1.000000 1.000000
## [73] 1.732051 2.000000 1.414214 1.000000 1.414214 1.732051 1.414214 1.414214
Gráfico
hist(sqrt(telefonia$Reclamos))
exp(telefonia$Reclamos)
## [1] 148.413159 7.389056 148.413159 20.085537 7.389056
## [6] 20.085537 403.428793 7.389056 20.085537 2.718282
## [11] 20.085537 20.085537 7.389056 2.718282 54.598150
## [16] 20.085537 20.085537 54.598150 54.598150 2.718282
## [21] 20.085537 2.718282 1096.633158 20.085537 20.085537
## [26] 7.389056 54.598150 148.413159 2.718282 148.413159
## [31] 7.389056 20.085537 20.085537 54.598150 2.718282
## [36] 7.389056 7.389056 2.718282 54.598150 54.598150
## [41] 20.085537 2.718282 20.085537 2.718282 7.389056
## [46] 1096.633158 20.085537 148.413159 20.085537 1096.633158
## [51] 2980.957987 148.413159 2980.957987 54.598150 54.598150
## [56] 20.085537 1096.633158 148.413159 7.389056 20.085537
## [61] 2980.957987 54.598150 2980.957987 59874.141715 148.413159
## [66] 54.598150 8103.083928 2980.957987 20.085537 7.389056
## [71] 2.718282 2.718282 20.085537 54.598150 7.389056
## [76] 2.718282 7.389056 20.085537 7.389056 7.389056
Gráfico
hist(exp(telefonia$Reclamos))
Forma 2
reclamos_exp<- exp(telefonia$Reclamos)
hist(reclamos_exp)
log(telefonia$Reclamos)
## [1] 1.6094379 0.6931472 1.6094379 1.0986123 0.6931472 1.0986123 1.7917595
## [8] 0.6931472 1.0986123 0.0000000 1.0986123 1.0986123 0.6931472 0.0000000
## [15] 1.3862944 1.0986123 1.0986123 1.3862944 1.3862944 0.0000000 1.0986123
## [22] 0.0000000 1.9459101 1.0986123 1.0986123 0.6931472 1.3862944 1.6094379
## [29] 0.0000000 1.6094379 0.6931472 1.0986123 1.0986123 1.3862944 0.0000000
## [36] 0.6931472 0.6931472 0.0000000 1.3862944 1.3862944 1.0986123 0.0000000
## [43] 1.0986123 0.0000000 0.6931472 1.9459101 1.0986123 1.6094379 1.0986123
## [50] 1.9459101 2.0794415 1.6094379 2.0794415 1.3862944 1.3862944 1.0986123
## [57] 1.9459101 1.6094379 0.6931472 1.0986123 2.0794415 1.3862944 2.0794415
## [64] 2.3978953 1.6094379 1.3862944 2.1972246 2.0794415 1.0986123 0.6931472
## [71] 0.0000000 0.0000000 1.0986123 1.3862944 0.6931472 0.0000000 0.6931472
## [78] 1.0986123 0.6931472 0.6931472
Gráfico
hist(log(telefonia$Reclamos))
Cambiar la base 2
log(telefonia$Reclamos, base=2)
## [1] 2.321928 1.000000 2.321928 1.584963 1.000000 1.584963 2.584963 1.000000
## [9] 1.584963 0.000000 1.584963 1.584963 1.000000 0.000000 2.000000 1.584963
## [17] 1.584963 2.000000 2.000000 0.000000 1.584963 0.000000 2.807355 1.584963
## [25] 1.584963 1.000000 2.000000 2.321928 0.000000 2.321928 1.000000 1.584963
## [33] 1.584963 2.000000 0.000000 1.000000 1.000000 0.000000 2.000000 2.000000
## [41] 1.584963 0.000000 1.584963 0.000000 1.000000 2.807355 1.584963 2.321928
## [49] 1.584963 2.807355 3.000000 2.321928 3.000000 2.000000 2.000000 1.584963
## [57] 2.807355 2.321928 1.000000 1.584963 3.000000 2.000000 3.000000 3.459432
## [65] 2.321928 2.000000 3.169925 3.000000 1.584963 1.000000 0.000000 0.000000
## [73] 1.584963 2.000000 1.000000 0.000000 1.000000 1.584963 1.000000 1.000000
Gráfico 2
hist(log(telefonia$Reclamos, base=2))
#Obtener solo tranaformaciones
reclamos_sqrt <- sqrt(telefonia$Reclamos)
reclamos_exp <- exp(telefonia$Reclamos)
reclamos_ln <- log(telefonia$Reclamos)
reclamos_log2 <- log(telefonia$Reclamos, base=2)
reclamos_log5 <- log(telefonia$Reclamos, base=5)
Gráfico
par(mfrow=c(3,2))
hist(telefonia$Reclamos)
hist(reclamos_sqrt)
hist(reclamos_exp)
hist(reclamos_ln)
hist(reclamos_log2)
hist(reclamos_log5)
La visualización de la distribucion puede mejorarse con la gráfica de densidad
par(mfrow=c(3,2))
plot(density(telefonia$Reclamos), main = "Distribucion de reclamos originales")
plot(density(reclamos_sqrt), main = "Distribucion de reclamos tranformadas - sqrt")
plot(density(reclamos_exp), main = "Distribucion de reclamos tranformadas - exp")
plot(density(reclamos_ln), main = "Distribucion de reclamos tranformadas - ln")
plot(density(reclamos_log2), main = "Distribucion de reclamos tranformadas - log2")
plot(density(reclamos_log5), main = "Distribucion de reclamos tranformadas - log5 ")
par(mfrow=c(1,1))
# Original
hist(telefonia$Llamadas, 12)
Para sacar la raiz cuadrada, simplemente se puede utilizar la función sqrt
sqrt(telefonia$Llamadas)
## [1] 2.645751 2.000000 2.645751 2.236068 1.732051 2.000000 2.828427 2.000000
## [9] 2.449490 2.000000 2.236068 1.732051 2.000000 1.414214 2.236068 2.236068
## [17] 2.449490 2.236068 2.000000 2.449490 2.645751 1.000000 3.000000 2.236068
## [25] 2.449490 2.449490 2.449490 2.645751 1.000000 2.645751 2.000000 2.236068
## [33] 1.732051 2.000000 1.000000 1.732051 1.732051 1.414214 2.645751 2.236068
## [41] 2.828427 1.414214 2.828427 1.000000 1.732051 2.828427 2.000000 2.828427
## [49] 2.645751 2.828427 3.000000 2.236068 2.828427 2.000000 2.236068 2.000000
## [57] 2.645751 2.236068 1.732051 2.000000 2.828427 2.000000 2.828427 3.605551
## [65] 2.449490 2.645751 3.000000 2.828427 1.732051 1.414214 1.000000 1.000000
## [73] 1.732051 2.236068 1.414214 1.414214 1.732051 1.732051 1.732051 1.414214
Gráfico
hist(sqrt(telefonia$Llamadas))
exp(telefonia$Llamadas)
## [1] 1.096633e+03 5.459815e+01 1.096633e+03 1.484132e+02 2.008554e+01
## [6] 5.459815e+01 2.980958e+03 5.459815e+01 4.034288e+02 5.459815e+01
## [11] 1.484132e+02 2.008554e+01 5.459815e+01 7.389056e+00 1.484132e+02
## [16] 1.484132e+02 4.034288e+02 1.484132e+02 5.459815e+01 4.034288e+02
## [21] 1.096633e+03 2.718282e+00 8.103084e+03 1.484132e+02 4.034288e+02
## [26] 4.034288e+02 4.034288e+02 1.096633e+03 2.718282e+00 1.096633e+03
## [31] 5.459815e+01 1.484132e+02 2.008554e+01 5.459815e+01 2.718282e+00
## [36] 2.008554e+01 2.008554e+01 7.389056e+00 1.096633e+03 1.484132e+02
## [41] 2.980958e+03 7.389056e+00 2.980958e+03 2.718282e+00 2.008554e+01
## [46] 2.980958e+03 5.459815e+01 2.980958e+03 1.096633e+03 2.980958e+03
## [51] 8.103084e+03 1.484132e+02 2.980958e+03 5.459815e+01 1.484132e+02
## [56] 5.459815e+01 1.096633e+03 1.484132e+02 2.008554e+01 5.459815e+01
## [61] 2.980958e+03 5.459815e+01 2.980958e+03 4.424134e+05 4.034288e+02
## [66] 1.096633e+03 8.103084e+03 2.980958e+03 2.008554e+01 7.389056e+00
## [71] 2.718282e+00 2.718282e+00 2.008554e+01 1.484132e+02 7.389056e+00
## [76] 7.389056e+00 2.008554e+01 2.008554e+01 2.008554e+01 7.389056e+00
Gráfico
hist(exp(telefonia$Llamadas))
Forma 2
llamadas_exp<- exp(telefonia$Llamadas)
hist(llamadas_exp)
log(telefonia$Llamadas)
## [1] 1.9459101 1.3862944 1.9459101 1.6094379 1.0986123 1.3862944 2.0794415
## [8] 1.3862944 1.7917595 1.3862944 1.6094379 1.0986123 1.3862944 0.6931472
## [15] 1.6094379 1.6094379 1.7917595 1.6094379 1.3862944 1.7917595 1.9459101
## [22] 0.0000000 2.1972246 1.6094379 1.7917595 1.7917595 1.7917595 1.9459101
## [29] 0.0000000 1.9459101 1.3862944 1.6094379 1.0986123 1.3862944 0.0000000
## [36] 1.0986123 1.0986123 0.6931472 1.9459101 1.6094379 2.0794415 0.6931472
## [43] 2.0794415 0.0000000 1.0986123 2.0794415 1.3862944 2.0794415 1.9459101
## [50] 2.0794415 2.1972246 1.6094379 2.0794415 1.3862944 1.6094379 1.3862944
## [57] 1.9459101 1.6094379 1.0986123 1.3862944 2.0794415 1.3862944 2.0794415
## [64] 2.5649494 1.7917595 1.9459101 2.1972246 2.0794415 1.0986123 0.6931472
## [71] 0.0000000 0.0000000 1.0986123 1.6094379 0.6931472 0.6931472 1.0986123
## [78] 1.0986123 1.0986123 0.6931472
Gráfico
hist(log(telefonia$Llamadas))
Cambiar la base 2
log(telefonia$Llamadas, base=2)
## [1] 2.807355 2.000000 2.807355 2.321928 1.584963 2.000000 3.000000 2.000000
## [9] 2.584963 2.000000 2.321928 1.584963 2.000000 1.000000 2.321928 2.321928
## [17] 2.584963 2.321928 2.000000 2.584963 2.807355 0.000000 3.169925 2.321928
## [25] 2.584963 2.584963 2.584963 2.807355 0.000000 2.807355 2.000000 2.321928
## [33] 1.584963 2.000000 0.000000 1.584963 1.584963 1.000000 2.807355 2.321928
## [41] 3.000000 1.000000 3.000000 0.000000 1.584963 3.000000 2.000000 3.000000
## [49] 2.807355 3.000000 3.169925 2.321928 3.000000 2.000000 2.321928 2.000000
## [57] 2.807355 2.321928 1.584963 2.000000 3.000000 2.000000 3.000000 3.700440
## [65] 2.584963 2.807355 3.169925 3.000000 1.584963 1.000000 0.000000 0.000000
## [73] 1.584963 2.321928 1.000000 1.000000 1.584963 1.584963 1.584963 1.000000
Gráfico 2
hist(log(telefonia$Llamadas, base=2))
#Obtener solo tranaformaciones
llamadas_sqrt <- sqrt(telefonia$Llamadas)
llamadas_exp <- exp(telefonia$Llamadas)
llamadas_ln <- log(telefonia$Llamadas)
llamadas_log2 <- log(telefonia$Llamadas, base=2)
llamadas_log5 <- log(telefonia$Llamadas, base=5)
Gráfico
par(mfrow=c(3,2))
hist(telefonia$Llamadas)
hist(llamadas_sqrt)
hist(llamadas_exp)
hist(llamadas_ln)
hist(llamadas_log2)
hist(llamadas_log5)
La visualización de la distribucion puede mejorarse con la gráfica de densidad
par(mfrow=c(3,2))
plot(density(telefonia$Llamadas), main = "Distribucion de llamadas originales")
plot(density(llamadas_sqrt), main = "Distribucion de llamadas tranformadas - sqrt")
plot(density(llamadas_exp), main = "Distribucion de llamadas tranformadas - exp")
plot(density(llamadas_ln), main = "Distribucion de llamadas tranformadas - ln")
plot(density(llamadas_log2), main = "Distribucion de llamadas tranformadas - log2")
plot(density(llamadas_log5), main = "Distribucion de llamadas tranformadas - log5 ")
par(mfrow=c(1,1))
# Original
hist(telefonia$Minutos, 12)
Para sacar la raiz cuadrada, simplemente se puede utilizar la función sqrt
sqrt(telefonia$Minutos)
## [1] 5.744563 5.630275 6.316645 6.268971 6.148170 6.610598 6.789698 6.131884
## [9] 6.480741 6.557439 6.693280 6.131884 5.196152 5.486347 5.147815 5.319774
## [17] 5.449771 5.700877 4.969909 4.979960 5.674504 5.167204 5.603570 5.576737
## [25] 5.167204 5.839521 5.215362 5.329165 7.042727 5.347897 6.107373 5.822371
## [33] 6.164414 6.457554 6.188699 6.971370 5.761944 6.403124 6.457554 5.882176
## [41] 6.892024 5.916080 6.066300 6.603030 5.932959 6.148170 6.140033 6.442049
## [49] 7.092249 5.796551 7.211103 7.099296 6.016644 6.308724 7.886698 6.752777
## [57] 6.971370 6.300794 5.069517 6.356099 6.804410 6.603030 7.429670 6.252999
## [65] 7.183314 6.640783 6.244998 7.224957 7.321202 6.024948 4.929503 5.639149
## [73] 5.744563 5.630275 5.603570 5.186521 4.183300 5.468089 6.024948 5.639149
Gráfico
hist(sqrt(telefonia$Minutos))
exp(telefonia$Minutos)
## [1] 2.146436e+14 5.849720e+13 2.129854e+17 1.168889e+17 2.608143e+16
## [6] 9.520700e+18 1.049484e+20 2.135367e+16 1.739275e+18 4.727839e+18
## [11] 2.860176e+19 2.135367e+16 5.320482e+11 1.181038e+13 3.227036e+11
## [16] 1.952243e+12 7.916735e+12 1.301879e+14 5.334254e+10 5.895263e+10
## [21] 9.644558e+13 3.941510e+11 4.333579e+13 3.210394e+13 3.941510e+11
## [26] 6.448249e+14 6.498452e+11 2.157562e+12 3.475412e+21 2.635252e+12
## [31] 1.581919e+16 5.279380e+14 3.185593e+16 1.288487e+18 4.300101e+16
## [36] 1.278533e+21 2.621663e+14 6.398435e+17 1.288487e+18 1.063137e+15
## [41] 4.255865e+20 1.586013e+15 9.594822e+15 8.614685e+18 1.937161e+15
## [46] 2.608143e+16 2.359945e+16 1.054924e+18 6.998620e+21 3.911061e+14
## [51] 3.831008e+22 7.734672e+21 5.265750e+15 1.927172e+17 1.030663e+27
## [56] 6.365439e+19 1.278533e+21 1.743777e+17 1.450001e+11 3.511536e+17
## [61] 1.281842e+20 8.614685e+18 9.398432e+23 9.570051e+16 2.568001e+22
## [66] 1.420321e+19 8.659340e+16 4.679204e+22 1.897511e+23 5.819554e+15
## [71] 3.575657e+10 6.464940e+13 2.146436e+14 5.849720e+13 4.333579e+13
## [76] 4.814172e+11 3.982478e+07 9.669522e+12 5.819554e+15 6.464940e+13
Gráfico
hist(exp(telefonia$Minutos))
Forma 2
minutos_exp<- exp(telefonia$Minutos)
hist(minutos_exp)
log(telefonia$Minutos)
## [1] 3.496508 3.456317 3.686376 3.671225 3.632309 3.777348 3.830813 3.627004
## [9] 3.737670 3.761200 3.802208 3.627004 3.295837 3.404525 3.277145 3.342862
## [17] 3.391147 3.481240 3.206803 3.210844 3.471966 3.284664 3.446808 3.437208
## [25] 3.284664 3.529297 3.303217 3.346389 3.903991 3.353407 3.618993 3.523415
## [33] 3.637586 3.730501 3.645450 3.883624 3.502550 3.713572 3.730501 3.543854
## [41] 3.860730 3.555348 3.605498 3.775057 3.561046 3.632309 3.629660 3.725693
## [49] 3.918005 3.514526 3.951244 3.919991 3.589059 3.683867 4.130355 3.819908
## [57] 3.883624 3.681351 3.246491 3.698830 3.835142 3.775057 4.010963 3.666122
## [65] 3.943522 3.786460 3.663562 3.955082 3.981549 3.591818 3.190476 3.459466
## [73] 3.496508 3.456317 3.446808 3.292126 2.862201 3.397858 3.591818 3.459466
Gráfico
hist(log(telefonia$Minutos))
Cambiar la base 2
log(telefonia$Minutos, base=2)
## [1] 5.044394 4.986411 5.318317 5.296457 5.240314 5.449561 5.526695 5.232661
## [9] 5.392317 5.426265 5.485427 5.232661 4.754888 4.911692 4.727920 4.822730
## [17] 4.892391 5.022368 4.626439 4.632268 5.008989 4.738768 4.972693 4.958843
## [25] 4.738768 5.091700 4.765535 4.827819 5.632268 4.837943 5.221104 5.083213
## [33] 5.247928 5.381975 5.259272 5.602884 5.053111 5.357552 5.381975 5.112700
## [41] 5.569856 5.129283 5.201634 5.446256 5.137504 5.240314 5.236493 5.375039
## [49] 5.652486 5.070389 5.700440 5.655352 5.177918 5.314697 5.958843 5.510962
## [57] 5.602884 5.311067 4.683696 5.336283 5.532940 5.446256 5.786596 5.289097
## [65] 5.689299 5.462707 5.285402 5.705978 5.744161 5.181898 4.602884 4.990955
## [73] 5.044394 4.986411 4.972693 4.749534 4.129283 4.902074 5.181898 4.990955
Gráfico 2
hist(log(telefonia$Minutos, base=2))
#Obtener solo tranaformaciones
minutos_sqrt <- sqrt(telefonia$Minutos)
minutos_exp <- exp(telefonia$Minutos)
minutos_ln <- log(telefonia$Minutos)
minutos_log2 <- log(telefonia$Minutos, base=2)
minutos_log5 <- log(telefonia$Minutos, base=5)
Gráfico
par(mfrow=c(3,2))
hist(telefonia$Minutos)
hist(minutos_sqrt)
hist(minutos_exp)
hist(minutos_ln)
hist(minutos_log2)
hist(minutos_log5)
La visualización de la distribucion puede mejorarse con la gráfica de densidad
par(mfrow=c(3,2))
plot(density(telefonia$Minutos), main = "Distribucion de minutos originales")
plot(density(minutos_sqrt), main = "Distribucion de minutos tranformadas - sqrt")
plot(density(minutos_exp), main = "Distribucion de minutos tranformadas - exp")
plot(density(minutos_ln), main = "Distribucion de minutos tranformadas - ln")
plot(density(minutos_log2), main = "Distribucion de minutos tranformadas - log2")
plot(density(minutos_log5), main = "Distribucion de minutos tranformadas - log5 ")
par(mfrow=c(1,1))
# Original
hist(telefonia$Monto, 12)
Para sacar la raiz cuadrada, simplemente se puede utilizar la función sqrt
sqrt(telefonia$Monto)
## [1] 9.523655 9.782638 10.700467 10.295630 9.949874 9.497368 10.124228
## [8] 9.602083 10.492855 9.823441 9.396808 9.252027 9.471008 9.423375
## [15] 9.165151 9.176056 9.576012 8.608136 9.423375 9.570789 8.944272
## [22] 9.402127 8.860023 9.396808 9.252027 9.412757 8.876936 9.033272
## [29] 9.289779 9.154234 9.523655 9.782638 9.964939 9.126883 9.864076
## [36] 9.099451 9.710819 9.823441 8.876936 10.009995 9.082951 9.088454
## [43] 9.721111 9.289779 9.396808 9.148770 9.154234 9.170605 9.121403
## [50] 9.208692 9.944848 10.913295 10.168579 10.469002 10.295630 10.029955
## [57] 10.148892 10.511898 10.601887 9.523655 10.606602 10.406729 10.295630
## [64] 9.949874 9.497368 10.124228 9.602083 10.492855 9.823441 9.591663
## [71] 9.176056 9.402127 8.860023 9.396808 9.252027 9.412757 8.876936
## [78] 9.033272 9.289779 9.154234
Gráfico
hist(sqrt(telefonia$Monto))
exp(telefonia$Monto)
## [1] 2.457590e+39 3.647388e+41 5.329889e+49 1.084464e+46 9.889030e+42
## [6] 1.490604e+39 3.274797e+44 1.101416e+40 6.543686e+47 8.117410e+41
## [11] 2.229476e+38 1.498331e+37 9.040970e+38 3.675784e+38 3.025077e+36
## [16] 3.694838e+36 6.680423e+39 1.517823e+32 3.675784e+38 6.044697e+39
## [21] 5.540622e+34 2.463952e+38 1.236280e+34 2.229476e+38 1.498331e+37
## [26] 3.009477e+38 1.668803e+34 2.744288e+35 3.017267e+37 2.476724e+36
## [31] 2.457590e+39 3.647388e+41 1.334879e+43 1.502209e+36 1.806563e+42
## [36] 9.111358e+35 8.994347e+40 8.117410e+41 1.668803e+34 3.283274e+43
## [41] 6.749860e+35 7.459749e+35 1.098572e+41 3.017267e+37 2.229476e+38
## [46] 2.241032e+36 2.476724e+36 3.343227e+36 1.359255e+36 6.732433e+36
## [51] 8.947965e+42 5.302404e+51 8.054701e+44 3.968946e+47 1.084464e+46
## [56] 4.898069e+43 5.399228e+44 9.762033e+47 6.526792e+48 2.457590e+39
## [61] 7.213221e+48 1.081664e+47 1.084464e+46 9.889030e+42 1.490604e+39
## [66] 3.274797e+44 1.101416e+40 6.543686e+47 8.117410e+41 9.017628e+39
## [71] 3.694838e+36 2.463952e+38 1.236280e+34 2.229476e+38 1.498331e+37
## [76] 3.009477e+38 1.668803e+34 2.744288e+35 3.017267e+37 2.476724e+36
Gráfico
hist(exp(telefonia$Monto))
Forma 2
monto_exp<- exp(telefonia$Monto)
hist(monto_exp)
log(telefonia$Monto)
## [1] 4.507557 4.561218 4.740575 4.663439 4.595120 4.502029 4.629863 4.523960
## [9] 4.701389 4.569543 4.480740 4.449685 4.496471 4.486387 4.430817 4.433195
## [17] 4.518522 4.305416 4.486387 4.517431 4.382027 4.481872 4.363099 4.480740
## [25] 4.449685 4.484132 4.366913 4.401829 4.457830 4.428433 4.507557 4.561218
## [33] 4.598146 4.422449 4.577799 4.416428 4.546481 4.569543 4.366913 4.607168
## [41] 4.412798 4.414010 4.548600 4.457830 4.480740 4.427239 4.428433 4.432007
## [49] 4.421247 4.440296 4.594109 4.779963 4.638605 4.696837 4.663439 4.611152
## [57] 4.634729 4.705016 4.722064 4.507557 4.722953 4.684905 4.663439 4.595120
## [65] 4.502029 4.629863 4.523960 4.701389 4.569543 4.521789 4.433195 4.481872
## [73] 4.363099 4.480740 4.449685 4.484132 4.366913 4.401829 4.457830 4.428433
Gráfico
hist(log(telefonia$Monto))
Cambiar la base 2
log(telefonia$Monto, base=2)
## [1] 6.503031 6.580447 6.839204 6.727920 6.629357 6.495056 6.679480 6.526695
## [9] 6.782671 6.592457 6.464342 6.419539 6.487036 6.472488 6.392317 6.395748
## [17] 6.518850 6.211402 6.472488 6.517276 6.321928 6.465974 6.294621 6.464342
## [25] 6.419539 6.469235 6.300124 6.350497 6.431289 6.388878 6.503031 6.580447
## [33] 6.633722 6.380245 6.604368 6.371559 6.559186 6.592457 6.300124 6.646739
## [41] 6.366322 6.368070 6.562242 6.431289 6.464342 6.387156 6.388878 6.394034
## [49] 6.378512 6.405992 6.627899 6.896030 6.692092 6.776104 6.727920 6.652486
## [57] 6.686501 6.787903 6.812498 6.503031 6.813781 6.758889 6.727920 6.629357
## [65] 6.495056 6.679480 6.526695 6.782671 6.592457 6.523562 6.395748 6.465974
## [73] 6.294621 6.464342 6.419539 6.469235 6.300124 6.350497 6.431289 6.388878
Gráfico 2
hist(log(telefonia$Monto, base=2))
#Obtener solo tranaformaciones
monto_sqrt <- sqrt(telefonia$Monto)
monto_exp <- exp(telefonia$Monto)
monto_ln <- log(telefonia$Monto)
monto_log2 <- log(telefonia$Monto, base=2)
monto_log5 <- log(telefonia$Monto, base=5)
Gráfico
par(mfrow=c(3,2))
hist(telefonia$Monto)
hist(monto_sqrt)
hist(monto_exp)
hist(monto_ln)
hist(monto_log2)
hist(monto_log5)
La visualización de la distribucion puede mejorarse con la gráfica de densidad
par(mfrow=c(3,2))
plot(density(telefonia$Monto), main = "Distribucion de monto originales")
plot(density(monto_sqrt), main = "Distribucion de monto tranformadas - sqrt")
plot(density(monto_exp), main = "Distribucion de monto tranformadas - exp")
plot(density(monto_ln), main = "Distribucion de monto tranformadas - ln")
plot(density(monto_log2), main = "Distribucion de monto tranformadas - log2")
plot(density(monto_log5), main = "Distribucion de monto tranformadas - log5 ")
par(mfrow=c(1,1))
# Original
hist(telefonia$Tiempo, 12)
Para sacar la raiz cuadrada, simplemente se puede utilizar la función sqrt
sqrt(telefonia$Tiempo)
## [1] 4.1109610 1.2247449 2.0000000 3.8078866 1.6431677 3.3911650 0.7071068
## [8] 1.1401754 2.3021729 1.0954451 1.3038405 4.5276926 0.8944272 0.6324555
## [15] 1.6733201 2.4083189 2.0493902 0.8944272 3.0822070 1.6124515 2.1213203
## [22] 1.1401754 1.6124515 2.3452079 1.6431677 3.3911650 0.7071068 1.1401754
## [29] 2.3021729 1.0954451 1.3038405 4.5276926 1.8165902 0.5477226 1.3038405
## [36] 4.0620192 1.9748418 5.1575188 1.5491933 0.5477226 1.6431677 4.7644517
## [43] 2.1213203 2.1447611 2.8635642 2.2803509 2.0000000 3.5355339 4.8682646
## [50] 1.6431677 6.0000000 0.7071068 1.2649111 1.3038405 0.8944272 1.4832397
## [57] 2.1908902 1.4832397 2.0000000 4.1109610 1.2247449 1.6733201 1.8708287
## [64] 2.0000000 3.8078866 1.7606817 2.1679483 1.9748418 2.5690465 3.4205263
## [71] 1.6124515 2.3021729 1.0954451 1.3038405 4.5276926 1.8165902 0.5477226
## [78] 1.3038405 1.4832397 2.0000000
Gráfico
hist(sqrt(telefonia$Tiempo))
exp(telefonia$Tiempo)
## [1] 2.185631e+07 4.481689e+00 5.459815e+01 1.982759e+06 1.487973e+01
## [6] 9.871577e+04 1.648721e+00 3.669297e+00 2.003368e+02 3.320117e+00
## [11] 5.473947e+00 7.999022e+08 2.225541e+00 1.491825e+00 1.644465e+01
## [16] 3.302996e+02 6.668633e+01 2.225541e+00 1.335973e+04 1.346374e+01
## [21] 9.001713e+01 3.669297e+00 1.346374e+01 2.446919e+02 1.487973e+01
## [26] 9.871577e+04 1.648721e+00 3.669297e+00 2.003368e+02 3.320117e+00
## [31] 5.473947e+00 7.999022e+08 2.711264e+01 1.349859e+00 5.473947e+00
## [36] 1.465072e+07 4.940245e+01 3.566426e+11 1.102318e+01 1.349859e+00
## [41] 1.487973e+01 7.219128e+09 9.001713e+01 9.948432e+01 3.640950e+03
## [46] 1.812722e+02 5.459815e+01 2.683373e+05 1.962362e+10 1.487973e+01
## [51] 4.311232e+15 1.648721e+00 4.953032e+00 5.473947e+00 2.225541e+00
## [56] 9.025013e+00 1.215104e+02 9.025013e+00 5.459815e+01 2.185631e+07
## [61] 4.481689e+00 1.644465e+01 3.311545e+01 5.459815e+01 1.982759e+06
## [66] 2.219795e+01 1.099472e+02 4.940245e+01 7.350952e+02 1.205717e+05
## [71] 1.346374e+01 2.003368e+02 3.320117e+00 5.473947e+00 7.999022e+08
## [76] 2.711264e+01 1.349859e+00 5.473947e+00 9.025013e+00 5.459815e+01
Gráfico
hist(exp(telefonia$Tiempo))
Forma 2
tiempo_exp<- exp(telefonia$Tiempo)
hist(tiempo_exp)
log(telefonia$Tiempo)
## [1] 2.8273136 0.4054651 1.3862944 2.6741486 0.9932518 2.4423470
## [7] -0.6931472 0.2623643 1.6677068 0.1823216 0.5306283 3.0204249
## [13] -0.2231436 -0.9162907 1.0296194 1.7578579 1.4350845 -0.2231436
## [19] 2.2512918 0.9555114 1.5040774 0.2623643 0.9555114 1.7047481
## [25] 0.9932518 2.4423470 -0.6931472 0.2623643 1.6677068 0.1823216
## [31] 0.5306283 3.0204249 1.1939225 -1.2039728 0.5306283 2.8033604
## [37] 1.3609766 3.2809112 0.8754687 -1.2039728 0.9932518 3.1223649
## [43] 1.5040774 1.5260563 2.1041342 1.6486586 1.3862944 2.5257286
## [49] 3.1654750 0.9932518 3.5835189 -0.6931472 0.4700036 0.5306283
## [55] -0.2231436 0.7884574 1.5686159 0.7884574 1.3862944 2.8273136
## [61] 0.4054651 1.0296194 1.2527630 1.3862944 2.6741486 1.1314021
## [67] 1.5475625 1.3609766 1.8870696 2.4595888 0.9555114 1.6677068
## [73] 0.1823216 0.5306283 3.0204249 1.1939225 -1.2039728 0.5306283
## [79] 0.7884574 1.3862944
Gráfico
hist(log(telefonia$Tiempo))
Cambiar la base 2
log(telefonia$Tiempo, base=2)
## [1] 4.0789513 0.5849625 2.0000000 3.8579810 1.4329594 3.5235620
## [7] -1.0000000 0.3785116 2.4059924 0.2630344 0.7655347 4.3575520
## [13] -0.3219281 -1.3219281 1.4854268 2.5360529 2.0703893 -0.3219281
## [19] 3.2479275 1.3785116 2.1699250 0.3785116 1.3785116 2.4594316
## [25] 1.4329594 3.5235620 -1.0000000 0.3785116 2.4059924 0.2630344
## [31] 0.7655347 4.3575520 1.7224660 -1.7369656 0.7655347 4.0443941
## [37] 1.9634741 4.7333543 1.2630344 -1.7369656 1.4329594 4.5046204
## [43] 2.1699250 2.2016339 3.0356239 2.3785116 2.0000000 3.6438562
## [49] 4.5668152 1.4329594 5.1699250 -1.0000000 0.6780719 0.7655347
## [55] -0.3219281 1.1375035 2.2630344 1.1375035 2.0000000 4.0789513
## [61] 0.5849625 1.4854268 1.8073549 2.0000000 3.8579810 1.6322682
## [67] 2.2326608 1.9634741 2.7224660 3.5484366 1.3785116 2.4059924
## [73] 0.2630344 0.7655347 4.3575520 1.7224660 -1.7369656 0.7655347
## [79] 1.1375035 2.0000000
Gráfico 2
hist(log(telefonia$Tiempo, base=2))
#Obtener solo tranaformaciones
tiempo_sqrt <- sqrt(telefonia$Tiempo)
tiempo_exp <- exp(telefonia$Tiempo)
tiempo_ln <- log(telefonia$Tiempo)
tiempo_log2 <- log(telefonia$Tiempo, base=2)
tiempo_log5 <- log(telefonia$Tiempo, base=5)
Gráfico
par(mfrow=c(3,2))
hist(telefonia$Tiempo)
hist(tiempo_sqrt)
hist(tiempo_exp)
hist(tiempo_ln)
hist(tiempo_log2)
hist(tiempo_log5)
La visualización de la distribucion puede mejorarse con la gráfica de densidad
par(mfrow=c(3,2))
plot(density(telefonia$Tiempo), main = "Distribucion de tiempo originales")
plot(density(tiempo_sqrt), main = "Distribucion de tiempo tranformadas - sqrt")
plot(density(tiempo_exp), main = "Distribucion de tiempo tranformadas - exp")
plot(density(tiempo_ln), main = "Distribucion de tiempo tranformadas - ln")
plot(density(tiempo_log2), main = "Distribucion de tiempo tranformadas - log2")
plot(density(tiempo_log5), main = "Distribucion de tiempo tranformadas - log5 ")
par(mfrow=c(1,1))
library(PerformanceAnalytics)
chart.Correlation(cor(telefonia[,4:8]), histogram = TRUE)