Odabir kandidata za poziciju projektnog menadžera

Tvrtka Zvrk Trk d.o.o. traži najboljeg kandidata za poziciju projektnog menadžera. Selekcijski postupak obuhvaćao je pregled dostavljenih životopisa, a potom odabir deset kandidata koji su pristupili testu kojim se provjeravalo tehničko znanje kandidata. U sljedećem koraku, odabrana su tri kandidata s kojima je odrađen intervju za posao. Kako niti jedan kandidat ne odskače po svim kriterijima, potrebna je daljnja analiza njihove prikladnosti za ovu poziciju. Ovaj proces uključuje utvrđivanje kriterija te usporedbu kriterija, a potom usporedbu kandidata s obzirom na kriterije.

U prvom koraku, definirani su kriteriji prema kojima će se kandidati ocjenjivati:

Menadžerski tim je suglasan da nisu svi kriteriji podjednako važni za ovo radno mjesto, pa su pristupili usporedbi parova kriterija. Njihova evaluacija prikazana je sljedećom tablicom:

Par kriterija Važniji kriterij Izraz važnosti
Iskustvo - komunikacijske vještine Iskustvo Umjereno važnije
Iskustvo - liderstvo Liderstvo Jednako do umjereno
Iskustvo - tehničko znanje Tehničko znanje Umjereno do znatno važnije
Komunikacijske vj. - liderstvo Liderstvo Umjereno do znatno važnije
Komunikacijske vj. - tehničko znanje Tehničko znanje Umjereno važnije
Liderstvo - tehničko znanje Liderstvo Jednako do umjereno

Temeljem životopisa, testa i intervjua, menadžerski tim Zvrk Trka d.o.o. kreirao je sažeti prikaz karakteristika svakog od kandidata:

Kandidat 1:

Kandidat 2:

Kandidat 3:

U nastavku je menadžerski tim Zvrk Trka d.o.o. usporedio kandidate u parovima, s obzirom na svaki od kriterija, i zapisali su to u matričnom obliku:

Iskustvo Kandidat 1 Kandidat 2 Kandidat 3
Kandidat 1 1 Jednako do umjereno važnije Umjereno do znatno važnije
Kandidat 2 1 Umjereno važnije
Kandidat 3 1
Komunikacijske vještine Kandidat 1 Kandidat 2 Kandidat 3
Kandidat 1 1 Umjereno važnije Znantno važnije
Kandidat 2 1 Umjereno do znatno važnije
Kandidat 3 1
Liderstvo Kandidat 1 Kandidat 2 Kandidat 3
Kandidat 1 1
Kandidat 2 Znantno važnije 1 Umjereno do znatno važnije
Kandidat 3 Umjereno važniji 1
Tehničko znanje Kandidat 1 Kandidat 2 Kandidat 3
Kandidat 1 1
Kandidat 2 Umjereno važnije 1
Kandidat 3 Jednako do umjereno važnije Umjereno važnije 1
U ovom trenutku tim menadžera nije siguran kako nastaviti, jer inače osobno ne primjenjuju kvantitativne metode pri odlučivanju, a outsourcali su sve aktivnosti koje se tiču primjene kvantitativnih metoda u poslovanju. Zbog toga traže vašu pomoć pri rješavanju ovog problema. Nadovezujući se na pruženu osnovu, utvrdite koga tim menadžera treba odabrati.


Odabrali ste koristiti AHP metodu (Analitički hijerarhijski procesi). Saaty i Vargas (2012) osvrću se na osnove AHP-a i tvrde da AHP predstavlja opću teoriju mjerenja koja se može koristiti za kreiranje omjernih ljestvica vrijednosti pri diskretnim i kontinuiranim uparenim usporedbama u hijerarhijskim strukturama s više razina. Te se usporedbe mogu bazirati na stvarnim mjerenjima ili pripisivanju vrijednosti temeljem Saatyjeve skale koja odražava relativnu snagu preferencija i osjećaja prema alternativama. Zbog toga se, pri pripisivanju numeričkih rangova verbalnim izrazima važnosti, koristi Saatyjeva skala.


Izvor: Saaty i Vargas (2012)

Analitički hijerarhijski proces (AHP) omogućava ljudima da izraze svoje mišljenje ili preferencije o različitim dijelovima određenog problema ili situacije koju žele riješiti. Ova metoda omogućuje sistematizaciju složenih problema u obliku hijerarhijske strukture koja uključuje i kvantitativne i kvalitativne elemente problema. AHP pomaže u organiziranju problema u hijerarhiju kako bi se pripremio za proces donošenja odluka, uz ocjenjivanje elemenata hijerarhije (ciljeva, kriterija, alternativa) parovima. Metoda razvrstava problem u slojeve, od najvažnijih ciljeva do kriterija, podkriterija i alternativa. AHP je posebno koristan jer omogućuje lako identificiranje veza između kriterija i alternativa u složenim problemima s mnogo kriterija i alternativa, omogućujući prepoznavanje njihovog stvarnog ili relativnog utjecaja i važnosti. Primjenjuje se kada nije moguće pronaći jedno optimalno rješenje i kada su kriteriji konzistentni.

Proces uključuje:

  1. strukturiranje problema s grafičkim prikazom hijerarhije;
  2. komparativnu prosudbu dodjeljivanjem numeričkih vrijednosti svakom kriteriju;
  3. izračunavanje prioriteta kriterija;
  4. provjeru konzistencije;
  5. određivanje prioriteta alternativa;
  6. sintezu i
  7. davanje preporuka za odluku.

Struktura problema (grafički prikaz):

# Evaluacija kriterija, utvrđivanje omjera konzistentnosti kriterija i izračun prioriteta kriterija
# Primjer koda

kriteriji <- c("Iskustvo", "Komunikacijske vještine", "Liderstvo", "Tehničko znanje")
alternative <- c("Kandidat 1", "Kandidat 2", "Kandidat 3")

matrica_kriterija <- matrix(c(1,  3, 1/2, 1/4,
                              1/3,1, 1/4, 1/3,
                              2, 4,  1,  2,
                              4, 3, 1/2, 1),
                            ncol = 4, byrow = TRUE)

matrica_iskustvo <- matrix(c(1,2,4,
                             1/2,1,3,
                             1/4,1/3,1),
                            ncol = 3, byrow = TRUE)

matrica_komunik <- matrix(c(1, 3, 5,
                            1/3,1,4,
                            1/5,1/4,1),
                          ncol = 3, byrow = TRUE)

matrica_lider <- matrix(c(1, 1/5,1/3,
                          5, 1, 4,
                          3, 1/4, 1),
                        ncol = 3, byrow = TRUE)
                        
matrica_teh <- matrix(c(1, 1/3,1/4,
                        3, 1, 1/3,
                        4, 3, 1),
                      ncol = 3, byrow = TRUE)

# Normalizacija matrice
# Ovdje se definira funkcija koju ćemo kasnije upotrijebiti

calculate_priorities <- function(matrix) {
    normalize_matrix <- sweep(matrix, 2, colSums(matrix), "/")
    priorities <- apply(normalize_matrix, 1, mean)
    return(priorities)
}

# Izračun konzistentnosti pomoću svojstvenih vektora (engl. eigenvector)
# Ovdje se definira funkcija koju ćemo kasnije upotrijebiti

calculate_consistency_ratio <- function(matrix) {
    eigenvalues <- eigen(matrix)$values
    eig_max <- max(Re(eigenvalues))  # Najveća svojstvena vrijednost
    # Izračun indeksa konzistentnosti
    n <- nrow(matrix)  # Veličina matrice
    # Određivanje RI vrijednosti na temelju veličine matrice
    ri_values <- c(0, 0, 0.58, 0.90, 1.12, 1.24, 1.32, 1.41, 1.45, 1.49)
    ri <- ifelse(n <= 10, ri_values[n], (1.98 * (n - 2)) / n)  # Formula za n > 10
    # Izračun indeksa konzistentnosti
    ci <- (eig_max - n) / (n - 1)
    cr <- ci / ri
    return(cr)
}

# primjena funkcija
# utvrđivanje konzistencije i prioriteta
# kriteriji

prioriteti_kriterija <- calculate_priorities(matrica_kriterija)

rez_krit <- data.frame(kriteriji, prioriteti_kriterija)
knitr::kable(rez_krit, caption = "Prioriteti kriterija")
Prioriteti kriterija
kriteriji prioriteti_kriterija
Iskustvo 0.1752701
Komunikacijske vještine 0.0851245
Liderstvo 0.4097369
Tehničko znanje 0.3298685
cr <- calculate_consistency_ratio(matrica_kriterija)

if (cr >=0.1) {
  print(paste("Kriterij konzistentnosti kriterija iznosi", round(cr, 5), " i ne biste trebali nastaviti s analizom. Provjerite usporedbe kriterija."))
} else {
  print(paste("Kriterij konzistentnosti kriterija iznosi",round(cr, 5), " i manji je od granične vrijednosti 0.1 te možete nastaviti s analizom."))
}
## [1] "Kriterij konzistentnosti kriterija iznosi 0.09997  i manji je od granične vrijednosti 0.1 te možete nastaviti s analizom."

Postupak se ponavlja na način da se utvrđuju prioriteti i omjeri konzistencije za alternative s obzirom na svaki od kriterija. Rezultati su prikazani niže.

Prioriteti prema kriteriju iskustva
alternative prioriteti_iskustvo
Kandidat 1 0.5571429
Kandidat 2 0.3202381
Kandidat 3 0.1226190
## [1] "Kriterij konzistentnosti prema kriteriju iskustva iznosi 0.01577  i manji je od granične vrijednosti 0.1 te možete nastaviti s analizom."
Prioriteti prema kriteriju komunikacijskih vještina
alternative prioriteti_komunik
Kandidat 1 0.6193521
Kandidat 2 0.2842285
Kandidat 3 0.0964194
## [1] "Kriterij konzistentnosti prema kriteriju komunikacijskih vještina iznosi 0.07394  i manji je od granične vrijednosti 0.1 te možete nastaviti s analizom."
Prioriteti prema kriteriju liderstva
alternative prioriteti_lider
Kandidat 1 0.1038474
Kandidat 2 0.6650702
Kandidat 3 0.2310824
## [1] "Kriterij konzistentnosti prema kriteriju vještina liderstva iznosi 0.07394  i manji je od granične vrijednosti 0.1 te možete nastaviti s analizom."
Prioriteti prema kriteriju tehničkih znanja
alternative prioriteti_teh
Kandidat 1 0.1199393
Kandidat 2 0.2720985
Kandidat 3 0.6079622
## [1] "Kriterij konzistentnosti prema tehničkim znanjima iznosi 0.06337  i manji je od granične vrijednosti 0.1 te možete nastaviti s analizom."

U posljednjem koraku, prioriteti alternativa važu se s prioritetima kriterija. Na taj način će svakoj alternativi biti pridružena po jedna numerička vrijednost koja iskazuje važnost, prednost ili prioritet alternative. S obzirom na provedeni postupak, najveća vrijednost ukazuje na najveću važnost te alternative u odnosu na ostale alternative s obzirom na važnost zadanih kriterija.

# ukupni prioritet
ukupni_prioriteti <- prioriteti_kriterija[1] * prioriteti_iskustvo +
                    prioriteti_kriterija[2] * prioriteti_komunik +
                    prioriteti_kriterija[3] * prioriteti_lider +
                    prioriteti_kriterija[4] * prioriteti_teh

# Možete ih prikazati u tablici za bolju preglednost
rezultati <- data.frame(Kandidat = alternative, Ukupni_prioritet = ukupni_prioriteti)
knitr::kable(rezultati, caption = "Ukupni prioriteti kandidata")
Ukupni prioriteti kandidata
Kandidat Ukupni_prioritet
Kandidat 1 0.2324868
Kandidat 2 0.4425835
Kandidat 3 0.3249296
print(paste("Preporucuje se zaposliti kandidata s najvećim ukupnim prioritetom,", round(max(rezultati$Ukupni_prioritet),4)))
## [1] "Preporucuje se zaposliti kandidata s najvećim ukupnim prioritetom, 0.4426"



U procesu odabira kandidata za poziciju projektnog menadžera u tvrtki Zvrk Trk d.o.o., primijenjena je AHP metoda kako bi se odredio najprikladniji kandidat. Kroz ovaj proces, menadžerski tim je postavio četiri ključna kriterija: iskustvo, komunikacijske vještine, liderske vještine i tehničko znanje. Evaluacija važnosti ovih kriterija pokazala je da su liderske vještine i tehničko znanje ocijenjeni kao nešto važniji od iskustva i komunikacijskih vještina.

Usporedba kandidata je pokazala da Kandidat 2 najbolje odgovara ovim kriterijima. Ima solidno iskustvo u upravljanju projektima, izuzetne komunikacijske vještine, istaknute liderske vještine i iznimno tehničko znanje. Kandidat 1, iako ima više iskustva i dobre komunikacijske vještine, pokazuje manje detaljno tehničko znanje i manje iskustva u kriznom menadžmentu. S druge strane, Kandidat 3, unatoč svom potencijalu i dobrom tehničkom znanju, ima manje praktičnog iskustva u vođenju (liderske vještine).

Svaki od kandidata ističe se na različiti način i upravo u takvim situacijama uočavaju se prednosti primjene ove metode. Štoviše, kvalitativni opisi kandidata mogu djelovati zbunjujuće i odabir uistinu može biti težak. Zbog toga je važno definirati i usporediti kriterije odabira na početku postupka. S obzirom na definirane kriterije i njihovu važnost, Kandidat 2 se izdvaja kao najbolji izbor za poziciju projektnog menadžera u tvrtki Zvrk Trk d.o.o.




Korištena literatura:

Buchanan, J., Sheppard, P., & Vanderpoorten, D. (1998, August). Ranking projects using the ELECTRE method. In Operational Research Society of New Zealand, Proceedings of the 33rd Annual Conference (Vol. 30, pp. 42-51).

Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of operational research, 202(1), 16-24.

Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and sustainable energy reviews, 8(4), 365-381.

Saaty, T. (1980). The analytic hierarchy process (AHP) for decision making. In Kobe, Japan (pp. 1-69).

Saaty, T. L. (1994). How to make a decision: the analytic hierarchy process. Interfaces, 24(6), 19-43.

Saaty, T. L., Vargas, L. G. (2012) Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. 2nd Edition. Springer.