set up

mlabfun <- function(text, x) {
    list(bquote(paste(.(text), 
        " (Q = ", .(fmtx(x$QE, digits=2)), 
        ", df = ", .(x$k - x$p), ", ", 
        .(fmtp(x$QEp, digits=3, pname="p", add0=TRUE, sep=TRUE, equal=TRUE)), "; ",
        I^2, " = ", .(fmtx(x$I2, digits=1)), "%, ", 
        tau^2, " = ", .(fmtx(x$tau2, digits=2)), ")")))}
library(tidyverse)
library(meta)
library(metafor)
library(dmetar)
library(ggplot2)
library(robvis)
library(readxl)
library(broom)
library(stargazer)

MEANS

IKDC Subjective

## Review:     ikdc_subjective
## 
##                                  mean             95%-CI %W(random) graft_type
## Vilchez-Cavazos et al., 2020  88.0000 [84.3332; 91.6668]        2.4       B-QT
## Sinding et al., 2020          76.0000 [70.8587; 81.1413]        2.2       B-QT
## Setliff et al., 2023          80.9000 [68.2562; 93.5438]        1.3       B-QT
## Runer et al., 2023            93.9000 [91.3813; 96.4187]        2.5       B-QT
## Pomenta Bastidas et al., 2022 86.2800 [83.2998; 89.2602]        2.4       B-QT
## Lund et al., 2014             84.0000 [78.4399; 89.5601]        2.2       B-QT
## Lind et al., 2020b            82.0000 [77.9975; 86.0025]        2.3       B-QT
## Lee et al., 2021              81.0000 [79.6036; 82.3964]        2.5       B-QT
## Lee et al., 2016              80.2000 [77.3710; 83.0290]        2.5       B-QT
## Lee et al., 2014              77.2500 [74.6574; 79.8426]        2.5       B-QT
## Kwak et al., 2018             67.3000 [62.3915; 72.2085]        2.2       B-QT
## Komzák et al., 2022           78.3000 [75.0461; 81.5539]        2.4       B-QT
## Kim et al., 2018              71.0700 [68.9087; 73.2313]        2.5       B-QT
## Kim et al., 2014              87.0200 [85.8950; 88.1450]        2.6       B-QT
## Irrgang et al., 2021          92.1400 [90.9160; 93.3640]        2.5       B-QT
## Horstmann et al., 2022        89.3000 [84.4191; 94.1809]        2.2       B-QT
## Hofer et al., 2022            88.0000 [83.3228; 92.6772]        2.3       B-QT
## Herman et al., 2023           91.6000 [86.5189; 96.6811]        2.2       B-QT
## Guney-Deniz et al., 2020      82.7000 [78.8974; 86.5026]        2.4       B-QT
## Fu et al., 2019               89.8000 [86.8881; 92.7119]        2.4       B-QT
## Cavaignac et al., 2017        84.0000 [80.1588; 87.8412]        2.4       B-QT
## Barié et al., 2020            92.0000 [87.0815; 96.9185]        2.2       B-QT
## Barié et al., 2018            90.0000 [87.4299; 92.5701]        2.5       B-QT
## Barié et al., 2010            83.7800 [81.2443; 86.3157]        2.5       B-QT
## Akoto et al., 2019            86.4000 [82.0535; 90.7465]        2.3       B-QT
## Akoto et al., 2015            89.5000 [84.3557; 94.6443]        2.2       B-QT
## Akoto and Hoeher, 2012        86.1000 [80.4461; 91.7539]        2.2       B-QT
## Tang et al., 2023             87.1200 [83.9779; 90.2621]        2.4       S-QT
## Setliff et al., 2023          81.0000 [77.6184; 84.3816]        2.4       S-QT
## Schulz et al., 2013           80.4400 [77.2554; 83.6246]        2.4       S-QT
## Renfree et al., 2023          90.5000 [88.2133; 92.7867]        2.5       S-QT
## Pichler et al., 2022          93.9000 [89.5893; 98.2107]        2.3       S-QT
## Perez et al., 2019            94.8300 [92.6298; 97.0302]        2.5       S-QT
## Letter et al., 2023           69.4200 [64.9881; 73.8519]        2.3       S-QT
## Letter et al., 2019           71.7100 [65.8108; 77.6092]        2.1       S-QT
## Johnston et al., 2022         88.5000 [84.3769; 92.6231]        2.3       S-QT
## Johnston et al., 2021         77.7100 [73.0290; 82.3910]        2.3       S-QT
## Hunnicutt et al., 2019        81.2900 [77.3326; 85.2474]        2.3       S-QT
## Hogan et al., 2022            77.4000 [66.3387; 88.4613]        1.5       S-QT
## Greif et al., 2022            91.1000 [89.1375; 93.0625]        2.5       S-QT
## Gille et al., 2009            78.3000 [74.3979; 82.2021]        2.4       S-QT
## DeAngelis et al., 2007        84.7000 [81.9454; 87.4546]        2.5       S-QT
## Brinkman et al., 2023         90.7000 [88.7667; 92.6333]        2.5       S-QT
## 
## Number of studies: k = 43
## Number of observations: o = 2049
## 
##                         mean             95%-CI
## Random effects model 84.2919 [82.1769; 86.4069]
## 
## Quantifying heterogeneity:
##  tau^2 = 42.9409 [27.7064; 71.7283]; tau = 6.5529 [5.2637; 8.4693]
##  I^2 = 95.0% [94.0%; 95.8%]; H = 4.47 [4.07; 4.90]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  837.58   42 < 0.0001
## 
## Results for subgroups (random effects model):
##                     k    mean             95%-CI   tau^2    tau      Q   I^2
## graft_type = B-QT  27 84.4461 [81.8690; 87.0231] 38.6429 6.2163 559.32 95.4%
## graft_type = S-QT  16 83.9747 [79.8899; 88.0595] 53.9493 7.3450 260.57 94.2%
## 
## Test for subgroup differences (random effects model):
##                   Q d.f. p-value
## Between groups 0.04    1  0.8369
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Restricted maximum-likelihood estimator for tau^2
## - Q-Profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model (df = 42)
## - Untransformed (raw) means

##         
##          S-QT B-QT Sum
##   Short     9   10  19
##   Medium    6   12  18
##   Long      1    5   6
##   Sum      16   27  43
## 
## Mixed-Effects Model (k = 43; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -122.4664   244.9329   258.9329   270.2093   262.7950   
## 
## tau^2 (estimated amount of residual heterogeneity):     39.4828 (SE = 10.2044)
## tau (square root of estimated tau^2 value):             6.2835
## I^2 (residual heterogeneity / unaccounted variability): 94.47%
## H^2 (unaccounted variability / sampling variability):   18.07
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 639.7615, p-val < .0001
## 
## Test of Moderators (coefficients 1:6):
## F(df1 = 6, df2 = 37) = 1175.2201, p-val < .0001
## 
## Model Results:
## 
##                                         estimate      se     tval  df    pval 
## follow_up_minimumShort:graft_typeS-QT    80.1345  2.2557  35.5253  37  <.0001 
## follow_up_minimumMedium:graft_typeS-QT   88.1748  2.6061  33.8342  37  <.0001 
## follow_up_minimumLong:graft_typeS-QT     90.7000  6.3200  14.3514  37  <.0001 
## follow_up_minimumShort:graft_typeB-QT    83.2340  2.1365  38.9584  37  <.0001 
## follow_up_minimumMedium:graft_typeB-QT   83.8329  1.8797  44.5993  37  <.0001 
## follow_up_minimumLong:graft_typeB-QT     88.1011  2.8863  30.5239  37  <.0001 
##                                           ci.lb     ci.ub      
## follow_up_minimumShort:graft_typeS-QT   75.5640   84.7050  *** 
## follow_up_minimumMedium:graft_typeS-QT  82.8944   93.4553  *** 
## follow_up_minimumLong:graft_typeS-QT    77.8945  103.5055  *** 
## follow_up_minimumShort:graft_typeB-QT   78.9050   87.5629  *** 
## follow_up_minimumMedium:graft_typeB-QT  80.0243   87.6415  *** 
## follow_up_minimumLong:graft_typeB-QT    82.2529   93.9493  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1