Realizar un análisis de disimilaridad entre todas las 20 repeticiones, usando el índice de Bray-Curtis. La repetición m1 con que repetición posee la mayor diferencia. Explique esos resultados.
Realizar los respectivos análisis de Ordenación: NMDS, PCOA. Crear una base columna en la base de datos original: Zona. Completar la columna Zona con la clasificación en base a los resultados del NMDS y PCOA, llamarlas: Zona 1, Zona 1, ………..Zona 3.
Para confirmar los resultados, realice un cluster jerárquico. Luego para confirmar la hipótesis de las 3 zonas, realice la prueba SIMPROF. En los Cluster usar el método UPGMA y la distancia de Bray Curtis. Analice los resultados de la prueba SIMPROF 4.Aplicar la prueba de Hipótesis Multivariada ANOSIM y PERMANOVA. ¿Se encontraron diferencias significativas? En el caso de Permanova, si hay diferencias significativas, aplicar la comparación por pares. De encontrar diferencias significativas, aplicar la Prueba SIMPER: ¿Qué especies causan dichas diferencias?
library(readxl)
base_de_datos_del_ejercicio <- read_excel("E:/Users/Investigador/iCloudDrive/R/Analiisis_multivariado/base de datos del ejercicio.xlsx")
View(base_de_datos_del_ejercicio)
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
distancias1<-base_de_datos_del_ejercicio #EL OBJETO QUE CONTIENE EL ARCHIVO
#Convertimos el archivo a dataframe
distancias<-data.frame(distancias1)
#distancia$zona=NULL
#2do A los nombres de distancias<- asignamos los nombres de la columna Pa?s
rownames(distancias)<-distancias$Sitios
distancias
## Sitios spa spb spc spd spe spf spg sph spi spj spk
## m1 m1 21.0 20.3 15.5 36.2 0 1 0 0.0 1.0 0.0 1.0
## m12 m12 28.9 0.0 0.0 3.0 15 13 39 2.0 0.0 0.0 3.0
## m7 m7 34.9 0.0 2.0 0.0 1 54 95 10.0 1.0 0.0 1.0
## m13 m13 31.8 2.0 3.0 0.0 12 44 16 4.0 5.0 1.0 0.0
## m14 m14 31.0 0.0 3.0 3.0 15 75 66 0.0 3.0 0.0 2.0
## m15 m15 17.5 3.0 2.0 0.0 2 0 3 61.0 12.0 30.0 20.0
## m4 m4 0.0 48.0 0.0 19.0 0 3 0 0.0 3.0 3.0 0.0
## m8 m8 25.9 2.0 1.0 5.0 16 23 77 0.0 0.0 3.0 1.0
## m11 m11 24.1 2.0 1.0 0.0 11 21 41 0.0 11.0 1.0 0.0
## m20 m20 21.5 2.0 0.0 2.0 2 5 1 15.0 9.0 15.7 21.3
## m16 m16 15.3 0.0 1.0 0.0 0 0 2 40.3 11.1 34.7 20.0
## m17 m17 17.9 0.0 3.0 0.0 0 3 0 40.0 9.8 4.8 21.0
## m18 m18 19.6 1.0 0.0 11.0 3 0 4 39.8 5.6 43.7 25.3
## m2 m2 12.0 30.6 0.0 35.0 0 0 0 4.0 0.0 3.0 0.0
## m19 m19 17.8 0.0 1.0 4.0 0 2 0 22.5 7.5 37.3 22.2
## m5 m5 18.0 11.8 9.0 17.7 0 0 0 1.0 0.0 0.0 1.0
## m6 m6 38.8 1.0 0.0 3.0 1 34 45 0.0 1.0 1.0 0.0
## m9 m9 31.9 1.0 0.0 0.0 14 55 34 3.0 1.0 0.0 0.0
## m10 m10 31.5 0.0 1.0 1.0 30 43 46 3.0 0.0 1.0 2.0
## m3 m3 16.0 28.2 4.7 47.0 4 0 3 0.0 2.0 0.0 1.0
dist.mat <- vegdist( distancias[, -1 ], method="bray")
dist.mat
## m1 m12 m7 m13 m14 m15 m4
## m12 0.7398699
## m7 0.8236690 0.4392338
## m13 0.7392924 0.3542883 0.3717343
## m14 0.7959184 0.3315667 0.2139078 0.3118687
## m15 0.8012170 0.7838050 0.7967945 0.7289268 0.8307030
## m4 0.5197674 0.9332963 0.9708985 0.9075975 0.9343066 0.9205298
## m8 0.7519008 0.2482545 0.2692744 0.4066740 0.2333049 0.8061761 0.8869074
## m11 0.7501201 0.1935185 0.4270096 0.2975314 0.3479523 0.7143945 0.9043062
## m20 0.7060367 0.6320565 0.7239264 0.6108767 0.7504274 0.3289796 0.8475073
## m16 0.8339383 0.8046430 0.8125580 0.7672697 0.8554591 0.1291379 0.9401198
## m17 0.7554987 0.7453294 0.7660858 0.6894182 0.8057143 0.2472000 0.8974359
## m18 0.7301205 0.7306345 0.7919864 0.7233260 0.8028490 0.2164745 0.8427948
## m2 0.2547065 0.8196286 0.8871252 0.8131760 0.8938429 0.8128456 0.3449564
## m19 0.7546362 0.7451879 0.7905492 0.7357357 0.8155620 0.2560423 0.8738833
## m5 0.2556634 0.7167488 0.8290598 0.7292724 0.8050682 0.7655502 0.5613383
## m6 0.7554348 0.2575426 0.2839049 0.2955665 0.2874845 0.8220124 0.9103586
## m9 0.7965240 0.2461034 0.2626919 0.1588713 0.2009470 0.8106061 0.9536823
## m10 0.8035363 0.2309451 0.2921097 0.2246664 0.2201964 0.8090615 0.9573561
## m3 0.2154532 0.7426120 0.8425197 0.7329773 0.7894044 0.7737910 0.4590434
## m8 m11 m20 m16 m17 m18 m2
## m12
## m7
## m13
## m14
## m15
## m4
## m8
## m11 0.2398496
## m20 0.6980676 0.5982575
## m16 0.8397413 0.7437632 0.3056190
## m17 0.7955801 0.6909263 0.2711340 0.1880304
## m18 0.7614858 0.7419842 0.3276768 0.1535689 0.2942574
## m2 0.8155136 0.8474835 0.7431602 0.8181818 0.7935904 0.7390572
## m19 0.7852349 0.7411661 0.2212644 0.1537495 0.2834425 0.1814441 0.7687280
## m5 0.7457627 0.7538101 0.6862745 0.7998907 0.7101266 0.6973995 0.4060098
## m6 0.2831001 0.2393415 0.6944824 0.8451043 0.7958092 0.7796976 0.8376313
## m9 0.3335602 0.2690476 0.7056314 0.8388195 0.7919799 0.7842267 0.8574610
## m10 0.2644046 0.2675536 0.7114625 0.8282078 0.7837209 0.7842697 0.8601399
## m3 0.7536567 0.7431193 0.7405190 0.8150239 0.7857838 0.7141754 0.2104987
## m19 m5 m6 m9 m10
## m12
## m7
## m13
## m14
## m15
## m4
## m8
## m11
## m20
## m16
## m17
## m18
## m2
## m19
## m5 0.7129630
## m6 0.7925554 0.7599564
## m9 0.8127459 0.7983871 0.2225161
## m10 0.7961877 0.7972350 0.1987293 0.1588472
## m3 0.7820163 0.3771290 0.7832683 0.7965826 0.8033283
## Sitios site spa spb spc spd spe spf spg sph spi spj spk
## 1 m1 zona1 21.0 20.3 15.5 36.2 0 1 0 0.0 1.0 0.0 1.0
## 2 m12 zona2 28.9 0.0 0.0 3.0 15 13 39 2.0 0.0 0.0 3.0
## 3 m7 zona2 34.9 0.0 2.0 0.0 1 54 95 10.0 1.0 0.0 1.0
## 4 m13 zona2 31.8 2.0 3.0 0.0 12 44 16 4.0 5.0 1.0 0.0
## 5 m14 zona2 31.0 0.0 3.0 3.0 15 75 66 0.0 3.0 0.0 2.0
## 6 m15 zona2 17.5 3.0 2.0 0.0 2 0 3 61.0 12.0 30.0 20.0
## 7 m4 zona1 0.0 48.0 0.0 19.0 0 3 0 0.0 3.0 3.0 0.0
## 8 m8 zona2 25.9 2.0 1.0 5.0 16 23 77 0.0 0.0 3.0 1.0
## 9 m11 zona2 24.1 2.0 1.0 0.0 11 21 41 0.0 11.0 1.0 0.0
## 10 m20 zona3 21.5 2.0 0.0 2.0 2 5 1 15.0 9.0 15.7 21.3
## 11 m16 zona3 15.3 0.0 1.0 0.0 0 0 2 40.3 11.1 34.7 20.0
## 12 m17 zona3 17.9 0.0 3.0 0.0 0 3 0 40.0 9.8 4.8 21.0
## 13 m18 zona3 19.6 1.0 0.0 11.0 3 0 4 39.8 5.6 43.7 25.3
## 14 m2 zona1 12.0 30.6 0.0 35.0 0 0 0 4.0 0.0 3.0 0.0
## 15 m19 zona3 17.8 0.0 1.0 4.0 0 2 0 22.5 7.5 37.3 22.2
## 16 m5 zona1 18.0 11.8 9.0 17.7 0 0 0 1.0 0.0 0.0 1.0
## 17 m6 zona2 38.8 1.0 0.0 3.0 1 34 45 0.0 1.0 1.0 0.0
## 18 m9 zona2 31.9 1.0 0.0 0.0 14 55 34 3.0 1.0 0.0 0.0
## 19 m10 zona2 31.5 0.0 1.0 1.0 30 43 46 3.0 0.0 1.0 2.0
## 20 m3 zona1 16.0 28.2 4.7 47.0 4 0 3 0.0 2.0 0.0 1.0
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.07431811
## Run 1 stress 0.07431811
## ... New best solution
## ... Procrustes: rmse 2.905134e-06 max resid 7.738834e-06
## ... Similar to previous best
## Run 2 stress 0.07431811
## ... Procrustes: rmse 1.450378e-06 max resid 4.899417e-06
## ... Similar to previous best
## Run 3 stress 0.07431811
## ... Procrustes: rmse 1.833745e-06 max resid 6.589839e-06
## ... Similar to previous best
## Run 4 stress 0.07431811
## ... Procrustes: rmse 5.44743e-06 max resid 1.859633e-05
## ... Similar to previous best
## Run 5 stress 0.09809811
## Run 6 stress 0.09809811
## Run 7 stress 0.07431811
## ... Procrustes: rmse 2.986029e-06 max resid 9.161931e-06
## ... Similar to previous best
## Run 8 stress 0.07431811
## ... Procrustes: rmse 2.565773e-06 max resid 8.68263e-06
## ... Similar to previous best
## Run 9 stress 0.07431811
## ... Procrustes: rmse 7.673592e-07 max resid 2.645823e-06
## ... Similar to previous best
## Run 10 stress 0.07431811
## ... Procrustes: rmse 1.30685e-06 max resid 3.363504e-06
## ... Similar to previous best
## Run 11 stress 0.2054935
## Run 12 stress 0.07431811
## ... Procrustes: rmse 2.122223e-06 max resid 7.126858e-06
## ... Similar to previous best
## Run 13 stress 0.2234992
## Run 14 stress 0.07431811
## ... Procrustes: rmse 4.96625e-06 max resid 1.679499e-05
## ... Similar to previous best
## Run 15 stress 0.2176042
## Run 16 stress 0.07431811
## ... Procrustes: rmse 2.290646e-06 max resid 7.782475e-06
## ... Similar to previous best
## Run 17 stress 0.2045138
## Run 18 stress 0.09809811
## Run 19 stress 0.07431811
## ... Procrustes: rmse 3.5622e-06 max resid 1.191072e-05
## ... Similar to previous best
## Run 20 stress 0.07431811
## ... Procrustes: rmse 2.087027e-06 max resid 4.930062e-06
## ... Similar to previous best
## *** Best solution repeated 13 times
##
## Call:
## metaMDS(comm = bdma[, c(-1, -2)])
##
## global Multidimensional Scaling using monoMDS
##
## Data: wisconsin(sqrt(bdma[, c(-1, -2)]))
## Distance: bray
##
## Dimensions: 2
## Stress: 0.07431811
## Stress type 1, weak ties
## Best solution was repeated 13 times in 20 tries
## The best solution was from try 1 (random start)
## Scaling: centring, PC rotation, halfchange scaling
## Species: expanded scores based on 'wisconsin(sqrt(bdma[, c(-1, -2)]))'
## Eigenvalues Corr_eig Rel_corr_eig Broken_stick Cum_corr_eig Cum_br_stick
## 1 2.1121460540 2.15727140 0.417855010 0.194172671 0.4178550 0.1941727
## 2 1.4996593102 1.54478466 0.299218730 0.138617115 0.7170737 0.3327898
## 3 0.1981316835 0.24325703 0.047117933 0.110839338 0.7641917 0.4436291
## 4 0.1345666036 0.17969195 0.034805626 0.092320819 0.7989973 0.5359499
## 5 0.1147864897 0.15991184 0.030974296 0.078431930 0.8299716 0.6143819
## 6 0.0982071972 0.14333255 0.027762952 0.067320819 0.8577345 0.6817027
## 7 0.0745715145 0.11969686 0.023184813 0.058061560 0.8809194 0.7397643
## 8 0.0590148668 0.10414021 0.020171551 0.050125052 0.9010909 0.7898893
## 9 0.0376764717 0.08280182 0.016038388 0.043180608 0.9171293 0.8330699
## 10 0.0326726396 0.07779799 0.015069165 0.037007768 0.9321985 0.8700777
## 11 0.0224475563 0.06757290 0.013088607 0.031452212 0.9452871 0.9015299
## 12 0.0162334274 0.06135878 0.011884954 0.026401707 0.9571720 0.9279316
## 13 0.0102417608 0.05536711 0.010724392 0.021772078 0.9678964 0.9497037
## 14 0.0002662568 0.04539160 0.008792176 0.017498574 0.9766886 0.9672023
## 15 0.0000000000 0.04164890 0.008067228 0.013530320 0.9847558 0.9807326
## 16 -0.0034764496 0.03501870 0.006782985 0.009826616 0.9915388 0.9905592
## 17 -0.0101066457 0.02510197 0.004862152 0.006354394 0.9964010 0.9969136
## 18 -0.0200233822 0.01858087 0.003599042 0.003086420 1.0000000 1.0000000
## 19 -0.0265444756 0.00000000 0.000000000 0.000000000 1.0000000 1.0000000
## 20 -0.0451253482 0.00000000 0.000000000 0.000000000 1.0000000 1.0000000
## Sitios site spa spb spc spd spe spf spg sph spi spj spk
## 1 m1 zona1 21.0 20.3 15.5 36.2 0 1 0 0.0 1.0 0.0 1.0
## 2 m12 zona2 28.9 0.0 0.0 3.0 15 13 39 2.0 0.0 0.0 3.0
## 3 m7 zona2 34.9 0.0 2.0 0.0 1 54 95 10.0 1.0 0.0 1.0
## 4 m13 zona2 31.8 2.0 3.0 0.0 12 44 16 4.0 5.0 1.0 0.0
## 5 m14 zona2 31.0 0.0 3.0 3.0 15 75 66 0.0 3.0 0.0 2.0
## 6 m15 zona2 17.5 3.0 2.0 0.0 2 0 3 61.0 12.0 30.0 20.0
## 7 m4 zona1 0.0 48.0 0.0 19.0 0 3 0 0.0 3.0 3.0 0.0
## 8 m8 zona2 25.9 2.0 1.0 5.0 16 23 77 0.0 0.0 3.0 1.0
## 9 m11 zona2 24.1 2.0 1.0 0.0 11 21 41 0.0 11.0 1.0 0.0
## 10 m20 zona3 21.5 2.0 0.0 2.0 2 5 1 15.0 9.0 15.7 21.3
## 11 m16 zona3 15.3 0.0 1.0 0.0 0 0 2 40.3 11.1 34.7 20.0
## 12 m17 zona3 17.9 0.0 3.0 0.0 0 3 0 40.0 9.8 4.8 21.0
## 13 m18 zona3 19.6 1.0 0.0 11.0 3 0 4 39.8 5.6 43.7 25.3
## 14 m2 zona1 12.0 30.6 0.0 35.0 0 0 0 4.0 0.0 3.0 0.0
## 15 m19 zona3 17.8 0.0 1.0 4.0 0 2 0 22.5 7.5 37.3 22.2
## 16 m5 zona1 18.0 11.8 9.0 17.7 0 0 0 1.0 0.0 0.0 1.0
## 17 m6 zona2 38.8 1.0 0.0 3.0 1 34 45 0.0 1.0 1.0 0.0
## 18 m9 zona2 31.9 1.0 0.0 0.0 14 55 34 3.0 1.0 0.0 0.0
## 19 m10 zona2 31.5 0.0 1.0 1.0 30 43 46 3.0 0.0 1.0 2.0
## 20 m3 zona1 16.0 28.2 4.7 47.0 4 0 3 0.0 2.0 0.0 1.0
## Warning: argument 'parallel' is not used (yet)
##
## Contrast: zona1_zona2
##
## average sd ratio ava avb cumsum
## spg 0.19433 0.09664 2.01090 0.60000 46.20 0.237
## spf 0.15102 0.08056 1.87450 0.80000 36.20 0.422
## spd 0.12775 0.04525 2.82310 30.98000 1.50 0.578
## spb 0.11765 0.05838 2.01510 27.78000 1.10 0.721
## spa 0.07298 0.04285 1.70310 13.40000 29.63 0.810
## spe 0.05011 0.03589 1.39620 0.80000 11.70 0.872
## sph 0.03515 0.07551 0.46560 1.00000 8.30 0.915
## spc 0.02478 0.02290 1.08200 5.84000 1.30 0.945
## spj 0.01781 0.03600 0.49480 1.20000 3.70 0.967
## spi 0.01514 0.01822 0.83120 1.20000 3.40 0.985
## spk 0.01215 0.02429 0.50010 0.60000 2.90 1.000
##
## Contrast: zona1_zona3
##
## average sd ratio ava avb cumsum
## sph 0.15112 0.05332 2.83400 1.00000 31.52 0.194
## spd 0.13651 0.05541 2.46400 30.98000 3.40 0.369
## spb 0.13613 0.06598 2.06300 27.78000 0.60 0.544
## spj 0.12520 0.06703 1.86800 1.20000 27.24 0.704
## spk 0.10735 0.01280 8.38600 0.60000 21.96 0.842
## spi 0.03809 0.01408 2.70500 1.20000 8.60 0.891
## spa 0.03278 0.03559 0.92100 13.40000 18.42 0.933
## spc 0.02832 0.02625 1.07900 5.84000 1.00 0.969
## spf 0.01023 0.00952 1.07400 0.80000 2.00 0.982
## spg 0.00714 0.00643 1.11100 0.60000 1.40 0.991
## spe 0.00669 0.00715 0.93600 0.80000 1.00 1.000
##
## Contrast: zona2_zona3
##
## average sd ratio ava avb cumsum
## spg 0.16747 0.08629 1.94090 46.20000 1.40 0.236
## spf 0.12824 0.06937 1.84860 36.20000 2.00 0.417
## sph 0.11196 0.04482 2.49820 8.30000 31.52 0.576
## spj 0.09422 0.05339 1.76460 3.70000 27.24 0.709
## spk 0.07386 0.02551 2.89510 2.90000 21.96 0.813
## spa 0.04409 0.02179 2.02290 29.63000 18.42 0.875
## spe 0.04268 0.03117 1.36920 11.70000 1.00 0.935
## spi 0.02466 0.01246 1.97880 3.40000 8.60 0.970
## spd 0.01232 0.01183 1.04100 1.50000 3.40 0.988
## spc 0.00471 0.00412 1.14090 1.30000 1.00 0.994
## spb 0.00417 0.00376 1.11110 1.10000 0.60 1.000
## Permutation: free
## Number of permutations: 0
## The following objects are masked from datos (pos = 3):
##
## site, Sitios, spa, spb, spc, spd, spe, spf, spg, sph, spi, spj, spk
##
## Call:
## anosim(x = datos[, c(-1, -2)], grouping = site, permutations = 999, distance = "bray", strata = NULL, parallel = getOption("mc.cores"))
## Dissimilarity: bray
##
## ANOSIM statistic R: 0.8004
## Significance: 0.001
##
## Permutation: free
## Number of permutations: 999
##
## Upper quantiles of permutations (null model):
## 90% 95% 97.5% 99%
## 0.133 0.185 0.236 0.288
##
## Dissimilarity ranks between and within classes:
## 0% 25% 50% 75% 100% N
## Between 1 90.00 122.0 157 190 125
## zona1 11 26.25 52.0 58 61 10
## zona2 4 21.00 38.0 56 163 45
## zona3 2 6.25 25.5 40 46 10
## Warning in (function (z, notch = FALSE, width = NULL, varwidth = FALSE, : some
## notches went outside hinges ('box'): maybe set notch=FALSE
## 1 2 3 4 5 6 7
## 2 0.51457317
## 3 0.41503750 0.26303441
## 4 0.45943162 0.45943162 0.23446525
## 5 0.26303441 0.26303441 0.16992500 0.37196878
## 6 0.45943162 0.45943162 0.23446525 0.15200309 0.37196878
## 7 0.41503750 0.73696559 0.75899190 0.51457317 0.62148838 0.65207670
## 8 0.32192809 0.32192809 0.37196878 0.28950662 0.23446525 0.28950662 0.51457317
## 9 0.41503750 0.55254102 0.32192809 0.08246216 0.32192809 0.23446525 0.46948528
## 10 0.37196878 0.23446525 0.28950662 0.21150411 0.28950662 0.21150411 0.41503750
## 11 0.51457317 0.51457317 0.26303441 0.32192809 0.41503750 0.16992500 0.73696559
## 12 0.36257008 0.51457317 0.26303441 0.32192809 0.41503750 0.32192809 0.58496250
## 13 0.45943162 0.32192809 0.37196878 0.28950662 0.37196878 0.15200309 0.51457317
## 14 0.58496250 0.58496250 0.75899190 0.51457317 0.75899190 0.51457317 0.48542683
## 15 0.26303441 0.41503750 0.32192809 0.37196878 0.32192809 0.37196878 0.46948528
## 16 0.29956028 0.46948528 0.51457317 0.55254102 0.51457317 0.41503750 0.71049338
## 17 0.41503750 0.41503750 0.45943162 0.23446525 0.32192809 0.37196878 0.29956028
## 18 0.51457317 0.36257008 0.26303441 0.16992500 0.41503750 0.32192809 0.58496250
## 19 0.45943162 0.16992500 0.23446525 0.28950662 0.23446525 0.28950662 0.65207670
## 20 0.26303441 0.41503750 0.32192809 0.37196878 0.16992500 0.23446525 0.62148838
## 8 9 10 11 12 13 14
## 2
## 3
## 4
## 5
## 6
## 7
## 8
## 9 0.23446525
## 10 0.21150411 0.28950662
## 11 0.45943162 0.41503750 0.37196878
## 12 0.45943162 0.41503750 0.37196878 0.19264508
## 13 0.28950662 0.37196878 0.07400058 0.32192809 0.45943162
## 14 0.51457317 0.62148838 0.41503750 0.58496250 0.58496250 0.36257008
## 15 0.37196878 0.45943162 0.28950662 0.26303441 0.09310940 0.37196878 0.46948528
## 16 0.41503750 0.65207670 0.45943162 0.46948528 0.46948528 0.41503750 0.34792330
## 17 0.23446525 0.16992500 0.15200309 0.55254102 0.55254102 0.23446525 0.46948528
## 18 0.45943162 0.26303441 0.23446525 0.51457317 0.51457317 0.32192809 0.58496250
## 19 0.15200309 0.37196878 0.21150411 0.32192809 0.32192809 0.28950662 0.51457317
## 20 0.23446525 0.32192809 0.28950662 0.41503750 0.55254102 0.23446525 0.62148838
## 15 16 17 18 19
## 2
## 3
## 4
## 5
## 6
## 7
## 8
## 9
## 10
## 11
## 12
## 13
## 14
## 15
## 16 0.36257008
## 17 0.45943162 0.65207670
## 18 0.55254102 0.62148838 0.26303441
## 19 0.23446525 0.41503750 0.37196878 0.45943162
## 20 0.45943162 0.36257008 0.32192809 0.41503750 0.37196878
## 'adonis' will be deprecated: use 'adonis2' instead
## $aov.tab
## Permutation: free
## Number of permutations: 200
##
## Terms added sequentially (first to last)
##
## Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
## site 2 0.5016 0.250799 3.7814 0.3079 0.004975 **
## Residuals 17 1.1275 0.066325 0.6921
## Total 19 1.6291 1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## $call
## adonis(formula = betad ~ site, data = datos, permutations = 200)
##
## $coefficients
## NULL
##
## $coef.sites
## [,1] [,2] [,3] [,4] [,5]
## (Intercept) 0.37686206 0.42367121 0.3703569 0.3381194 0.36625679
## site1 -0.06434312 0.12053360 0.1835476 0.1444982 0.09934578
## site2 0.04688956 -0.09697783 -0.1150851 -0.1097459 -0.09578468
## [,6] [,7] [,8] [,9] [,10]
## (Intercept) 0.32436902 0.52372313 0.33908601 0.3804905 0.28174411
## site1 0.13074782 -0.07723391 0.06102942 0.1155127 0.10845229
## site2 -0.05184461 0.05675224 -0.08031196 -0.1252187 -0.04819713
## [,11] [,12] [,13] [,14] [,15]
## (Intercept) 0.389640347 0.38144551 0.31471880 0.49169376 0.33213071
## site1 0.154564464 0.12945877 0.08249672 -0.08373356 0.07267062
## site2 0.005160612 0.02855576 -0.01324373 0.09202375 0.05593624
## [,16] [,17] [,18] [,19] [,20]
## (Intercept) 0.43383468 0.36867881 0.4231879 0.33860270 0.36059263
## site1 -0.08972528 0.06293876 0.1210169 0.14401486 0.01312362
## site2 0.08835801 -0.08445635 -0.1254452 -0.08127859 -0.04272739
##
## $f.perms
## [,1]
## [1,] 0.84933004
## [2,] 1.78082837
## [3,] 1.36347305
## [4,] 1.27163201
## [5,] 0.79734165
## [6,] 0.16704101
## [7,] 0.74427568
## [8,] 1.75568115
## [9,] 0.40071519
## [10,] 2.07823450
## [11,] 0.99384932
## [12,] 1.04809568
## [13,] 2.20221539
## [14,] 1.05971453
## [15,] 1.24250430
## [16,] 0.75131888
## [17,] 0.17169182
## [18,] 1.47625226
## [19,] 0.75858202
## [20,] 1.28124766
## [21,] 0.60871049
## [22,] 1.12135962
## [23,] 0.60870589
## [24,] 1.51085237
## [25,] 1.23186850
## [26,] 1.75221378
## [27,] 1.55729763
## [28,] 0.78587474
## [29,] 0.37921259
## [30,] 1.09462004
## [31,] 0.87222927
## [32,] 0.38286955
## [33,] 2.04863263
## [34,] 0.86338177
## [35,] 0.51706654
## [36,] 0.74127152
## [37,] 0.77419727
## [38,] 0.54381616
## [39,] 0.78398489
## [40,] 0.56328721
## [41,] -0.08183712
## [42,] 0.63803441
## [43,] 1.08561408
## [44,] 1.80761236
## [45,] 2.32938623
## [46,] 0.73905501
## [47,] 0.39978066
## [48,] 0.72041308
## [49,] 2.00765977
## [50,] 0.85896374
## [51,] 1.05480057
## [52,] 0.92849537
## [53,] 1.65285042
## [54,] 0.79624331
## [55,] 1.21586609
## [56,] 1.78529827
## [57,] 2.01085429
## [58,] 1.19071370
## [59,] -0.07523473
## [60,] 0.93323988
## [61,] 1.28125336
## [62,] 0.79926471
## [63,] 0.54438929
## [64,] 0.76811824
## [65,] 0.82458334
## [66,] 1.65030415
## [67,] 1.22850351
## [68,] 1.42525166
## [69,] 0.62422834
## [70,] 1.58004213
## [71,] 0.75584108
## [72,] 0.94952498
## [73,] 1.01861238
## [74,] 0.60425036
## [75,] 1.94061407
## [76,] 0.79537380
## [77,] 0.10672909
## [78,] 1.69291613
## [79,] 0.38782323
## [80,] 1.62258493
## [81,] 0.43403039
## [82,] 0.44362465
## [83,] 0.99711522
## [84,] 1.27215799
## [85,] 1.18091157
## [86,] 1.08625767
## [87,] 1.88122682
## [88,] 1.07406377
## [89,] 0.66685030
## [90,] 1.03726385
## [91,] 0.73656595
## [92,] 1.76608451
## [93,] 0.40113197
## [94,] 0.97459568
## [95,] 0.04842037
## [96,] 1.81544556
## [97,] 0.52434845
## [98,] 1.68907937
## [99,] 1.31198291
## [100,] 2.08003470
## [101,] 1.04251260
## [102,] 1.05467047
## [103,] 0.55934616
## [104,] 0.81231909
## [105,] 0.92518801
## [106,] 2.01170847
## [107,] 0.52639537
## [108,] 0.70344114
## [109,] 0.22862857
## [110,] 1.55445514
## [111,] 0.60680972
## [112,] 0.91963857
## [113,] 1.08973865
## [114,] 1.55462660
## [115,] 2.35480272
## [116,] 1.23099115
## [117,] 0.79805643
## [118,] 1.16260903
## [119,] 1.94258408
## [120,] 0.50510533
## [121,] 0.71524075
## [122,] 0.51984930
## [123,] 1.54473187
## [124,] 0.44403732
## [125,] 0.45508099
## [126,] -0.03777452
## [127,] 2.54124017
## [128,] 1.57867627
## [129,] 1.97103085
## [130,] 1.43009991
## [131,] 0.25007560
## [132,] 2.33636562
## [133,] 1.98430079
## [134,] 0.22461808
## [135,] 0.70424333
## [136,] 0.66349357
## [137,] 1.34037551
## [138,] 0.43434883
## [139,] 2.04695873
## [140,] 1.19396399
## [141,] 0.72763829
## [142,] 1.35618731
## [143,] 0.93859342
## [144,] 1.04564878
## [145,] 0.88827378
## [146,] 1.17339529
## [147,] 0.96539044
## [148,] 0.95904398
## [149,] 0.93188537
## [150,] 1.04587737
## [151,] 0.99560579
## [152,] 2.32723615
## [153,] 2.10444901
## [154,] 2.00202365
## [155,] 1.26222549
## [156,] 2.74109446
## [157,] 0.55463645
## [158,] 1.10931055
## [159,] 0.51525947
## [160,] 0.20304663
## [161,] 2.27245892
## [162,] 1.05497056
## [163,] 1.09992437
## [164,] 0.58000802
## [165,] 0.97336490
## [166,] 1.24441632
## [167,] 0.58008477
## [168,] 0.36693557
## [169,] 0.31748910
## [170,] 0.89489641
## [171,] 0.98687922
## [172,] 1.15957574
## [173,] 1.70993418
## [174,] 1.53024398
## [175,] 1.38910897
## [176,] 0.52768924
## [177,] 1.18202962
## [178,] 1.82819534
## [179,] 0.95704008
## [180,] 1.32198386
## [181,] 0.23059912
## [182,] 0.50001406
## [183,] 1.25565939
## [184,] 1.26499982
## [185,] 0.78531173
## [186,] 0.73478527
## [187,] 0.54306253
## [188,] 0.37944948
## [189,] 0.37344605
## [190,] 2.95274067
## [191,] 1.17833095
## [192,] 1.47523997
## [193,] 0.72988118
## [194,] 0.87175920
## [195,] 0.51553648
## [196,] 0.51249376
## [197,] 0.95053412
## [198,] 0.68155410
## [199,] 1.19605061
## [200,] 0.23146597
##
## $model.matrix
## (Intercept) site1 site2
## 1 1 1 0
## 2 1 0 1
## 3 1 0 1
## 4 1 0 1
## 5 1 0 1
## 6 1 0 1
## 7 1 1 0
## 8 1 0 1
## 9 1 0 1
## 10 1 -1 -1
## 11 1 -1 -1
## 12 1 -1 -1
## 13 1 -1 -1
## 14 1 1 0
## 15 1 -1 -1
## 16 1 1 0
## 17 1 0 1
## 18 1 0 1
## 19 1 0 1
## 20 1 1 0
##
## $terms
## betad ~ site
## attr(,"variables")
## list(betad, site)
## attr(,"factors")
## site
## betad 0
## site 1
## attr(,"term.labels")
## [1] "site"
## attr(,"order")
## [1] 1
## attr(,"intercept")
## [1] 1
## attr(,"response")
## [1] 1
## attr(,".Environment")
## <environment: R_GlobalEnv>
##
## attr(,"class")
## [1] "adonis"
## Rows: 32 Columns: 12
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): car
## dbl (11): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 10 × 12
## mpg cyl disp hp drat wt qsec vs am gear carb car
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 Mazda RX4
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 Mazda RX4 …
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 Datsun 710
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 Hornet 4 D…
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 Hornet Spo…
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 Valiant
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 Duster 360
## 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 Merc 240D
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 Merc 230
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 Merc 280
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
## 6.60840025 2.65046789 0.62719727 0.26959744 0.22345110 0.21159612 0.13526199
## Comp.8 Comp.9 Comp.10 Comp.11
## 0.12290143 0.07704665 0.05203544 0.02204441
## Importance of components:
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## Standard deviation 2.5706809 1.6280258 0.79195787 0.51922773 0.47270615
## Proportion of Variance 0.6007637 0.2409516 0.05701793 0.02450886 0.02031374
## Cumulative Proportion 0.6007637 0.8417153 0.89873322 0.92324208 0.94355581
## Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
## Standard deviation 0.45999578 0.36777981 0.35057301 0.277572792 0.228112781
## Proportion of Variance 0.01923601 0.01229654 0.01117286 0.007004241 0.004730495
## Cumulative Proportion 0.96279183 0.97508837 0.98626123 0.993265468 0.997995963
## Comp.11
## Standard deviation 0.148473587
## Proportion of Variance 0.002004037
## Cumulative Proportion 1.000000000
##
## Loadings:
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
## mpg 0.363 0.226 0.103 0.109 0.368 0.754 0.236 0.139
## cyl -0.374 0.175 -0.169 0.231 -0.846
## disp -0.368 -0.257 0.394 0.336 0.214 0.198
## hp -0.330 0.249 -0.140 0.540 0.222 -0.576 0.248
## drat 0.294 0.275 -0.161 -0.855 -0.244 -0.101
## wt -0.346 -0.143 -0.342 -0.246 0.465 0.359
## qsec 0.200 -0.463 -0.403 -0.165 0.330 0.232 -0.528 -0.271
## vs 0.307 -0.232 -0.429 0.215 0.600 -0.194 -0.266 0.359 -0.159
## am 0.235 0.429 0.206 0.571 -0.587 -0.178
## gear 0.207 0.462 -0.290 0.265 0.244 0.605 -0.336 -0.214
## carb -0.214 0.414 -0.529 0.127 -0.361 -0.184 -0.175 0.396 0.171
## Comp.11
## mpg 0.125
## cyl 0.141
## disp -0.661
## hp 0.256
## drat
## wt 0.567
## qsec -0.181
## vs
## am
## gear
## carb -0.320
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
## car
## Mazda RX4 Mazda RX4
## Mazda RX4 Wag Mazda RX4 Wag
## Datsun 710 Datsun 710
## Hornet 4 Drive Hornet 4 Drive
## Hornet Sportabout Hornet Sportabout
## Valiant Valiant
## Duster 360 Duster 360
## Merc 240D Merc 240D
## Merc 230 Merc 230
## Merc 280 Merc 280
## Merc 280C Merc 280C
## Merc 450SE Merc 450SE
## Merc 450SL Merc 450SL
## Merc 450SLC Merc 450SLC
## Cadillac Fleetwood Cadillac Fleetwood
## Lincoln Continental Lincoln Continental
## Chrysler Imperial Chrysler Imperial
## Fiat 128 Fiat 128
## Honda Civic Honda Civic
## Toyota Corolla Toyota Corolla
## Toyota Corona Toyota Corona
## Dodge Challenger Dodge Challenger
## AMC Javelin AMC Javelin
## Camaro Z28 Camaro Z28
## Pontiac Firebird Pontiac Firebird
## Fiat X1-9 Fiat X1-9
## Porsche 914-2 Porsche 914-2
## Lotus Europa Lotus Europa
## Ford Pantera L Ford Pantera L
## Ferrari Dino Ferrari Dino
## Maserati Bora Maserati Bora
## Volvo 142E Volvo 142E
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse
## Too few points to calculate an ellipse