Segregation and inequality in Texas cities

r = getOption("repos")
r["CRAN"] = "https://cran.wustl.edu/"
options(repos = r)

install.packages("tidyverse")
## Installing package into 'C:/Users/canda/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'tidyverse' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\canda\AppData\Local\Temp\RtmpWMLik4\downloaded_packages
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.2
library(stats)
library(car)
## Loading required package: carData
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(lavaan)
## Warning: package 'lavaan' was built under R version 4.3.2
## This is lavaan 0.6-17
## lavaan is FREE software! Please report any bugs.
cities <- read.csv('C:/Users/canda/DEM Dissertation Data/citiesALLYRS.csv', na.strings=c("NA"))
cities <- cities %>% mutate_if(is.character, as.numeric)
## Warning: There were 17 warnings in `mutate()`.
## The first warning was:
## ℹ In argument: `cityname = .Primitive("as.double")(cityname)`.
## Caused by warning:
## ! NAs introduced by coercion
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 16 remaining warnings.
cities$Proximity<-as.factor(ifelse(cities$Proximity==1, "In Proximity", "Not in Prox"))
stargazer(cities, header=FALSE, type='text', title="Descriptive Statistics",digits=1)
## 
## Descriptive Statistics
## =================================================
## Statistic  N    Mean   St. Dev.   Min      Max   
## -------------------------------------------------
## placefp20 269 40,429.3 23,084.4  1,000   80,356  
## Miles     114   6.5       5.5     0.0     21.0   
## pboo_20   262   8.4      10.6     0.0     67.1   
## pboo_10   240   8.6      11.0     0.05    65.6   
## pboo_00   256   7.1       9.1     0.0     61.0   
## pboo_90   257   6.5       8.6     0.0     60.6   
## pboo_80   241   5.3       7.1     0.0     33.9   
## t_20      261 75,666.4 207,759.0 10,070 2,304,580
## pb_20     261   12.1     11.9     0.03    71.3   
## dbw_20    261   25.4     12.1     0.0     69.1   
## t_10      240 70,884.6 194,929.2 10,127 2,099,451
## pb_10     240   11.4     12.1     0.03    69.4   
## dbw_10    240   27.2     14.1     0.0     82.2   
## t_00      204 68,784.7 190,685.1 10,302 1,953,631
## pb_00     204   10.2     11.0     0.03    57.3   
## dbw_00    204   30.8     16.0     0.0     75.6   
## t_90      180 62,715.0 167,886.9 10,023 1,630,553
## pb_90     180   9.5      10.5     0.0     60.6   
## dbw_90    180   34.4     18.5     0.0     80.8   
## t_80      154 60,676.7 165,936.1 10,197 1,595,138
## pb_80     154   8.6       9.8     0.01    40.1   
## dbw_80    154   43.4     22.1     0.0     93.2   
## gini_2020 262   0.4       0.1     0.3      0.5   
## gini_10   53    0.4       0.1     0.3      0.6   
## -------------------------------------------------
stargazer(cities[c("pboo_20","t_20","dbw_20")], header=FALSE, type='text', 
          title="Descriptive Statistics 2020", digits=2,
          covariate.labels=c("Black Homeownership","City Population","B-W Dissimilarity")
          )
## 
## Descriptive Statistics 2020
## =============================================================
## Statistic            N    Mean     St. Dev.   Min      Max   
## -------------------------------------------------------------
## Black Homeownership 262   8.42      10.61     0.00    67.12  
## City Population     261 75,666.40 207,759.00 10,070 2,304,580
## B-W Dissimilarity   261   25.38     12.07     0.00    69.14  
## -------------------------------------------------------------
stargazer(cities[c("pboo_10","t_10","dbw_10")], header=FALSE, type='text', 
          title="Descriptive Statistics 2010", digits=2,
          covariate.labels=c("Black Homeownership","City Population","B-W Dissimilarity")
          )
## 
## Descriptive Statistics 2010
## =============================================================
## Statistic            N    Mean     St. Dev.   Min      Max   
## -------------------------------------------------------------
## Black Homeownership 240   8.58      11.03     0.05    65.63  
## City Population     240 70,884.63 194,929.20 10,127 2,099,451
## B-W Dissimilarity   240   27.19     14.07     0.00    82.22  
## -------------------------------------------------------------
stargazer(cities[c("pboo_00","t_00","dbw_00")], header=FALSE, type='text', 
          title="Descriptive Statistics 2000", digits=2,
          covariate.labels=c("Black Homeownership","City Population","B-W Dissimilarity")
          )
## 
## Descriptive Statistics 2000
## =============================================================
## Statistic            N    Mean     St. Dev.   Min      Max   
## -------------------------------------------------------------
## Black Homeownership 256   7.07       9.08     0.00    61.00  
## City Population     204 68,784.74 190,685.10 10,302 1,953,631
## B-W Dissimilarity   204   30.84     15.98     0.00    75.64  
## -------------------------------------------------------------
stargazer(cities[c("pboo_90","t_90","dbw_90")], header=FALSE, type='text', 
          title="Descriptive Statistics 1990", digits=2,
          covariate.labels=c("Black Homeownership","City Population","B-W Dissimilarity")
          )
## 
## Descriptive Statistics 1990
## =============================================================
## Statistic            N    Mean     St. Dev.   Min      Max   
## -------------------------------------------------------------
## Black Homeownership 257   6.45       8.59     0.00    60.64  
## City Population     180 62,714.99 167,886.90 10,023 1,630,553
## B-W Dissimilarity   180   34.40     18.49     0.00    80.76  
## -------------------------------------------------------------
stargazer(cities[c("pboo_80","t_80","dbw_80")], header=FALSE, type='text', 
          title="Descriptive Statistics 1980", digits=2,
          covariate.labels=c("Black Homeownership","City Population","B-W Dissimilarity")
          )
## 
## Descriptive Statistics 1980
## =============================================================
## Statistic            N    Mean     St. Dev.   Min      Max   
## -------------------------------------------------------------
## Black Homeownership 241   5.32       7.07     0.00    33.94  
## City Population     154 60,676.74 165,936.10 10,197 1,595,138
## B-W Dissimilarity   154   43.36     22.13     0.00    93.17  
## -------------------------------------------------------------
object <- sapply(cities, function(x) sum(is.na(x)))


#Cities In Proximity = 1, Cities Not in Proximity = 0

cities$Proximity <- factor(cities$Proximity, ordered = FALSE )

# Make "Not in Proximity" the reference category
cities$Proximity <- relevel(cities$Proximity, ref = "Not in Prox")
table(cities$Proximity)
## 
##  Not in Prox In Proximity 
##          162          107
Count of missing values of Percent Black Homeownership for cities 2020 (pboo_20) = 11, 2010 (pboo_10) = 31, 2000 (pboo_00) = 14, 1990 (pboo_90) = 90, 1980 (pboo_80) = 115

Racial residential segregation and proximity to freedom colonies

#The correlation between segregation and Black home ownership yielded a weak positive association in all years with a coefficient of 0.0363 in 2020, 0.0815 in 2010, and 0.2355 in 2000.

cor.test(cities$dbw_20,cities$pboo_20)
## 
##  Pearson's product-moment correlation
## 
## data:  cities$dbw_20 and cities$pboo_20
## t = 0.50531, df = 259, p-value = 0.6138
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.09038165  0.15222271
## sample estimates:
##        cor 
## 0.03138275
plot(cities$dbw_20,cities$pboo_20,pch=20,
     xlab='D index',ylab='Percent Black Homeowners',
     main='Cities by Residential Segregation and Black Homeownership in 2020')

cor.test(cities$dbw_10,cities$pboo_10)
## 
##  Pearson's product-moment correlation
## 
## data:  cities$dbw_10 and cities$pboo_10
## t = 1.3949, df = 238, p-value = 0.1644
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.03700425  0.21423467
## sample estimates:
##        cor 
## 0.09004761
plot(cities$dbw_10,cities$pboo_10,pch=20,
     xlab='D index',ylab='Percent Black Homeowners',
     main='Cities by Residential Segregation and Black Homeownership in 2010')

cor.test(cities$dbw_00,cities$pboo_00)
## 
##  Pearson's product-moment correlation
## 
## data:  cities$dbw_00 and cities$pboo_00
## t = 4.093, df = 198, p-value = 6.198e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1462256 0.4024463
## sample estimates:
##       cor 
## 0.2793003
plot(cities$dbw_00,cities$pboo_00,pch=20,
     xlab='D index',ylab='Percent Black Homeowners',
     main='Cities by Residential Segregation and Black Homeownership in 2000')

cor.test(cities$dbw_90,cities$pboo_90)
## 
##  Pearson's product-moment correlation
## 
## data:  cities$dbw_90 and cities$pboo_90
## t = 5.3203, df = 177, p-value = 3.103e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2375754 0.4912287
## sample estimates:
##       cor 
## 0.3713092
plot(cities$dbw_90,cities$pboo_90,pch=20,
     xlab='D index',ylab='Percent Black Homeowners',
     main='Cities by Residential Segregation and Black Homeownership in 1990')

cor.test(cities$dbw_80,cities$pboo_80)
## 
##  Pearson's product-moment correlation
## 
## data:  cities$dbw_80 and cities$pboo_80
## t = 5.1751, df = 152, p-value = 7.102e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2438040 0.5137519
## sample estimates:
##       cor 
## 0.3870404
plot(cities$dbw_80,cities$pboo_80,pch=20,
     xlab='D index',ylab='Percent Black Homeowners',
     main='Cities by Residential Segregation and Black Homeownership in 1980')

hyp20 <- ggplot(cities, aes(dbw_20, Proximity, col = dbw_20)) +
  geom_point()
hyp20 + expand_limits(x=c(0,100))
## Warning: Removed 8 rows containing missing values (`geom_point()`).

hyp10 <- ggplot(cities, aes(dbw_10, Proximity, col = dbw_10)) +
  geom_point()
hyp10 + expand_limits(x=c(0,100))
## Warning: Removed 29 rows containing missing values (`geom_point()`).

hyp00 <- ggplot(cities, aes(dbw_00, Proximity, col = dbw_00)) +
  geom_point()
hyp00 + expand_limits(x=c(0,100))
## Warning: Removed 65 rows containing missing values (`geom_point()`).

hyp90 <- ggplot(cities, aes(dbw_90, Proximity, col = dbw_90)) +
  geom_point()
hyp90 + expand_limits(x=c(0,100))
## Warning: Removed 89 rows containing missing values (`geom_point()`).

hyp80 <- ggplot(cities, aes(dbw_80, Proximity, col = dbw_80)) +
  geom_point()
hyp80 + expand_limits(x=c(0,100))
## Warning: Removed 115 rows containing missing values (`geom_point()`).

#The list of cities from the Diversity and Disparities project available for years 1980 - 2020 was used to conduct a binomial regression analysis. Of these cities, 107 were identified as being in proximity to a freedom colony and 165 were not.

table(cities$Proximity)
## 
##  Not in Prox In Proximity 
##          162          107

#The results showed that proximity to freedom colonies INCREASED residential segregation by points in 2020. The results were statistically significant in 2000, but not in 2020, 2010, 1990, or 1980.

fit20=lm(dbw_20 ~ Proximity,cities)
summary(fit20)
## 
## Call:
## lm(formula = dbw_20 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -25.847  -9.357  -0.886   8.475  44.775 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             24.364      0.951  25.618   <2e-16 ***
## ProximityIn Proximity    2.625      1.529   1.717   0.0872 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.03 on 259 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.01125,    Adjusted R-squared:  0.007434 
## F-statistic: 2.947 on 1 and 259 DF,  p-value: 0.08722
fit10=lm(dbw_10 ~ Proximity,cities)
summary(fit10)
## 
## Call:
## lm(formula = dbw_10 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -28.626 -10.226  -1.895   8.190  56.010 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             26.206      1.179  22.233   <2e-16 ***
## ProximityIn Proximity    2.420      1.845   1.312    0.191    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.05 on 238 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.00718,    Adjusted R-squared:  0.003008 
## F-statistic: 1.721 on 1 and 238 DF,  p-value: 0.1908
fit00=lm(dbw_00 ~ Proximity,cities)
summary(fit00)
## 
## Call:
## lm(formula = dbw_00 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -30.194 -11.511  -1.039  10.575  41.698 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             28.809      1.426  20.197   <2e-16 ***
## ProximityIn Proximity    5.128      2.264   2.265   0.0246 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.82 on 202 degrees of freedom
##   (65 observations deleted due to missingness)
## Multiple R-squared:  0.02478,    Adjusted R-squared:  0.01995 
## F-statistic: 5.132 on 1 and 202 DF,  p-value: 0.02455
fit90=lm(dbw_90 ~ Proximity,cities)
summary(fit90)
## 
## Call:
## lm(formula = dbw_90 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -36.428 -13.894  -0.428  16.099  43.493 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             32.584      1.754  18.578   <2e-16 ***
## ProximityIn Proximity    4.681      2.812   1.664   0.0978 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.39 on 178 degrees of freedom
##   (89 observations deleted due to missingness)
## Multiple R-squared:  0.01532,    Adjusted R-squared:  0.009793 
## F-statistic:  2.77 on 1 and 178 DF,  p-value: 0.09779
fit80=lm(dbw_80 ~ Proximity,cities)
summary(fit80)
## 
## Call:
## lm(formula = dbw_80 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -41.083 -13.257  -0.672  13.301  49.413 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             41.083      2.271  18.094   <2e-16 ***
## ProximityIn Proximity    5.835      3.638   1.604    0.111    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22.01 on 152 degrees of freedom
##   (115 observations deleted due to missingness)
## Multiple R-squared:  0.01665,    Adjusted R-squared:  0.01018 
## F-statistic: 2.573 on 1 and 152 DF,  p-value: 0.1108

#Alternatively, I used Proximity as the dependent (outcome) variable. The results showed that residential segregation INCREASED proximity by 0.0224 points in 2020. The results were statistically significant. The results were statistically significant in 2020 and 2000, but not in 2010.

model20 = glm(Proximity ~ dbw_20,
            data = cities,
            family = binomial(link="logit"))
model10 = glm(Proximity ~ dbw_10,
            data = cities,
            family = binomial(link="logit"))
model00 = glm(Proximity ~ dbw_00,
            data = cities,
            family = binomial(link="logit"))
model90 = glm(Proximity ~ dbw_90,
            data = cities,
            family = binomial(link="logit"))
model80 = glm(Proximity ~ dbw_80,
            data = cities,
            family = binomial(link="logit"))
summary(model20)
## 
## Call:
## glm(formula = Proximity ~ dbw_20, family = binomial(link = "logit"), 
##     data = cities)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -0.92335    0.30305  -3.047  0.00231 **
## dbw_20       0.01806    0.01061   1.702  0.08877 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 348.37  on 260  degrees of freedom
## Residual deviance: 345.44  on 259  degrees of freedom
##   (8 observations deleted due to missingness)
## AIC: 349.44
## 
## Number of Fisher Scoring iterations: 4
summary(model10)
## 
## Call:
## glm(formula = Proximity ~ dbw_10, family = binomial(link = "logit"), 
##     data = cities)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.706519   0.290099  -2.435   0.0149 *
## dbw_10       0.012254   0.009374   1.307   0.1912  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 324.60  on 239  degrees of freedom
## Residual deviance: 322.88  on 238  degrees of freedom
##   (29 observations deleted due to missingness)
## AIC: 326.88
## 
## Number of Fisher Scoring iterations: 4
summary(model00)
## 
## Call:
## glm(formula = Proximity ~ dbw_00, family = binomial(link = "logit"), 
##     data = cities)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -1.055615   0.324821  -3.250  0.00115 **
## dbw_00       0.020365   0.009159   2.224  0.02618 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 274.09  on 203  degrees of freedom
## Residual deviance: 269.03  on 202  degrees of freedom
##   (65 observations deleted due to missingness)
## AIC: 273.03
## 
## Number of Fisher Scoring iterations: 4
summary(model90)
## 
## Call:
## glm(formula = Proximity ~ dbw_90, family = binomial(link = "logit"), 
##     data = cities)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -0.936893   0.335291  -2.794   0.0052 **
## dbw_90       0.013888   0.008409   1.651   0.0986 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 240.57  on 179  degrees of freedom
## Residual deviance: 237.80  on 178  degrees of freedom
##   (89 observations deleted due to missingness)
## AIC: 241.8
## 
## Number of Fisher Scoring iterations: 4
summary(model80)
## 
## Call:
## glm(formula = Proximity ~ dbw_80, family = binomial(link = "logit"), 
##     data = cities)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -0.983357   0.379342  -2.592  0.00953 **
## dbw_80       0.012146   0.007637   1.590  0.11172   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 205.92  on 153  degrees of freedom
## Residual deviance: 203.34  on 152  degrees of freedom
##   (115 observations deleted due to missingness)
## AIC: 207.34
## 
## Number of Fisher Scoring iterations: 4
Anova(model20,
      type="II",
      test="LR")
## Analysis of Deviance Table (Type II tests)
## 
## Response: Proximity
##        LR Chisq Df Pr(>Chisq)  
## dbw_20    2.929  1      0.087 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Anova(model10,
      type="II",
      test="LR")
## Analysis of Deviance Table (Type II tests)
## 
## Response: Proximity
##        LR Chisq Df Pr(>Chisq)
## dbw_10   1.7182  1     0.1899
Anova(model00,
      type="II",
      test="LR")
## Analysis of Deviance Table (Type II tests)
## 
## Response: Proximity
##        LR Chisq Df Pr(>Chisq)  
## dbw_00   5.0661  1     0.0244 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Anova(model90,
      type="II",
      test="LR")
## Analysis of Deviance Table (Type II tests)
## 
## Response: Proximity
##        LR Chisq Df Pr(>Chisq)  
## dbw_90   2.7681  1    0.09616 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Anova(model80,
      type="II",
      test="LR")
## Analysis of Deviance Table (Type II tests)
## 
## Response: Proximity
##        LR Chisq Df Pr(>Chisq)
## dbw_80   2.5792  1     0.1083

Proximity to freedom colonies and homeownership

install.packages("ggcorrplot")
## Installing package into 'C:/Users/canda/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'ggcorrplot' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\canda\AppData\Local\Temp\RtmpWMLik4\downloaded_packages
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.3.2
library(ggplot2)

#Change proximity to numeric to run correlation matrix

cities <- cities %>% mutate_if(is.character, as.numeric)
cities <- cities %>% mutate_if(is.integer, as.numeric)
cities <- cities %>% mutate_if(is.factor, as.numeric)
cities$t_20 <- log(cities$t_20)

cor_matrix <- cor(cities, use = "pairwise.complete.obs", method = "pearson") %>% 
  ggcorrplot(show.diag=FALSE, type="lower", lab=TRUE, lab_size=2)

print(cor_matrix)

df <- data.frame(cities)

sel20_vars <- c("pboo_20", "t_20","pb_20", "dbw_20")
df_select20 <- df[sel20_vars]

cor_matrix20 <- cor(df_select20, use = "pairwise.complete.obs", method = "pearson") %>% 
  ggcorrplot(show.diag=FALSE, type="lower", lab=TRUE, lab_size=4)

print(cor_matrix20)

df <- data.frame(cities)

sel80_vars <- c("pboo_80", "t_80","pb_80", "dbw_80")
df_select80 <- df[sel80_vars]

cor_matrix80 <- cor(df_select80, use = "pairwise.complete.obs", method = "pearson") %>% 
  ggcorrplot(show.diag=FALSE, type="lower", lab=TRUE, lab_size=4)

print(cor_matrix80)

#log total population due to outliers

hist(cities$t_20)

hist(log(cities$t_20+1), breaks=50)

hist(cities$t_10)

hist(log(cities$t_10+1), breaks=50)

hist(cities$t_00)

hist(log(cities$t_00+1), breaks=50)

hist(cities$t_90)

hist(log(cities$t_90+1), breaks=50)

hist(cities$t_80)

hist(log(cities$t_80+1), breaks=50)

#Run regression with Logged Total population on Percent Black homeownership. No signifigance for any year.

tpop20<- lm(cities$pboo_20 ~ log(cities$t_20))
summary(tpop20)
## 
## Call:
## lm(formula = cities$pboo_20 ~ log(cities$t_20))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.270  -6.448  -4.056   3.111  58.063 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)       -17.554     16.467  -1.066    0.287
## log(cities$t_20)   11.125      7.038   1.581    0.115
## 
## Residual standard error: 10.58 on 259 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.009556,   Adjusted R-squared:  0.005732 
## F-statistic: 2.499 on 1 and 259 DF,  p-value: 0.1152
coef(tpop20)["log(cities$t_20)"]/100
## log(cities$t_20) 
##         0.111247
tpop10<- lm(cities$pboo_10 ~ log(cities$t_10))
summary(tpop10)
## 
## Call:
## lm(formula = cities$pboo_10 ~ log(cities$t_10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.303  -6.725  -4.234   3.273  56.897 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)       -1.7654     7.3455  -0.240    0.810
## log(cities$t_10)   0.9997     0.7066   1.415    0.158
## 
## Residual standard error: 11.01 on 238 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.00834,    Adjusted R-squared:  0.004173 
## F-statistic: 2.002 on 1 and 238 DF,  p-value: 0.1584
coef(tpop10)["log(cities$t_10)"]/100
## log(cities$t_10) 
##       0.00999737
tpop00<- lm(cities$pboo_00 ~ log(cities$t_00))
summary(tpop00)
## 
## Call:
## lm(formula = cities$pboo_00 ~ log(cities$t_00))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -9.365 -6.078 -3.391  2.804 54.268 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)       -3.4256     7.0160  -0.488    0.626
## log(cities$t_00)   1.0728     0.6756   1.588    0.114
## 
## Residual standard error: 9.392 on 198 degrees of freedom
##   (69 observations deleted due to missingness)
## Multiple R-squared:  0.01257,    Adjusted R-squared:  0.007586 
## F-statistic: 2.521 on 1 and 198 DF,  p-value: 0.1139
coef(tpop00)["log(cities$t_00)"]/100
## log(cities$t_00) 
##       0.01072754
tpop90<- lm(cities$pboo_90 ~ log(cities$t_90))
summary(tpop90)
## 
## Call:
## lm(formula = cities$pboo_90 ~ log(cities$t_90))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -9.420 -6.262 -3.160  4.192 54.227 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       -5.5214     7.3197  -0.754   0.4517  
## log(cities$t_90)   1.2766     0.7115   1.794   0.0745 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.218 on 177 degrees of freedom
##   (90 observations deleted due to missingness)
## Multiple R-squared:  0.01787,    Adjusted R-squared:  0.01232 
## F-statistic:  3.22 on 1 and 177 DF,  p-value: 0.07446
coef(tpop90)["log(cities$t_90)"]/100
## log(cities$t_90) 
##       0.01276642
tpop80<- lm(cities$pboo_80 ~ log(cities$t_80))
summary(tpop80)
## 
## Call:
## lm(formula = cities$pboo_80 ~ log(cities$t_80))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -8.515 -5.458 -2.950  4.121 28.452 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       -7.3996     6.5234  -1.134   0.2584  
## log(cities$t_80)   1.3760     0.6371   2.160   0.0324 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.697 on 152 degrees of freedom
##   (115 observations deleted due to missingness)
## Multiple R-squared:  0.02978,    Adjusted R-squared:  0.02339 
## F-statistic: 4.665 on 1 and 152 DF,  p-value: 0.03236
coef(tpop80)["log(cities$t_80)"]/100
## log(cities$t_80) 
##       0.01376022

#Run regression with Logged Total population on Percent Black population. Slight signifigance in 2020 and 1980.

tpop20B<- lm(cities$pb_20 ~ log(cities$t_20))
summary(tpop20B)
## 
## Call:
## lm(formula = cities$pb_20 ~ log(cities$t_20))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.354  -8.050  -3.541   5.225  58.074 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       -33.034     18.265  -1.809   0.0717 .
## log(cities$t_20)   19.325      7.806   2.476   0.0139 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.74 on 259 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.02312,    Adjusted R-squared:  0.01935 
## F-statistic: 6.129 on 1 and 259 DF,  p-value: 0.01394
coef(tpop20B)["log(cities$t_20)"]/100
## log(cities$t_20) 
##        0.1932485
tpop10B<- lm(cities$pb_10 ~ log(cities$t_10))
summary(tpop10B)
## 
## Call:
## lm(formula = cities$pb_10 ~ log(cities$t_10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.032  -7.937  -4.269   4.124  57.746 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       -3.2881     8.0375  -0.409   0.6828  
## log(cities$t_10)   1.4183     0.7732   1.834   0.0679 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.05 on 238 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.01394,    Adjusted R-squared:  0.009798 
## F-statistic: 3.365 on 1 and 238 DF,  p-value: 0.06785
coef(tpop10B)["log(cities$t_10)"]/100
## log(cities$t_10) 
##       0.01418331
tpop00B<- lm(cities$pb_00 ~ log(cities$t_00))
summary(tpop00B)
## 
## Call:
## lm(formula = cities$pb_00 ~ log(cities$t_00))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.563  -7.499  -4.037   4.522  48.296 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       -4.7408     8.0813  -0.587   0.5581  
## log(cities$t_00)   1.4469     0.7795   1.856   0.0649 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.93 on 202 degrees of freedom
##   (65 observations deleted due to missingness)
## Multiple R-squared:  0.01677,    Adjusted R-squared:  0.0119 
## F-statistic: 3.445 on 1 and 202 DF,  p-value: 0.06489
coef(tpop00B)["log(cities$t_00)"]/100
## log(cities$t_00) 
##       0.01446904
tpop90B<- lm(cities$pb_90 ~ log(cities$t_90))
summary(tpop90B)
## 
## Call:
## lm(formula = cities$pb_90 ~ log(cities$t_90))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.606  -7.087  -4.198   3.658  52.431 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       -5.7914     8.2396  -0.703   0.4831  
## log(cities$t_90)   1.4886     0.8007   1.859   0.0647 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.38 on 178 degrees of freedom
##   (89 observations deleted due to missingness)
## Multiple R-squared:  0.01905,    Adjusted R-squared:  0.01354 
## F-statistic: 3.457 on 1 and 178 DF,  p-value: 0.06465
coef(tpop90B)["log(cities$t_90)"]/100
## log(cities$t_90) 
##       0.01488605
tpop80B<- lm(cities$pb_80 ~ log(cities$t_80))
summary(tpop80B)
## 
## Call:
## lm(formula = cities$pb_80 ~ log(cities$t_80))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.915  -6.934  -4.312   5.507  29.895 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      -11.0056     8.2193  -1.339   0.1826  
## log(cities$t_80)   1.9256     0.8027   2.399   0.0177 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.698 on 152 degrees of freedom
##   (115 observations deleted due to missingness)
## Multiple R-squared:  0.03648,    Adjusted R-squared:  0.03014 
## F-statistic: 5.754 on 1 and 152 DF,  p-value: 0.01766
coef(tpop80B)["log(cities$t_80)"]/100
## log(cities$t_80) 
##       0.01925604

#Run regression with Logged Total city population on Dissimilarity Index/segregation. Significance in all years.

tpop20Bw<- lm(cities$dbw_20 ~ log(cities$t_20))
summary(tpop20Bw)
## 
## Call:
## lm(formula = cities$dbw_20 ~ log(cities$t_20))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.249  -8.383  -1.475   7.285  47.127 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -88.616     17.436  -5.082 7.15e-07 ***
## log(cities$t_20)   48.757      7.452   6.543 3.21e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.21 on 259 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1418, Adjusted R-squared:  0.1385 
## F-statistic: 42.81 on 1 and 259 DF,  p-value: 3.206e-10
coef(tpop20Bw)["log(cities$t_20)"]/100
## log(cities$t_20) 
##        0.4875671
tpop10Bw<- lm(cities$dbw_10 ~ log(cities$t_10))
summary(tpop10Bw)
## 
## Call:
## lm(formula = cities$dbw_10 ~ log(cities$t_10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.292 -10.468  -1.869   9.094  59.568 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -22.0642     8.8422  -2.495   0.0133 *  
## log(cities$t_10)   4.7609     0.8506   5.597 5.98e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.25 on 238 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.1163, Adjusted R-squared:  0.1126 
## F-statistic: 31.33 on 1 and 238 DF,  p-value: 5.984e-08
coef(tpop10Bw)["log(cities$t_10)"]/100
## log(cities$t_10) 
##       0.04760936
tpop00Bw<- lm(cities$dbw_00 ~ log(cities$t_00))
summary(tpop00Bw)
## 
## Call:
## lm(formula = cities$dbw_00 ~ log(cities$t_00))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -26.161 -12.766  -0.462  11.450  48.520 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -17.146     11.352  -1.510    0.133    
## log(cities$t_00)    4.650      1.095   4.247 3.31e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.35 on 202 degrees of freedom
##   (65 observations deleted due to missingness)
## Multiple R-squared:  0.08196,    Adjusted R-squared:  0.07741 
## F-statistic: 18.03 on 1 and 202 DF,  p-value: 3.31e-05
coef(tpop00Bw)["log(cities$t_00)"]/100
## log(cities$t_00) 
##       0.04650091
tpop90Bw<- lm(cities$dbw_90 ~ log(cities$t_90))
summary(tpop90Bw)
## 
## Call:
## lm(formula = cities$dbw_90 ~ log(cities$t_90))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -32.940 -14.795  -1.112  12.803  50.992 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -24.070     14.039  -1.714   0.0882 .  
## log(cities$t_90)    5.707      1.364   4.184  4.5e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.69 on 178 degrees of freedom
##   (89 observations deleted due to missingness)
## Multiple R-squared:  0.08952,    Adjusted R-squared:  0.08441 
## F-statistic:  17.5 on 1 and 178 DF,  p-value: 4.501e-05
coef(tpop90Bw)["log(cities$t_90)"]/100
## log(cities$t_90) 
##       0.05707379
tpop80Bw<- lm(cities$dbw_80 ~ log(cities$t_80))
summary(tpop80Bw)
## 
## Call:
## lm(formula = cities$dbw_80 ~ log(cities$t_80))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -35.822 -15.178  -0.748  13.757  56.499 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -53.636     17.075  -3.141  0.00202 ** 
## log(cities$t_80)    9.516      1.668   5.706 5.86e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.15 on 152 degrees of freedom
##   (115 observations deleted due to missingness)
## Multiple R-squared:  0.1764, Adjusted R-squared:  0.171 
## F-statistic: 32.56 on 1 and 152 DF,  p-value: 5.862e-08
coef(tpop80Bw)["log(cities$t_80)"]/100
## log(cities$t_80) 
##       0.09515862

#Run regression with Logged Total population on Proximity. Some signifigance for all years except 2010.

#change proximity back to factor variable

cities$Proximity<-as.factor(ifelse(cities$Proximity==1, "In Proximity", "Not in Prox"))
str(cities)
## 'data.frame':    269 obs. of  27 variables:
##  $ placefp20: num  1000 1240 1576 1696 1852 ...
##  $ cityname : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ Proximity: Factor w/ 2 levels "In Proximity",..: 1 2 1 1 1 1 2 1 1 1 ...
##  $ Miles    : num  NA 3 NA NA NA NA 13.7 NA NA NA ...
##  $ FC.name  : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ pboo_20  : num  4.74 4.08 0.26 3.13 0.65 6.5 0.13 2.73 3.56 1.08 ...
##  $ pboo_10  : num  4.73 2.53 0.19 3.31 0.57 7.01 0.19 1.49 3.69 1.53 ...
##  $ pboo_00  : num  4.68 1.73 0 4.42 0.48 3.58 0 1.15 3.76 2.69 ...
##  $ pboo_90  : num  5.34 6.51 0 2.63 0.72 2.68 0 0.9 4.06 2.46 ...
##  $ pboo_80  : num  4.36 4.23 0 0.21 0.97 2.14 0 1.03 3.77 2.13 ...
##  $ t_20     : num  11.74 9.72 9.88 9.68 9.79 ...
##  $ pb_20    : num  11.36 17.364 0.2 2.406 0.732 ...
##  $ dbw_20   : num  28.7 25 35.3 32.8 38.2 ...
##  $ t_10     : num  117063 13056 18353 15869 19104 ...
##  $ pb_10    : num  10.017 12.063 0.196 2.811 0.591 ...
##  $ dbw_10   : num  34.8 21.4 55.3 36 27.6 ...
##  $ t_00     : num  115930 14166 14760 13979 19010 ...
##  $ pb_00    : num  9.092 9.798 0.115 5.802 0.742 ...
##  $ dbw_00   : num  37.7 38.8 23.4 28.7 27.4 ...
##  $ t_90     : num  106654 NA NA 11133 19788 ...
##  $ pb_90    : num  6.816 NA NA 3.665 0.783 ...
##  $ dbw_90   : num  38.1 NA NA 24.7 41.2 ...
##  $ t_80     : num  98315 NA NA 12623 20961 ...
##  $ pb_80    : num  6.584 NA NA 2.131 0.854 ...
##  $ dbw_80   : num  48.2 NA NA 29.9 52.6 ...
##  $ gini_2020: num  0.45 0.395 0.461 0.423 0.471 0.39 0.456 0.417 0.469 0.44 ...
##  $ gini_10  : num  0.458 NA NA NA NA 0.398 NA NA 0.443 NA ...

Make “Not in Proximity” the reference category

cities$Proximity <- relevel(cities$Proximity, ref = "Not in Prox")
table(cities$Proximity)
## 
##  Not in Prox In Proximity 
##          107          162
tpop20Bx<- lm(as.numeric(cities$Proximity) ~ log(cities$t_20))
summary(tpop20Bx)
## 
## Call:
## lm(formula = as.numeric(cities$Proximity) ~ log(cities$t_20))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6832 -0.5907  0.3336  0.3861  0.5487 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        3.0710     0.7553   4.066 6.35e-05 ***
## log(cities$t_20)  -0.6236     0.3228  -1.932   0.0545 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4854 on 259 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.01421,    Adjusted R-squared:  0.0104 
## F-statistic: 3.732 on 1 and 259 DF,  p-value: 0.05447
coef(tpop20Bx)["log(cities$t_20)"]/100
## log(cities$t_20) 
##     -0.006235658
tpop10Bx<- lm(as.numeric(cities$Proximity) ~ log(cities$t_10))
summary(tpop10Bx)
## 
## Call:
## lm(formula = as.numeric(cities$Proximity) ~ log(cities$t_10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6422 -0.5838  0.3668  0.4012  0.5452 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.05794    0.32796   6.275 1.64e-09 ***
## log(cities$t_10) -0.04507    0.03155  -1.428    0.154    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4915 on 238 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.0085, Adjusted R-squared:  0.004334 
## F-statistic:  2.04 on 1 and 238 DF,  p-value: 0.1545
coef(tpop10Bx)["log(cities$t_10)"]/100
## log(cities$t_10) 
##    -0.0004506704
tpop00Bx<- lm(as.numeric(cities$Proximity) ~ log(cities$t_00))
summary(tpop00Bx)
## 
## Call:
## lm(formula = as.numeric(cities$Proximity) ~ log(cities$t_00))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6796 -0.5879  0.3355  0.3868  0.6068 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.34379    0.35988   6.513 5.74e-10 ***
## log(cities$t_00) -0.07179    0.03471  -2.068   0.0399 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4866 on 202 degrees of freedom
##   (65 observations deleted due to missingness)
## Multiple R-squared:  0.02073,    Adjusted R-squared:  0.01588 
## F-statistic: 4.276 on 1 and 202 DF,  p-value: 0.03992
coef(tpop00Bx)["log(cities$t_00)"]/100
## log(cities$t_00) 
##    -0.0007178517
tpop90Bx<- lm(as.numeric(cities$Proximity) ~ log(cities$t_90))
summary(tpop90Bx)
## 
## Call:
## lm(formula = as.numeric(cities$Proximity) ~ log(cities$t_90))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7163 -0.5875  0.3050  0.3635  0.6849 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.65422    0.38110   6.965 6.13e-11 ***
## log(cities$t_90) -0.10181    0.03703  -2.749  0.00659 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4801 on 178 degrees of freedom
##   (89 observations deleted due to missingness)
## Multiple R-squared:  0.04073,    Adjusted R-squared:  0.03534 
## F-statistic: 7.559 on 1 and 178 DF,  p-value: 0.006589
coef(tpop90Bx)["log(cities$t_90)"]/100
## log(cities$t_90) 
##     -0.001018135
tpop80Bx<- lm(as.numeric(cities$Proximity) ~ log(cities$t_80))
summary(tpop80Bx)
## 
## Call:
## lm(formula = as.numeric(cities$Proximity) ~ log(cities$t_80))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6982 -0.5917  0.3163  0.3694  0.6419 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.53961    0.40908   6.208 4.87e-09 ***
## log(cities$t_80) -0.09117    0.03995  -2.282   0.0239 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4827 on 152 degrees of freedom
##   (115 observations deleted due to missingness)
## Multiple R-squared:  0.03312,    Adjusted R-squared:  0.02676 
## F-statistic: 5.207 on 1 and 152 DF,  p-value: 0.02389
coef(tpop80Bx)["log(cities$t_80)"]/100
## log(cities$t_80) 
##    -0.0009116513

#Run regression with percent Black population on Proximity. Significance #Run regression with percent Black population on dissimilarity. Significance #Run regression with percent Black population on logged city population. Significance

proxpb20<- lm(as.numeric(Proximity)~pb_20,data=cities)
dbwpb20<- lm(dbw_20~pb_20,data=cities)
logtpb20<- lm(log(t_20)~pb_20,data=cities)


summary(proxpb20)
## 
## Call:
## lm(formula = as.numeric(Proximity) ~ pb_20, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8001 -0.4807  0.2202  0.3211  1.0530 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.804698   0.040063  45.046  < 2e-16 ***
## pb_20       -0.015777   0.002362  -6.678 1.47e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4516 on 259 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1469, Adjusted R-squared:  0.1436 
## F-statistic:  44.6 on 1 and 259 DF,  p-value: 1.466e-10
summary(dbwpb20)
## 
## Call:
## lm(formula = dbw_20 ~ pb_20, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.846  -9.002  -1.198   8.473  44.769 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 24.36207    1.06964  22.776   <2e-16 ***
## pb_20        0.08374    0.06307   1.328    0.185    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.06 on 259 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.006759,   Adjusted R-squared:  0.002924 
## F-statistic: 1.763 on 1 and 259 DF,  p-value: 0.1855
summary(logtpb20)
## 
## Call:
## lm(formula = log(t_20) ~ pb_20, data = cities)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.12198 -0.07040 -0.02304  0.04690  0.33338 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 2.3235144  0.0081942 283.556   <2e-16 ***
## pb_20       0.0011962  0.0004832   2.476   0.0139 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09237 on 259 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.02312,    Adjusted R-squared:  0.01935 
## F-statistic: 6.129 on 1 and 259 DF,  p-value: 0.01394

#Run regression with dissimilarity on percent Black population. Significance

pbw20=lm(pb_20 ~ dbw_20,cities)
summary(pbw20)
## 
## Call:
## lm(formula = pb_20 ~ dbw_20, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.580  -8.156  -3.711   5.042  59.449 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 10.09991    1.70821   5.913 1.06e-08 ***
## dbw_20       0.08072    0.06080   1.328    0.185    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.84 on 259 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.006759,   Adjusted R-squared:  0.002924 
## F-statistic: 1.763 on 1 and 259 DF,  p-value: 0.1855
pbw10=lm(pb_10 ~ dbw_10,cities)
summary(pbw10)
## 
## Call:
## lm(formula = pb_10 ~ dbw_10, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -17.984  -7.739  -3.999   4.522  58.733 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  8.11335    1.69023   4.800  2.8e-06 ***
## dbw_10       0.12036    0.05523   2.179   0.0303 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.01 on 238 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.01956,    Adjusted R-squared:  0.01544 
## F-statistic: 4.749 on 1 and 238 DF,  p-value: 0.0303
pbw00=lm(pb_00 ~ dbw_00,cities)
summary(pbw00)
## 
## Call:
## lm(formula = pb_00 ~ dbw_00, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.679  -6.716  -2.667   3.797  47.517 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.32507    1.59001   2.091   0.0378 *  
## dbw_00       0.22262    0.04579   4.861 2.34e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.43 on 202 degrees of freedom
##   (65 observations deleted due to missingness)
## Multiple R-squared:  0.1047, Adjusted R-squared:  0.1003 
## F-statistic: 23.63 on 1 and 202 DF,  p-value: 2.339e-06
pbw90=lm(pb_90 ~ dbw_90,cities)
summary(pbw90)
## 
## Call:
## lm(formula = pb_90 ~ dbw_90, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.556  -6.398  -2.256   2.475  53.338 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.09644    1.53108   1.369    0.173    
## dbw_90       0.21403    0.03923   5.456 1.61e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.701 on 178 degrees of freedom
##   (89 observations deleted due to missingness)
## Multiple R-squared:  0.1433, Adjusted R-squared:  0.1385 
## F-statistic: 29.77 on 1 and 178 DF,  p-value: 1.611e-07
pbw80=lm(pb_80 ~ dbw_80,cities)
summary(pbw80)
## 
## Call:
## lm(formula = pb_80 ~ dbw_80, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -16.520  -5.913  -2.988   2.842  32.689 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.9204     1.6100   0.572    0.568    
## dbw_80        0.1776     0.0331   5.367 2.94e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.059 on 152 degrees of freedom
##   (115 observations deleted due to missingness)
## Multiple R-squared:  0.1593, Adjusted R-squared:  0.1538 
## F-statistic:  28.8 on 1 and 152 DF,  p-value: 2.939e-07

#Run regression with Proximity on percent black population. Highly Significant all years.

pbx20=lm(pb_20 ~ Proximity,cities)
summary(pbx20)
## 
## Call:
## lm(formula = pb_20 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -17.565  -6.880  -2.417   3.975  53.409 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             17.857      1.092  16.358  < 2e-16 ***
## ProximityIn Proximity   -9.311      1.394  -6.678 1.47e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.97 on 259 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1469, Adjusted R-squared:  0.1436 
## F-statistic:  44.6 on 1 and 259 DF,  p-value: 1.466e-10
pbx10=lm(pb_10 ~ Proximity,cities)
summary(pbx10)
## 
## Call:
## lm(formula = pb_10 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -16.785  -6.725  -2.739   3.358  52.413 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             16.939      1.132  14.958  < 2e-16 ***
## ProximityIn Proximity   -9.385      1.472  -6.375 9.42e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.21 on 238 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.1458, Adjusted R-squared:  0.1423 
## F-statistic: 40.64 on 1 and 238 DF,  p-value: 9.424e-10
pbx00=lm(pb_00 ~ Proximity,cities)
summary(pbx00)
## 
## Call:
## lm(formula = pb_00 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.176  -5.906  -2.490   2.612  41.624 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             15.632      1.121  13.947  < 2e-16 ***
## ProximityIn Proximity   -9.023      1.443  -6.251 2.38e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.09 on 202 degrees of freedom
##   (65 observations deleted due to missingness)
## Multiple R-squared:  0.1621, Adjusted R-squared:  0.1579 
## F-statistic: 39.08 on 1 and 202 DF,  p-value: 2.379e-09
pbx90=lm(pb_90 ~ Proximity,cities)
summary(pbx90)
## 
## Call:
## lm(formula = pb_90 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.264  -5.885  -2.536   4.423  45.938 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             14.617      1.151  12.700  < 2e-16 ***
## ProximityIn Proximity   -8.440      1.472  -5.732 4.17e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.63 on 178 degrees of freedom
##   (89 observations deleted due to missingness)
## Multiple R-squared:  0.1558, Adjusted R-squared:  0.1511 
## F-statistic: 32.86 on 1 and 178 DF,  p-value: 4.171e-08
pbx80=lm(pb_80 ~ Proximity,cities)
summary(pbx80)
## 
## Call:
## lm(formula = pb_80 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.815  -5.591  -2.976   4.212  34.316 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             13.042      1.190  10.960  < 2e-16 ***
## ProximityIn Proximity   -7.242      1.523  -4.755 4.57e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.218 on 152 degrees of freedom
##   (115 observations deleted due to missingness)
## Multiple R-squared:  0.1295, Adjusted R-squared:  0.1238 
## F-statistic: 22.61 on 1 and 152 DF,  p-value: 4.572e-06

##Logistic Regression

#The models indicate that there is a positive relationship between the percent of Black homeownership and whether the city is within proximity to a freedom colony. Cities with high percent of Black homeowners are more likely to be within proximity to a freedom colony for years 2000, 2010, and 2020.

#model 1 #A multiple regression was performed starting with proximity to freedom colonies (Table 4). This variable proved to yield statistically significant results. Proximity to freedom colonies provided an increase in Black homeownership by 7.935 percentage points.

model1_20<- lm(pboo_20~Proximity,data=cities)
summary(model1_20)
## 
## Call:
## lm(formula = pboo_20 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.791  -5.199  -2.581   2.164  54.199 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            12.9214     0.9958   12.98  < 2e-16 ***
## ProximityIn Proximity  -7.3177     1.2703   -5.76 2.36e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.01 on 260 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.1132, Adjusted R-squared:  0.1098 
## F-statistic: 33.18 on 1 and 260 DF,  p-value: 2.363e-08

#model 2 - add in total popualtion logged #When the logged variable of city population was introduced in Model 2, there was a slight increase in homeownership although population was not statistically significant. Proximity remained a significant factor.

model2_20 <- lm(pboo_20~Proximity+log(t_20),data=cities)
summary(model2_20)
## 
## Call:
## lm(formula = pboo_20 ~ Proximity + log(t_20), data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.924  -4.983  -2.568   2.154  53.931 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             -2.785     15.816  -0.176    0.860    
## ProximityIn Proximity   -7.131      1.283  -5.560 6.74e-08 ***
## log(t_20)                6.678      6.711   0.995    0.321    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.02 on 258 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1155, Adjusted R-squared:  0.1087 
## F-statistic: 16.85 on 2 and 258 DF,  p-value: 1.327e-07

#As established, percent of Black population is highly correlated with Black homeownership. As expected, an initial regression with this variable yielded a significant result, but only a small increase in homeownership. Due to this high correlation, proximity lost its significance when percent of Black population was introduced to the model. Therefore, this variable was omitted from the regression.

citpb20=lm(pboo_20~pb_20,cities)
citpb10=lm(pboo_10~pb_10,cities)
citpb00=lm(pboo_00~pb_00,cities)
citpb90=lm(pboo_90~pb_90,cities)
citpb80=lm(pboo_80~pb_80,cities)
summary(citpb20)
## 
## Call:
## lm(formula = pboo_20 ~ pb_20, data = cities)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.0194  -1.2180   0.5173   1.5513  12.6654 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -1.9730     0.2680  -7.362 2.41e-12 ***
## pb_20         0.8585     0.0158  54.322  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.021 on 259 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.9193, Adjusted R-squared:  0.919 
## F-statistic:  2951 on 1 and 259 DF,  p-value: < 2.2e-16
summary(citpb10)
## 
## Call:
## lm(formula = pboo_10 ~ pb_10, data = cities)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.6954  -1.2473   0.3532   1.4362  13.3214 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -1.4811     0.2406  -6.155 3.17e-09 ***
## pb_10         0.8834     0.0145  60.941  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.713 on 238 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.9398, Adjusted R-squared:  0.9395 
## F-statistic:  3714 on 1 and 238 DF,  p-value: < 2.2e-16
summary(citpb00)
## 
## Call:
## lm(formula = pboo_00 ~ pb_00, data = cities)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.5147  -0.8487   0.2933   0.8873  14.6523 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.83415    0.23633   -3.53 0.000518 ***
## pb_00        0.82406    0.01565   52.64  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.441 on 198 degrees of freedom
##   (69 observations deleted due to missingness)
## Multiple R-squared:  0.9333, Adjusted R-squared:  0.933 
## F-statistic:  2771 on 1 and 198 DF,  p-value: < 2.2e-16
summary(citpb90)
## 
## Call:
## lm(formula = pboo_90 ~ pb_90, data = cities)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.9046  -0.7423   0.2832   0.7728   8.9028 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.66915    0.20261  -3.303  0.00116 ** 
## pb_90        0.86542    0.01436  60.287  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.004 on 177 degrees of freedom
##   (90 observations deleted due to missingness)
## Multiple R-squared:  0.9536, Adjusted R-squared:  0.9533 
## F-statistic:  3634 on 1 and 177 DF,  p-value: < 2.2e-16
summary(citpb80)
## 
## Call:
## lm(formula = pboo_80 ~ pb_80, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.9313 -0.4940  0.0426  0.3423  5.6163 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.10014    0.13794  -0.726    0.469    
## pb_80        0.78014    0.01056  73.888   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.286 on 152 degrees of freedom
##   (115 observations deleted due to missingness)
## Multiple R-squared:  0.9729, Adjusted R-squared:  0.9727 
## F-statistic:  5459 on 1 and 152 DF,  p-value: < 2.2e-16

#model 3 add in segregation #In Model 3, the DI measure of residential segregation for each city was added to the regression. Residential segregation caused a decrease in homeownership by -0.029. This result was not statistically significant but provides a different outcome than the previous analysis comparing cities near and not near freedom colonies

m1a <- lm(pboo_20~Proximity,data=cities)
m2a <- lm(pboo_20~Proximity+log(t_20),data=cities)
m3a <- lm(pboo_20~Proximity+log(t_20)+dbw_20,data=cities)

stargazer(m1a, m2a, m3a,
          type="text", title="Regression Results",
          align=TRUE, dep.var.labels=c("Percent Black Homeownership 2020"),
          covariate.labels=c("Proximity","City Population 2020","Dissimilarity Index 2020"),out="main2020.htm")
## 
## Regression Results
## ================================================================================================
##                                                    Dependent variable:                          
##                          -----------------------------------------------------------------------
##                                             Percent Black Homeownership 2020                    
##                                    (1)                     (2)                     (3)          
## ------------------------------------------------------------------------------------------------
## Proximity                       -7.318***               -7.131***               -7.172***       
##                                  (1.270)                 (1.283)                 (1.288)        
##                                                                                                 
## City Population 2020                                      6.678                   7.932         
##                                                          (6.711)                 (7.231)        
##                                                                                                 
## Dissimilarity Index 2020                                                         -0.026         
##                                                                                  (0.056)        
##                                                                                                 
## Constant                        12.921***                -2.785                  -5.026         
##                                  (0.996)                (15.816)                (16.541)        
##                                                                                                 
## ------------------------------------------------------------------------------------------------
## Observations                       262                     261                     261          
## R2                                0.113                   0.116                   0.116         
## Adjusted R2                       0.110                   0.109                   0.106         
## Residual Std. Error         10.008 (df = 260)       10.021 (df = 258)       10.037 (df = 257)   
## F Statistic              33.183*** (df = 1; 260) 16.848*** (df = 2; 258) 11.272*** (df = 3; 257)
## ================================================================================================
## Note:                                                                *p<0.1; **p<0.05; ***p<0.01
m1a <- lm(pboo_20~Proximity,data=cities)
m2a <- lm(pboo_20~Proximity+log(t_20),data=cities)
m3a <- lm(pboo_20~Proximity+log(t_20)+dbw_20,data=cities)
summary(m1a)
## 
## Call:
## lm(formula = pboo_20 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.791  -5.199  -2.581   2.164  54.199 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            12.9214     0.9958   12.98  < 2e-16 ***
## ProximityIn Proximity  -7.3177     1.2703   -5.76 2.36e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.01 on 260 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.1132, Adjusted R-squared:  0.1098 
## F-statistic: 33.18 on 1 and 260 DF,  p-value: 2.363e-08
summary(m2a)
## 
## Call:
## lm(formula = pboo_20 ~ Proximity + log(t_20), data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.924  -4.983  -2.568   2.154  53.931 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             -2.785     15.816  -0.176    0.860    
## ProximityIn Proximity   -7.131      1.283  -5.560 6.74e-08 ***
## log(t_20)                6.678      6.711   0.995    0.321    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.02 on 258 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1155, Adjusted R-squared:  0.1087 
## F-statistic: 16.85 on 2 and 258 DF,  p-value: 1.327e-07
summary(m3a)
## 
## Call:
## lm(formula = pboo_20 ~ Proximity + log(t_20) + dbw_20, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.866  -4.863  -2.590   2.276  53.731 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -5.02590   16.54126  -0.304    0.761    
## ProximityIn Proximity -7.17174    1.28753  -5.570 6.41e-08 ***
## log(t_20)              7.93160    7.23067   1.097    0.274    
## dbw_20                -0.02623    0.05577  -0.470    0.639    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.04 on 257 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1163, Adjusted R-squared:  0.106 
## F-statistic: 11.27 on 3 and 257 DF,  p-value: 5.684e-07
m1b <- lm(pboo_10~Proximity,data=cities)
m2b <- lm(pboo_10~Proximity+log(t_10),data=cities)
m3b <- lm(pboo_10~Proximity+log(t_10)+dbw_10,data=cities)
summary(m1b)
## 
## Call:
## lm(formula = pboo_10 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.938  -5.166  -2.531   2.086  52.542 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             13.088      1.050  12.465  < 2e-16 ***
## ProximityIn Proximity   -7.623      1.365  -5.584 6.39e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.39 on 238 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.1158, Adjusted R-squared:  0.1121 
## F-statistic: 31.18 on 1 and 238 DF,  p-value: 6.385e-08
summary(m2b)
## 
## Call:
## lm(formula = pboo_10 ~ Proximity + log(t_10), data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -13.161  -4.841  -2.446   2.067  52.513 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             6.1668     7.0863   0.870    0.385    
## ProximityIn Proximity  -7.4978     1.3709  -5.469 1.15e-07 ***
## log(t_10)               0.6618     0.6701   0.988    0.324    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.39 on 237 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.1195, Adjusted R-squared:  0.112 
## F-statistic: 16.08 on 2 and 237 DF,  p-value: 2.832e-07
summary(m3b)
## 
## Call:
## lm(formula = pboo_10 ~ Proximity + log(t_10) + dbw_10, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -13.692  -5.202  -2.409   1.831  52.696 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            6.91401    7.16969   0.964    0.336    
## ProximityIn Proximity -7.44166    1.37456  -5.414 1.52e-07 ***
## log(t_10)              0.49032    0.71218   0.688    0.492    
## dbw_10                 0.03656    0.05098   0.717    0.474    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.41 on 236 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.1214, Adjusted R-squared:  0.1102 
## F-statistic: 10.87 on 3 and 236 DF,  p-value: 1.03e-06
m1c <- lm(pboo_00~Proximity,data=cities)
m2c <- lm(pboo_00~Proximity+log(t_00),data=cities)
m3c <- lm(pboo_00~Proximity+log(t_00)+dbw_00,data=cities)
summary(m1c)
## 
## Call:
## lm(formula = pboo_00 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.406  -4.122  -1.990   1.631  49.594 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            11.4061     0.8406  13.569  < 2e-16 ***
## ProximityIn Proximity  -7.1164     1.0768  -6.609 2.27e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.406 on 254 degrees of freedom
##   (13 observations deleted due to missingness)
## Multiple R-squared:  0.1467, Adjusted R-squared:  0.1434 
## F-statistic: 43.67 on 1 and 254 DF,  p-value: 2.267e-10
summary(m2c)
## 
## Call:
## lm(formula = pboo_00 ~ Proximity + log(t_00), data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.294  -4.269  -2.274   1.733  49.544 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             6.1990     6.7760   0.915    0.361    
## ProximityIn Proximity  -7.0641     1.2818  -5.511 1.11e-07 ***
## log(t_00)               0.5552     0.6374   0.871    0.385    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 197 degrees of freedom
##   (69 observations deleted due to missingness)
## Multiple R-squared:  0.1445, Adjusted R-squared:  0.1358 
## F-statistic: 16.63 on 2 and 197 DF,  p-value: 2.112e-07
summary(m3c)
## 
## Call:
## lm(formula = pboo_00 ~ Proximity + log(t_00) + dbw_00, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.381  -4.448  -2.252   1.847  49.708 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            7.617206   6.640825   1.147  0.25277    
## ProximityIn Proximity -6.444154   1.268515  -5.080 8.76e-07 ***
## log(t_00)             -0.006646   0.648026  -0.010  0.99183    
## dbw_00                 0.129736   0.040949   3.168  0.00178 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.57 on 196 degrees of freedom
##   (69 observations deleted due to missingness)
## Multiple R-squared:  0.1862, Adjusted R-squared:  0.1737 
## F-statistic: 14.94 on 3 and 196 DF,  p-value: 8.449e-09
m1d <- lm(pboo_90~Proximity,data=cities)
m2d <- lm(pboo_90~Proximity+log(t_90),data=cities)
m3d <- lm(pboo_90~Proximity+log(t_90)+dbw_90,data=cities)
summary(m1d)
## 
## Call:
## lm(formula = pboo_90 ~ Proximity, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.564  -3.830  -2.390   2.436  50.076 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            10.5641     0.7947  13.294  < 2e-16 ***
## ProximityIn Proximity  -6.7342     1.0167  -6.623 2.07e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.947 on 255 degrees of freedom
##   (12 observations deleted due to missingness)
## Multiple R-squared:  0.1468, Adjusted R-squared:  0.1434 
## F-statistic: 43.87 on 1 and 255 DF,  p-value: 2.069e-10
summary(m2d)
## 
## Call:
## lm(formula = pboo_90 ~ Proximity + log(t_90), data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.459  -4.348  -2.059   2.303  49.229 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             6.3461     7.1726   0.885    0.377    
## ProximityIn Proximity  -7.1279     1.3429  -5.308 3.31e-07 ***
## log(t_90)               0.5418     0.6767   0.801    0.424    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.582 on 176 degrees of freedom
##   (90 observations deleted due to missingness)
## Multiple R-squared:  0.1534, Adjusted R-squared:  0.1438 
## F-statistic: 15.94 on 2 and 176 DF,  p-value: 4.331e-07
summary(m3d)
## 
## Call:
## lm(formula = pboo_90 ~ Proximity + log(t_90) + dbw_90, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.289  -4.693  -1.687   2.367  50.433 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            9.87842    6.76773   1.460    0.146    
## ProximityIn Proximity -6.73156    1.26268  -5.331 2.98e-07 ***
## log(t_90)             -0.40265    0.66266  -0.608    0.544    
## dbw_90                 0.17106    0.03429   4.988 1.46e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.053 on 175 degrees of freedom
##   (90 observations deleted due to missingness)
## Multiple R-squared:  0.2588, Adjusted R-squared:  0.2461 
## F-statistic: 20.36 on 3 and 175 DF,  p-value: 2.291e-11
m1e <- lm(pboo_80~Proximity,data=cities)
m2e <- lm(pboo_80~Proximity+log(t_80),data=cities)
m3e <- lm(pboo_80~Proximity+log(t_80)+dbw_80,data=cities)
summary(m1e)
## 
## Call:
## lm(formula = pboo_80 ~ Proximity, data = cities)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -8.199 -3.475 -2.315  2.175 29.635 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             8.1991     0.6902  11.880  < 2e-16 ***
## ProximityIn Proximity  -4.7242     0.8837  -5.346  2.1e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.691 on 239 degrees of freedom
##   (28 observations deleted due to missingness)
## Multiple R-squared:  0.1068, Adjusted R-squared:  0.1031 
## F-statistic: 28.58 on 1 and 239 DF,  p-value: 2.099e-07
summary(m2e)
## 
## Call:
## lm(formula = pboo_80 ~ Proximity + log(t_80), data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.256  -4.013  -2.072   3.440  28.003 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             1.4051     6.3879   0.220    0.826    
## ProximityIn Proximity  -5.7188     1.2114  -4.721 5.32e-06 ***
## log(t_80)               0.8547     0.6068   1.408    0.161    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.209 on 151 degrees of freedom
##   (115 observations deleted due to missingness)
## Multiple R-squared:  0.1546, Adjusted R-squared:  0.1434 
## F-statistic:  13.8 on 2 and 151 DF,  p-value: 3.125e-06
summary(m3e)
## 
## Call:
## lm(formula = pboo_80 ~ Proximity + log(t_80) + dbw_80, data = cities)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.147  -4.408  -1.674   2.692  27.227 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            7.72641    6.14410   1.258    0.211    
## ProximityIn Proximity -5.40689    1.13826  -4.750 4.71e-06 ***
## log(t_80)             -0.32359    0.62305  -0.519    0.604    
## dbw_80                 0.12681    0.02727   4.650 7.22e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.762 on 150 degrees of freedom
##   (115 observations deleted due to missingness)
## Multiple R-squared:  0.2611, Adjusted R-squared:  0.2463 
## F-statistic: 17.67 on 3 and 150 DF,  p-value: 7.136e-10
m1a <- lm(pboo_20~Proximity,data=cities)
m2a <- lm(pboo_20~Proximity+log(t_20),data=cities)
m3a <- lm(pboo_20~Proximity+log(t_20)+dbw_20,data=cities)

m1b <- lm(pboo_10~Proximity,data=cities)
m2b <- lm(pboo_10~Proximity+log(t_10),data=cities)
m3b <- lm(pboo_10~Proximity+log(t_10)+dbw_10,data=cities)

m1c <- lm(pboo_00~Proximity,data=cities)
m2c <- lm(pboo_00~Proximity+log(t_00),data=cities)
m3c <- lm(pboo_00~Proximity+log(t_00)+dbw_00,data=cities)

m1d <- lm(pboo_90~Proximity,data=cities)
m2d <- lm(pboo_90~Proximity+log(t_90),data=cities)
m3d <- lm(pboo_90~Proximity+log(t_90)+dbw_90,data=cities)

m1e <- lm(pboo_80~Proximity,data=cities)
m2e <- lm(pboo_80~Proximity+log(t_80),data=cities)
m3e <- lm(pboo_80~Proximity+log(t_80)+dbw_80,data=cities)