Fine and Gray event: death competing risk: liver transplant multivariate

master$status_90days <- as.factor(master$status_90days)
tidycmprsk::crr(Surv(time_90days,status_90days) ~race_cat_new+age_admission+sex+MELD_Na_baseline+alb_admit+baseline_creatinine+encephalopathy_admission+alcoholic_hepatitis_admission,failcode=1,cencode=0, data = master) %>% tbl_regression(exp = TRUE)%>%
  bold_p(0.01) %>%        # bold p-values under a given threshold (default 0.05)
  bold_labels() %>% add_n()
## 305 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
race_cat_new 1,589
    White
    Black or African American 1.14 0.85, 1.52 0.4
    Other 0.81 0.57, 1.14 0.2
age_admission 1,589 1.02 1.01, 1.03 <0.001
sex 1,589
    1
    2 1.06 0.89, 1.26 0.5
MELD_Na_baseline 1,589 1.06 1.04, 1.07 <0.001
alb_admit 1,589 0.61 0.53, 0.71 <0.001
baseline_creatinine 1,589 0.75 0.63, 0.90 0.002
encephalopathy_admission 1,589
    0
    1 1.45 1.21, 1.75 <0.001
alcoholic_hepatitis_admission 1,589
    0
    1 0.92 0.71, 1.19 0.5
1 HR = Hazard Ratio, CI = Confidence Interval

Fine and Gray event: death competing risk: liver transplant multivariate

master$status_90days <- as.factor(master$status_90days)
tidycmprsk::crr(Surv(time_90days,status_90days) ~hispanic_race+age_admission+sex+MELD_Na_baseline+alb_admit+baseline_creatinine+encephalopathy_admission+alcoholic_hepatitis_admission,failcode=1,cencode=0, data = master) %>% tbl_regression(exp = TRUE)%>%
  bold_p(0.01) %>%        # bold p-values under a given threshold (default 0.05)
  bold_labels() %>% add_n()
## 305 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
hispanic_race 1,589 0.76 0.55, 1.06 0.10
age_admission 1,589 1.02 1.01, 1.03 <0.001
sex 1,589
    1
    2 1.04 0.87, 1.24 0.7
MELD_Na_baseline 1,589 1.06 1.04, 1.07 <0.001
alb_admit 1,589 0.61 0.53, 0.71 <0.001
baseline_creatinine 1,589 0.76 0.63, 0.91 0.003
encephalopathy_admission 1,589
    0
    1 1.46 1.21, 1.76 <0.001
alcoholic_hepatitis_admission 1,589
    0
    1 0.93 0.72, 1.20 0.6
1 HR = Hazard Ratio, CI = Confidence Interval

multivariate logistic regression outcome icu_admission

glm(icu_admission ~ hispanic_race+age_admission+sex+MELD_Na_baseline+alb_admit+encephalopathy_admission+alcoholic_hepatitis_admission+htn+cad+ckd, family = binomial(link = 'logit'),data=master)  %>%  tbl_regression(exponentiate = TRUE,
                       pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>% 
  modify_spanning_header(
    c(estimate, ci, p.value) ~  
      "**icu_admission mutilvariate logistic regression**")%>% add_n()
Characteristic N icu_admission mutilvariate logistic regression
OR1 95% CI1 p-value
hispanic_race 1,876 0.97 0.70, 1.36 0.877
age_admission 1,876 0.99 0.98, 1.00 0.004
sex 1,876
    1
    2 0.99 0.81, 1.21 0.907
MELD_Na_baseline 1,876 1.04 1.03, 1.05 <0.001
alb_admit 1,876 0.70 0.61, 0.81 <0.001
encephalopathy_admission 1,876
    0
    1 1.29 1.06, 1.57 0.012
alcoholic_hepatitis_admission 1,876
    0
    1 0.91 0.69, 1.21 0.522
htn 1,876
    0
    1 0.98 0.80, 1.21 0.876
cad 1,876
    0
    1 1.03 0.79, 1.33 0.833
ckd 1,876
    0
    1 0.68 0.54, 0.84 <0.001
1 OR = Odds Ratio, CI = Confidence Interval

multivariate logistic regression outcome transplant_evaluation_outcome

glm(transplant_evaluation_outcome ~ hispanic_race+age_admission+sex+MELD_Na_baseline+alb_admit+encephalopathy_admission+alcoholic_hepatitis_admission+htn+cad+ckd, family = binomial(link = 'logit'),data=master)  %>%  tbl_regression(exponentiate = TRUE,
                       pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>% 
  modify_spanning_header(
    c(estimate, ci, p.value) ~  
      "**transplant_evaluation_outcome mutilvariate logistic regression**") %>% add_n()
Characteristic N transplant_evaluation_outcome mutilvariate logistic regression
OR1 95% CI1 p-value
hispanic_race 1,878 2.87 1.67, 4.75 <0.001
age_admission 1,878 1.00 0.98, 1.01 0.675
sex 1,878
    1
    2 1.73 1.16, 2.58 0.007
MELD_Na_baseline 1,878 1.10 1.08, 1.13 <0.001
alb_admit 1,878 1.28 0.98, 1.67 0.072
encephalopathy_admission 1,878
    0
    1 0.91 0.61, 1.38 0.652
alcoholic_hepatitis_admission 1,878
    0
    1 0.50 0.26, 0.91 0.030
htn 1,878
    0
    1 1.02 0.67, 1.54 0.937
cad 1,878
    0
    1 0.80 0.40, 1.46 0.483
ckd 1,878
    0
    1 0.85 0.52, 1.37 0.521
1 OR = Odds Ratio, CI = Confidence Interval

multivariate logistic regression outcome transplant_evaluation_outcome

glm(transplant_evaluation_outcome ~ hispanic_race+age_admission+sex+MELD_Na_baseline+alb_admit+encephalopathy_admission+alcoholic_hepatitis_admission+htn+cad+ckd, family = binomial(link = 'logit'),data=master)  %>%  tbl_regression(exponentiate = TRUE,
                       pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>% 
  modify_spanning_header(
    c(estimate, ci, p.value) ~  
      "**transplant_evaluation_outcome mutilvariate logistic regression**")%>% add_n()
Characteristic N transplant_evaluation_outcome mutilvariate logistic regression
OR1 95% CI1 p-value
hispanic_race 1,878 2.87 1.67, 4.75 <0.001
age_admission 1,878 1.00 0.98, 1.01 0.675
sex 1,878
    1
    2 1.73 1.16, 2.58 0.007
MELD_Na_baseline 1,878 1.10 1.08, 1.13 <0.001
alb_admit 1,878 1.28 0.98, 1.67 0.072
encephalopathy_admission 1,878
    0
    1 0.91 0.61, 1.38 0.652
alcoholic_hepatitis_admission 1,878
    0
    1 0.50 0.26, 0.91 0.030
htn 1,878
    0
    1 1.02 0.67, 1.54 0.937
cad 1,878
    0
    1 0.80 0.40, 1.46 0.483
ckd 1,878
    0
    1 0.85 0.52, 1.37 0.521
1 OR = Odds Ratio, CI = Confidence Interval

multivariate logistic regression outcome rrt

glm(rrt ~ hispanic_race+age_admission+sex+MELD_Na_baseline+alb_admit+encephalopathy_admission+alcoholic_hepatitis_admission+htn+cad+ckd, family = binomial(link = 'logit'),data=master)  %>%  tbl_regression(exponentiate = TRUE,
                       pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>% 
  modify_spanning_header(
    c(estimate, ci, p.value) ~  
      "**rrt mutilvariate logistic regression**")%>% add_n()
Characteristic N rrt mutilvariate logistic regression
OR1 95% CI1 p-value
hispanic_race 1,875 1.80 1.20, 2.66 0.004
age_admission 1,875 0.98 0.97, 0.99 <0.001
sex 1,875
    1
    2 1.41 1.08, 1.82 0.010
MELD_Na_baseline 1,875 1.09 1.07, 1.11 <0.001
alb_admit 1,875 1.06 0.89, 1.26 0.543
encephalopathy_admission 1,875
    0
    1 1.16 0.89, 1.52 0.278
alcoholic_hepatitis_admission 1,875
    0
    1 0.71 0.49, 1.01 0.064
htn 1,875
    0
    1 0.83 0.63, 1.08 0.158
cad 1,875
    0
    1 1.23 0.85, 1.77 0.269
ckd 1,875
    0
    1 1.02 0.75, 1.37 0.903
1 OR = Odds Ratio, CI = Confidence Interval

race

multivariate logistic regression outcome icu_admission

glm(icu_admission ~ race_cat_new+age_admission+sex+MELD_Na_baseline+alb_admit+encephalopathy_admission+alcoholic_hepatitis_admission+htn+cad+ckd, family = binomial(link = 'logit'),data=master)  %>%  tbl_regression(exponentiate = TRUE,
                       pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>% 
  modify_spanning_header(
    c(estimate, ci, p.value) ~  
      "**icu_admission mutilvariate logistic regression**")%>% add_n()
Characteristic N icu_admission mutilvariate logistic regression
OR1 95% CI1 p-value
race_cat_new 1,876
    White
    Black or African American 0.82 0.59, 1.15 0.258
    Other 1.17 0.81, 1.68 0.397
age_admission 1,876 0.99 0.98, 1.00 0.004
sex 1,876
    1
    2 0.99 0.81, 1.20 0.886
MELD_Na_baseline 1,876 1.04 1.03, 1.05 <0.001
alb_admit 1,876 0.70 0.61, 0.80 <0.001
encephalopathy_admission 1,876
    0
    1 1.29 1.06, 1.57 0.012
alcoholic_hepatitis_admission 1,876
    0
    1 0.91 0.69, 1.21 0.536
htn 1,876
    0
    1 1.00 0.81, 1.22 0.980
cad 1,876
    0
    1 1.03 0.79, 1.34 0.828
ckd 1,876
    0
    1 0.68 0.55, 0.85 <0.001
1 OR = Odds Ratio, CI = Confidence Interval

multivariate logistic regression outcome transplant_evaluation_outcome

glm(transplant_evaluation_outcome ~ race_cat_new+age_admission+sex+MELD_Na_baseline+alb_admit+encephalopathy_admission+alcoholic_hepatitis_admission+htn+cad+ckd, family = binomial(link = 'logit'),data=master)  %>%  tbl_regression(exponentiate = TRUE,
                       pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>% 
  modify_spanning_header(
    c(estimate, ci, p.value) ~  
      "**transplant_evaluation_outcome mutilvariate logistic regression**") %>% add_n()
Characteristic N transplant_evaluation_outcome mutilvariate logistic regression
OR1 95% CI1 p-value
race_cat_new 1,878
    White
    Black or African American 0.97 0.42, 1.96 0.931
    Other 3.28 1.90, 5.51 <0.001
age_admission 1,878 1.00 0.98, 1.01 0.606
sex 1,878
    1
    2 1.62 1.09, 2.42 0.017
MELD_Na_baseline 1,878 1.10 1.07, 1.13 <0.001
alb_admit 1,878 1.27 0.97, 1.65 0.081
encephalopathy_admission 1,878
    0
    1 0.92 0.61, 1.39 0.678
alcoholic_hepatitis_admission 1,878
    0
    1 0.51 0.27, 0.92 0.034
htn 1,878
    0
    1 1.08 0.71, 1.64 0.733
cad 1,878
    0
    1 0.80 0.41, 1.48 0.504
ckd 1,878
    0
    1 0.88 0.53, 1.42 0.615
1 OR = Odds Ratio, CI = Confidence Interval

multivariate logistic regression outcome transplant_evaluation_outcome

glm(transplant_evaluation_outcome ~ race_cat_new+age_admission+sex+MELD_Na_baseline+alb_admit+encephalopathy_admission+alcoholic_hepatitis_admission+htn+cad+ckd, family = binomial(link = 'logit'),data=master)  %>%  tbl_regression(exponentiate = TRUE,
                       pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>% 
  modify_spanning_header(
    c(estimate, ci, p.value) ~  
      "**transplant_evaluation_outcome mutilvariate logistic regression**")%>% add_n()
Characteristic N transplant_evaluation_outcome mutilvariate logistic regression
OR1 95% CI1 p-value
race_cat_new 1,878
    White
    Black or African American 0.97 0.42, 1.96 0.931
    Other 3.28 1.90, 5.51 <0.001
age_admission 1,878 1.00 0.98, 1.01 0.606
sex 1,878
    1
    2 1.62 1.09, 2.42 0.017
MELD_Na_baseline 1,878 1.10 1.07, 1.13 <0.001
alb_admit 1,878 1.27 0.97, 1.65 0.081
encephalopathy_admission 1,878
    0
    1 0.92 0.61, 1.39 0.678
alcoholic_hepatitis_admission 1,878
    0
    1 0.51 0.27, 0.92 0.034
htn 1,878
    0
    1 1.08 0.71, 1.64 0.733
cad 1,878
    0
    1 0.80 0.41, 1.48 0.504
ckd 1,878
    0
    1 0.88 0.53, 1.42 0.615
1 OR = Odds Ratio, CI = Confidence Interval

multivariate logistic regression outcome rrt

table(master$rrt,master$aki_stage_4)
##    
##       1   2   3   4
##   0 641 442 462   0
##   1   0   0   0 334
glm(rrt ~ race_cat_new+age_admission+sex+MELD_Na_baseline+alb_admit+encephalopathy_admission+alcoholic_hepatitis_admission+htn+cad+ckd, family = binomial(link = 'logit'),data=master)  %>%  tbl_regression(exponentiate = TRUE,
                       pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>% 
  modify_spanning_header(
    c(estimate, ci, p.value) ~  
      "**rrt mutilvariate logistic regression**")%>% add_n()
Characteristic N rrt mutilvariate logistic regression
OR1 95% CI1 p-value
race_cat_new 1,875
    White
    Black or African American 1.28 0.82, 1.95 0.269
    Other 2.46 1.63, 3.70 <0.001
age_admission 1,875 0.98 0.97, 0.99 <0.001
sex 1,875
    1
    2 1.36 1.04, 1.76 0.022
MELD_Na_baseline 1,875 1.09 1.07, 1.11 <0.001
alb_admit 1,875 1.06 0.89, 1.27 0.508
encephalopathy_admission 1,875
    0
    1 1.15 0.88, 1.51 0.310
alcoholic_hepatitis_admission 1,875
    0
    1 0.73 0.50, 1.04 0.082
htn 1,875
    0
    1 0.84 0.64, 1.10 0.201
cad 1,875
    0
    1 1.23 0.85, 1.78 0.267
ckd 1,875
    0
    1 1.03 0.76, 1.40 0.837
1 OR = Odds Ratio, CI = Confidence Interval