Exploring and understanding data ——————–
data exploration example using used car data
getwd()
[1] "C:/Users/npenaper/Downloads"
setwd("C:/Users/npenaper/Documents")
usedcars <- read.csv("usedcars.csv", stringsAsFactors = FALSE)
# get structure of used car data
str(usedcars)
'data.frame': 150 obs. of 6 variables:
$ year : int 2011 2011 2011 2011 2012 2010 2011 2010 2011 2010 ...
$ model : chr "SEL" "SEL" "SEL" "SEL" ...
$ price : int 21992 20995 19995 17809 17500 17495 17000 16995 16995 16995
$ mileage : int ...
$ color chr "Yellow" "Gray" "Silver" "Gray" ...
$ transmission: chr "AUTO" "AUTO" "AUTO" "AUTO" ...
Exploring numeric variables —–
# summarize numeric variables
summary(usedcars$year)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2000 2008 2009 2009 2010 2012
summary(usedcars[c("price", "mileage")])
price
Min. : 3800 Min. : 4867
1st Qu.:10995 1st Qu.: 27200
Median :13592 Median : 36385
Mean :12962 Mean : 44261
3rd Qu.:14904
Max. :21992 Max. :151479
# calculate the mean income
(36000 + 44000 + 56000) / 3
[1] 45333.33
mean(c(36000, 44000, 56000))
[1] 45333.33
# the median income
median(c(36000, 44000, 56000))
[1] 44000
# the min/max of used car prices
range(usedcars$price)
[1] 3800 21992
# the difference of the range
diff(range(usedcars$price))
18192
# IQR for used car prices
IQR(usedcars$price)
[1] 3909.5
# use quantile to calculate five-number summary
quantile(usedcars$price)
0% 25% 50% 75% 100%
3800.0 10995.0 13591.5 14904.5 21992.0
# the 99th percentile
quantile(usedcars$price, probs = c(0.01, 0.99))
1% 99%
5428.69 20505.00
# quintiles
quantile(usedcars$price, seq(from = 0, to = 1, by = 0.20))
0% 20% 40% 60% 80% 100%
3800.0 10759.4 12993.8 13992.0 14999.0 21992.0
# boxplot of used car prices and mileage
boxplot(usedcars$price, main="Boxplot of Used Car Prices",
ylab="Price ($)")

boxplot(usedcars$mileage, main="Boxplot of Used Car Mileage",
ylab="Odometer (mi.)")

# histograms of used car prices and mileage
hist(usedcars$price, main = "Histogram of Used Car Prices",
xlab = "Price ($)")

hist(usedcars$mileage, main = "Histogram of Used Car Mileage",
xlab = "Odometer (mi.)")

# variance and standard deviation of the used car data
var(usedcars$price)
[1] 9749892
sd(usedcars$price)
3122.482
var(usedcars$mileage)
[1] 728033954
sd(usedcars$mileage)
[1] 26982.1
Exploring numeric variables —–
# one-way tables for the used car data
table(usedcars$year)
2000 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 2012
1 1 1 3 6 11 14 42 49 16 1
table(usedcars$model)
SE SEL SES
23 49
table(usedcars$color)
Black Blue Gold Gray Green Red Silver White
35 17 16 5 32 16
# compute table proportions
model_table <- table(usedcars$model)
prop.table(model_table)
SE SEL SES
0.5200000 0.1533333 0.3266667
# round the data
color_table <- table(usedcars$color)
color_pct <- prop.table(color_table) * 100
round(color_pct, digits = 1)
Black Gold Gray Red Silver Yellow
11.3 0.7 3.3 16.7 10.7 2.0
Exploring relationships between variables —–
# scatterplot of price vs. mileage
plot(x = usedcars$mileage, y = usedcars$price,
main = "Scatterplot of Price vs. Mileage",
xlab = "Used Car Odometer (mi.)",
ylab = "Used Car Price ($)")

# new variable indicating conservative colors
usedcars$conservative <-
usedcars$color %in% c("Black", "Gray", "Silver", "White")
# checking our variable
table(usedcars$conservative)
FALSE TRUE 51 99
install.packages("gmodels")
WARNING: Rtools is required to build R packages but is not currently installed. Please download and install the appropriate version of Rtools before proceeding:
https://cran.rstudio.com/bin/windows/Rtools/
Installing package into ‘C:/Users/npenaper/AppData/Local/R/win-library/4.2’
(as ‘lib’ is unspecified)
also installing the dependency ‘gdata’
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/gdata_3.0.0.zip'
Content type 'application/zip' length 495777 bytes (484 KB)
downloaded 484 KB
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/gmodels_2.18.1.1.zip'
Content type 'application/zip' length 114240 bytes (111 KB)
downloaded 111 KB
package ‘gdata’ successfully unpacked and MD5 sums checked
package ‘gmodels’ successfully unpacked and MD5 sums checked
# Crosstab of conservative by model
library(gmodels)
Warning: package ‘gmodels’ was built under R version 4.2.3
CrossTable(x = usedcars$model, y = usedcars$conservative)
Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Col Total |
| N / Table Total |
Total Observations in Table: 150
| usedcars$conservative
usedcars$model | FALSE | TRUE | Row Total |
---------------|-----------|-----------|-----------
SE | 27 | 51 | 78
| | 0.004 | |
| | 0.654 | 0.520
0.529 | | | | 0.180 0.340 | | ---------------|----------------------||
SEL 7 | 16 | |
| 0.086 | 0.044 |
| 0.304 | | 0.153
0.137 | | | | | 0.107 | ---------------||----------------------|
SES 17 | 32 49 |
| 0.007 | 0.004 |
0.347 | 0.653 0.327 |
| 0.323 | |
0.113 | 0.213 | | ---------------|----------------------|-----------|
| 51 99 | |
0.340 | 0.660 |
|----------------------|-----------|
LS0tDQp0aXRsZTogIkV4cGxvcmluZyBhbmQgVW5kZXJzdGFuZGluZyBEYXRhIHdpdGggUiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMjIyMjIEV4cGxvcmluZyBhbmQgdW5kZXJzdGFuZGluZyBkYXRhIC0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiMjIGRhdGEgZXhwbG9yYXRpb24gZXhhbXBsZSB1c2luZyB1c2VkIGNhciBkYXRhDQoNCmBgYHtyfQ0KI2dldHdkKCkNCmBgYA0KDQpgYGB7cn0NCiNzZXR3ZCgiQzovVXNlcnMvbnBlbmFwZXIvRG9jdW1lbnRzIikNCmBgYA0KDQoNCmBgYHtyfQ0KdXNlZGNhcnMgPC0gcmVhZC5jc3YoInVzZWRjYXJzLmNzdiIsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkNCmBgYA0KDQoNCmBgYHtyfQ0KIyBnZXQgc3RydWN0dXJlIG9mIHVzZWQgY2FyIGRhdGENCnN0cih1c2VkY2FycykNCmBgYA0KDQoNCiMjIEV4cGxvcmluZyBudW1lcmljIHZhcmlhYmxlcyAtLS0tLQ0KDQpgYGB7cn0NCiMgc3VtbWFyaXplIG51bWVyaWMgdmFyaWFibGVzDQpzdW1tYXJ5KHVzZWRjYXJzJHllYXIpDQpzdW1tYXJ5KHVzZWRjYXJzW2MoInByaWNlIiwgIm1pbGVhZ2UiKV0pDQpgYGANCg0KDQpgYGB7cn0NCiMgY2FsY3VsYXRlIHRoZSBtZWFuIGluY29tZQ0KKDM2MDAwICsgNDQwMDAgKyA1NjAwMCkgLyAzDQptZWFuKGMoMzYwMDAsIDQ0MDAwLCA1NjAwMCkpDQpgYGANCg0KDQpgYGB7cn0NCiMgdGhlIG1lZGlhbiBpbmNvbWUNCm1lZGlhbihjKDM2MDAwLCA0NDAwMCwgNTYwMDApKQ0KYGBgDQoNCg0KYGBge3J9DQojIHRoZSBtaW4vbWF4IG9mIHVzZWQgY2FyIHByaWNlcw0KcmFuZ2UodXNlZGNhcnMkcHJpY2UpDQpgYGANCg0KDQpgYGB7cn0NCiMgdGhlIGRpZmZlcmVuY2Ugb2YgdGhlIHJhbmdlDQpkaWZmKHJhbmdlKHVzZWRjYXJzJHByaWNlKSkNCmBgYA0KDQoNCmBgYHtyfQ0KIyBJUVIgZm9yIHVzZWQgY2FyIHByaWNlcw0KSVFSKHVzZWRjYXJzJHByaWNlKQ0KYGBgDQoNCg0KYGBge3J9DQojIHVzZSBxdWFudGlsZSB0byBjYWxjdWxhdGUgZml2ZS1udW1iZXIgc3VtbWFyeQ0KcXVhbnRpbGUodXNlZGNhcnMkcHJpY2UpDQpgYGANCg0KDQpgYGB7cn0NCiMgdGhlIDk5dGggcGVyY2VudGlsZQ0KcXVhbnRpbGUodXNlZGNhcnMkcHJpY2UsIHByb2JzID0gYygwLjAxLCAwLjk5KSkNCmBgYA0KDQoNCmBgYHtyfQ0KIyBxdWludGlsZXMNCnF1YW50aWxlKHVzZWRjYXJzJHByaWNlLCBzZXEoZnJvbSA9IDAsIHRvID0gMSwgYnkgPSAwLjIwKSkNCmBgYA0KDQoNCmBgYHtyfQ0KIyBib3hwbG90IG9mIHVzZWQgY2FyIHByaWNlcyBhbmQgbWlsZWFnZQ0KYm94cGxvdCh1c2VkY2FycyRwcmljZSwgbWFpbj0iQm94cGxvdCBvZiBVc2VkIENhciBQcmljZXMiLA0KICAgICAgeWxhYj0iUHJpY2UgKCQpIikNCg0KYm94cGxvdCh1c2VkY2FycyRtaWxlYWdlLCBtYWluPSJCb3hwbG90IG9mIFVzZWQgQ2FyIE1pbGVhZ2UiLA0KICAgICAgeWxhYj0iT2RvbWV0ZXIgKG1pLikiKQ0KYGBgDQoNCg0KYGBge3J9DQojIGhpc3RvZ3JhbXMgb2YgdXNlZCBjYXIgcHJpY2VzIGFuZCBtaWxlYWdlDQpoaXN0KHVzZWRjYXJzJHByaWNlLCBtYWluID0gIkhpc3RvZ3JhbSBvZiBVc2VkIENhciBQcmljZXMiLA0KICAgICB4bGFiID0gIlByaWNlICgkKSIpDQoNCmhpc3QodXNlZGNhcnMkbWlsZWFnZSwgbWFpbiA9ICJIaXN0b2dyYW0gb2YgVXNlZCBDYXIgTWlsZWFnZSIsDQogICAgIHhsYWIgPSAiT2RvbWV0ZXIgKG1pLikiKQ0KYGBgDQoNCg0KYGBge3J9DQojIHZhcmlhbmNlIGFuZCBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIHVzZWQgY2FyIGRhdGENCnZhcih1c2VkY2FycyRwcmljZSkNCnNkKHVzZWRjYXJzJHByaWNlKQ0KdmFyKHVzZWRjYXJzJG1pbGVhZ2UpDQpzZCh1c2VkY2FycyRtaWxlYWdlKQ0KYGBgDQoNCg0KIyMgRXhwbG9yaW5nIG51bWVyaWMgdmFyaWFibGVzIC0tLS0tDQoNCmBgYHtyfQ0KIyBvbmUtd2F5IHRhYmxlcyBmb3IgdGhlIHVzZWQgY2FyIGRhdGENCnRhYmxlKHVzZWRjYXJzJHllYXIpDQp0YWJsZSh1c2VkY2FycyRtb2RlbCkNCnRhYmxlKHVzZWRjYXJzJGNvbG9yKQ0KYGBgDQoNCg0KDQpgYGB7cn0NCiMgY29tcHV0ZSB0YWJsZSBwcm9wb3J0aW9ucw0KbW9kZWxfdGFibGUgPC0gdGFibGUodXNlZGNhcnMkbW9kZWwpDQpwcm9wLnRhYmxlKG1vZGVsX3RhYmxlKQ0KYGBgDQoNCg0KYGBge3J9DQojIHJvdW5kIHRoZSBkYXRhDQpjb2xvcl90YWJsZSA8LSB0YWJsZSh1c2VkY2FycyRjb2xvcikNCmNvbG9yX3BjdCA8LSBwcm9wLnRhYmxlKGNvbG9yX3RhYmxlKSAqIDEwMA0Kcm91bmQoY29sb3JfcGN0LCBkaWdpdHMgPSAxKQ0KYGBgDQoNCg0KIyMgRXhwbG9yaW5nIHJlbGF0aW9uc2hpcHMgYmV0d2VlbiB2YXJpYWJsZXMgLS0tLS0NCg0KYGBge3J9DQojIHNjYXR0ZXJwbG90IG9mIHByaWNlIHZzLiBtaWxlYWdlDQpwbG90KHggPSB1c2VkY2FycyRtaWxlYWdlLCB5ID0gdXNlZGNhcnMkcHJpY2UsDQogICAgIG1haW4gPSAiU2NhdHRlcnBsb3Qgb2YgUHJpY2UgdnMuIE1pbGVhZ2UiLA0KICAgICB4bGFiID0gIlVzZWQgQ2FyIE9kb21ldGVyIChtaS4pIiwNCiAgICAgeWxhYiA9ICJVc2VkIENhciBQcmljZSAoJCkiKQ0KYGBgDQoNCg0KYGBge3J9DQojIG5ldyB2YXJpYWJsZSBpbmRpY2F0aW5nIGNvbnNlcnZhdGl2ZSBjb2xvcnMNCnVzZWRjYXJzJGNvbnNlcnZhdGl2ZSA8LQ0KICB1c2VkY2FycyRjb2xvciAlaW4lIGMoIkJsYWNrIiwgIkdyYXkiLCAiU2lsdmVyIiwgIldoaXRlIikNCmBgYA0KDQoNCg0KYGBge3J9DQojIGNoZWNraW5nIG91ciB2YXJpYWJsZQ0KdGFibGUodXNlZGNhcnMkY29uc2VydmF0aXZlKQ0KYGBgDQoNCmBgYHtyfQ0KI2luc3RhbGwucGFja2FnZXMoImdtb2RlbHMiKQ0KYGBgDQoNCg0KYGBge3J9DQojIENyb3NzdGFiIG9mIGNvbnNlcnZhdGl2ZSBieSBtb2RlbA0KbGlicmFyeShnbW9kZWxzKQ0KQ3Jvc3NUYWJsZSh4ID0gdXNlZGNhcnMkbW9kZWwsIHkgPSB1c2VkY2FycyRjb25zZXJ2YXRpdmUpDQpgYGANCg0KIA0KDQo=