Moral vs. Racial Study Report

Going over filters

Only 201 out of 400 participants passed our pre-registered exclusion criteria, which was unexpected. Below is the breakdown of how many people missed each question. It looks like the biggest culprit was the attention check. This may be because we launched this friday afternoon.

Columns are the manipulation check. 0 means participant failed. 1 means the participant passed.

Racial vs. Moral Manip Check.

##           rac_mor_manip
## cond_label   0   1
##     Moral    3 193
##     Racial  62 141

Amount Manip Check.

##                              amt_manip
## cond_amt_label                  1   2   3
##   1. Low Diversity - Majority 127   5   3
##   2. Low Diversity - Minority   9 114  10
##   3. High Diversity            10   6 117

NZ/AUS res.

##                              amt_manip
## cond_amt_label                  1   2   3
##   1. Low Diversity - Majority 127   5   3
##   2. Low Diversity - Minority   9 114  10
##   3. High Diversity            10   6 117

Attn_check (6 is the right answer)

## attn_chk
##   1   2   3   4   6 
##   2  14  54   3 328

Main Effects

Means and SDs

With pre-registered exclusions

## $Tightness
##                               cond_label                 
## 1                                  Moral      Racial     
## 2              cond_amt_label          M   SD      M   SD
## 3 1. Low Diversity - Majority       5.06 0.76   4.91 0.74
## 4 2. Low Diversity - Minority       4.61 0.94   4.73 0.41
## 5           3. High Diversity       3.95 0.85   4.39 0.70
## 
## $`NormVio.\nAccept.`
##                               cond_label                 
## 1                                  Moral      Racial     
## 2              cond_amt_label          M   SD      M   SD
## 3 1. Low Diversity - Majority       1.85 0.98   1.85 0.87
## 4 2. Low Diversity - Minority       2.86 1.51   1.79 0.55
## 5           3. High Diversity       2.56 1.05   1.74 0.77
## 
## $Punish
##                               cond_label                 
## 1                                  Moral      Racial     
## 2              cond_amt_label          M   SD      M   SD
## 3 1. Low Diversity - Majority       4.30 0.47   4.48 0.50
## 4 2. Low Diversity - Minority       3.60 0.97   4.23 0.56
## 5           3. High Diversity       3.72 0.63   4.08 0.77
## 
## $OCBs
##                               cond_label                 
## 1                                  Moral      Racial     
## 2              cond_amt_label          M   SD      M   SD
## 3 1. Low Diversity - Majority       2.31 0.71   2.42 0.63
## 4 2. Low Diversity - Minority       2.21 0.65   2.10 0.35
## 5           3. High Diversity       2.30 0.58   2.18 0.81

Full dataset

## $Tightness
##                               cond_label                 
## 1                                  Moral      Racial     
## 2              cond_amt_label          M   SD      M   SD
## 3 1. Low Diversity - Majority       5.03 0.76   4.86 0.71
## 4 2. Low Diversity - Minority       4.61 0.89   4.85 0.61
## 5           3. High Diversity       4.13 0.85   4.54 0.78
## 
## $`NormVio.\nAccept.`
##                               cond_label                 
## 1                                  Moral      Racial     
## 2              cond_amt_label          M   SD      M   SD
## 3 1. Low Diversity - Majority       1.91 1.01   1.83 0.83
## 4 2. Low Diversity - Minority       2.71 1.39   2.01 0.95
## 5           3. High Diversity       2.52 1.15   1.88 1.02
## 
## $Punish
##                               cond_label                 
## 1                                  Moral      Racial     
## 2              cond_amt_label          M   SD      M   SD
## 3 1. Low Diversity - Majority       4.28 0.48   4.21 0.66
## 4 2. Low Diversity - Minority       3.70 0.87   4.17 0.58
## 5           3. High Diversity       3.81 0.68   4.11 0.75
## 
## $OCBs
##                               cond_label                 
## 1                                  Moral      Racial     
## 2              cond_amt_label          M   SD      M   SD
## 3 1. Low Diversity - Majority       2.34 0.76   2.35 0.73
## 4 2. Low Diversity - Minority       2.20 0.66   2.17 0.64
## 5           3. High Diversity       2.30 0.63   2.19 0.72

Anovas

With pre-registered exclusions

## [1] "Tightness"
##                            Df Sum Sq Mean Sq F value   Pr(>F)    
## cond_label                  1   0.05   0.049   0.075    0.784    
## cond_amt_label              2  31.21  15.603  24.193 4.12e-10 ***
## cond_label:cond_amt_label   2   2.10   1.048   1.626    0.199    
## Residuals                 195 125.76   0.645                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "Norm violation acceptance"
##                            Df Sum Sq Mean Sq F value  Pr(>F)    
## cond_label                  1  12.41  12.414  10.085 0.00174 ** 
## cond_amt_label              2  23.30  11.648   9.462 0.00012 ***
## cond_label:cond_amt_label   2   6.78   3.388   2.752 0.06628 .  
## Residuals                 195 240.05   1.231                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "Punishment"
##                            Df Sum Sq Mean Sq F value   Pr(>F)    
## cond_label                  1   3.81   3.813   7.863  0.00556 ** 
## cond_amt_label              2  15.92   7.962  16.421 2.57e-07 ***
## cond_label:cond_amt_label   2   1.11   0.557   1.148  0.31936    
## Residuals                 195  94.55   0.485                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "OCB"
##                            Df Sum Sq Mean Sq F value Pr(>F)
## cond_label                  1   0.10  0.0966   0.225  0.636
## cond_amt_label              2   0.74  0.3676   0.856  0.426
## cond_label:cond_amt_label   2   0.38  0.1915   0.446  0.641
## Residuals                 195  83.74  0.4294

With full dataset

## [1] "Tightness"
##                            Df Sum Sq Mean Sq F value   Pr(>F)    
## cond_label                  1   1.51   1.510   2.522  0.11309    
## cond_amt_label              2  24.77  12.387  20.688 2.85e-09 ***
## cond_label:cond_amt_label   2   5.71   2.853   4.765  0.00902 ** 
## Residuals                 395 236.50   0.599                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "norm violation acceptance"
##                            Df Sum Sq Mean Sq F value   Pr(>F)    
## cond_label                  1   22.4  22.355  19.342 1.41e-05 ***
## cond_amt_label              2   17.5   8.735   7.557 0.000601 ***
## cond_label:cond_amt_label   2    7.7   3.854   3.334 0.036645 *  
## Residuals                 395  456.5   1.156                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "Punishment"
##                            Df Sum Sq Mean Sq F value   Pr(>F)    
## cond_label                  1   4.99   4.993  10.589 0.001235 ** 
## cond_amt_label              2   8.44   4.222   8.953 0.000158 ***
## cond_label:cond_amt_label   2   5.12   2.562   5.433 0.004702 ** 
## Residuals                 395 186.27   0.472                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "OCB"
##                            Df Sum Sq Mean Sq F value Pr(>F)
## cond_label                  1   0.19  0.1922   0.401  0.527
## cond_amt_label              2   1.84  0.9175   1.915  0.149
## cond_label:cond_amt_label   2   0.24  0.1208   0.252  0.777
## Residuals                 395 189.22  0.4790

Graphs

With pre-registered exclusions

Full dataset