Example using ‘FLBRP’

For a stock the ‘FLBRP’ object can be derived, this holds the expected values for the mortality, selectivity, mass, marurity-at-age, and the stock recruitment relationship, and can be used to calculate the expected, i.e. equilibrium values of biomass for any given level of fishing mortality.

Figure 1 Equilibrium curves showing estimates of SSB, recruitment yield and F.

The ‘FLBRP’ object is then used to simulate ‘FLStock’ objects that can be projected through time for a given level of fishing mortality. In Figure 2 the stock is initially at different levels of depletion and then projected for \(F=0\). The stock then recovers, the dashed horizontal line is \(SSB/B_{MSY}\), and the green vertical line is half a geneartion time, and the red vertical line one generation time. For a desired time for recovery the level that the stock should not fall below can be read from the curves, and is summarised in Figure 3.

Figure 2 Recovery from depletion, vertical lines are half (green) and one (red) generation time

Figure 3 Recovery from different depletion levels, red horizontal line is \(B_{MSY}\), vertical lines are half (green) and one (red) generation time

If the management objective is in the case of stock depletion is to close the fishery to recover a stock in a generation time then the biomass limit that should be avoided with high probability is 25% of \(B_{MSY}\). If fishing is still to be allowed under recovery then the biomass limit will have to be higher.

As a performance statistic you could then say there must be a 95% prob that you can rebuild within a given fraction of a generation time with F=0.

Figure 4 Time to recover from different depletion levels, vertical lines are half (white) and one (red) generation time

Impact of M and the SRR

Figure 5 Time series of fishing mortality, with \(F_{MSY}\) (dashed) and \(F_{lim}\) (solid).

Figure 6 Time series of SSB, with \(B_{MSY}\) (dashed) and \(B_{lim}\) (solid).

  0:     19.965325:  10.1229 -0.916291  1.91288
  1:     19.795713:  10.1627 -0.888221  1.91357
  2:     19.768537:  10.1484 -0.872385  1.91251
  3:     19.763467:  10.1551 -0.866864  1.91226
  4:     19.762547:  10.1525 -0.863914  1.91168
  5:     19.762314:  10.1544 -0.862401  1.90855
  6:     19.762268:  10.1535 -0.862582  1.90468
  7:     19.762238:  10.1533 -0.862163  1.90657
  8:     19.762229:  10.1536 -0.862038  1.90713
  9:     19.762228:  10.1536 -0.862076  1.90702
 10:     19.762228:  10.1536 -0.862075  1.90702
  0:     90.016145:  8.77345 -0.916291  1.05279
  1:     43.892164:  9.28078 -0.0695157  1.21276
  2:     43.836695:  10.1209 -0.609402  1.26451
  3:     38.774357:  9.98359 -0.270550 0.923462
  4:     37.683715:  10.0659 -0.444244 0.840813
  5:     37.617093:  10.0893 -0.456290 0.891391
  6:     37.608816:  10.1425 -0.454067 0.870829
  7:     37.607875:  10.1336 -0.451616 0.868423
  8:     37.607860:  10.1338 -0.452187 0.868684
  9:     37.607860:  10.1337 -0.452150 0.868735
 10:     37.607860:  10.1337 -0.452152 0.868730
  0:     98.134697:  17.0444 -0.916291 -0.105123
  1:     66.204427:  17.6782 -0.215462 0.222216
  2:     57.386679:  17.6611 -0.438680 0.222004
  3:     54.373848:  17.5955 -0.880259 0.256308
  4:     52.182700:  17.4034 -0.731071 0.632218
  5:     51.700487:  17.4600 -0.750783 0.597805
  6:     51.419157:  17.4745 -0.755889 0.530429
  7:     51.327330:  17.5123 -0.737745 0.475505
  8:     51.309615:  17.5019 -0.747032 0.467676
  9:     51.308954:  17.5046 -0.745703 0.465233
 10:     51.308767:  17.5057 -0.747009 0.461721
 11:     51.308646:  17.5052 -0.745795 0.461631
 12:     51.308645:  17.5052 -0.745841 0.461592
 13:     51.308645:  17.5052 -0.745839 0.461601
 14:     51.308645:  17.5052 -0.745840 0.461602
  0:     10.662667:  15.2814 -0.916291 0.215888
  1:     1.8827555:  15.5267 -1.04446 0.263769
  2:    -4.1584956:  15.5871 -1.31877 0.267349
  3:    -5.7707734:  15.5216 -1.51201 0.222162
  4:    -6.5514620:  15.6478 -1.53372 0.0570197
  5:    -6.6401656:  15.6274 -1.55941 0.0850229
  6:    -6.6502214:  15.6305 -1.57499 0.0891227
  7:    -6.6518858:  15.6260 -1.57609 0.0862232
  8:    -6.6531418:  15.6255 -1.57522 0.0915800
  9:    -6.6532200:  15.6231 -1.57467 0.0964097
 10:    -6.6533343:  15.6237 -1.57727 0.0978175
 11:    -6.6534284:  15.6238 -1.57619 0.0964717
 12:    -6.6534284:  15.6238 -1.57620 0.0965118
 13:    -6.6534284:  15.6238 -1.57620 0.0965103
  0:     51.944736:  11.4870 -0.916291  2.14391
  1:     50.127249:  11.6258 -0.652428  2.14344
  2:     48.885818:  11.5454 -0.682422  2.13793
  3:     48.877253:  11.5051 -0.758061  2.13132
  4:     48.730090:  11.5422 -0.736375  2.13089
  5:     48.714232:  11.5275 -0.730490  2.12825
  6:     48.708318:  11.5342 -0.726225  2.11430
  7:     48.706688:  11.5329 -0.731964  2.09940
  8:     48.706101:  11.5337 -0.728306  2.09785
  9:     48.706056:  11.5334 -0.728784  2.09785
 10:     48.706054:  11.5336 -0.729328  2.09789
 11:     48.706049:  11.5334 -0.729098  2.09831
 12:     48.706049:  11.5335 -0.729057  2.09788
 13:     48.706049:  11.5335 -0.729083  2.09810
 14:     48.706049:  11.5335 -0.729087  2.09810
 15:     48.706049:  11.5335 -0.729088  2.09808
 16:     48.706049:  11.5335 -0.729087  2.09807
  0:     70.559422:  16.4650 -0.916291 0.901720
  1:     50.778048:  16.6680 0.0605462 0.834096
  2:     47.838766:  16.8101 -0.143124 0.656977
  3:     45.887963:  16.6411 -0.396811 0.645757
  4:     45.688468:  16.5973 -0.305013 0.631216
  5:     45.653110:  16.5938 -0.337431 0.618891
  6:     45.652448:  16.6039 -0.333284 0.622062
  7:     45.651859:  16.5999 -0.336147 0.632283
  8:     45.651660:  16.5978 -0.334537 0.628430
  9:     45.651648:  16.5991 -0.335967 0.625163
 10:     45.651619:  16.5995 -0.334981 0.627567
 11:     45.651610:  16.5989 -0.335140 0.627416
 12:     45.651609:  16.5990 -0.335183 0.627222
 13:     45.651609:  16.5990 -0.335173 0.627256
 14:     45.651609:  16.5990 -0.335173 0.627254
  0:     45.715922:  14.8279 -0.916291  1.26607
  1:     43.499074:  15.0945 -0.706194  1.28918
  2:     41.716672:  14.9820 -0.716358  1.26789
  3:     41.568918:  14.9501 -0.746679  1.25951
  4:     41.559130:  14.9588 -0.752947  1.25724
  5:     41.556354:  14.9545 -0.756724  1.24793
  6:     41.551653:  14.9616 -0.754372  1.23998
  7:     41.549079:  14.9587 -0.754459  1.22944
  8:     41.546953:  14.9634 -0.754107  1.21955
  9:     41.546443:  14.9639 -0.756277  1.20883
 10:     41.546367:  14.9642 -0.755346  1.20899
 11:     41.546356:  14.9640 -0.755282  1.20999
 12:     41.546355:  14.9639 -0.755179  1.21025
 13:     41.546354:  14.9639 -0.755227  1.21044
 14:     41.546354:  14.9639 -0.755223  1.21033
 15:     41.546354:  14.9639 -0.755222  1.21034
  0:     268.33933:  11.6247 -0.916291 0.0250076
  1:     90.874021:  11.8377 0.0103326 0.334835
  2:     83.915219:  12.4485 -0.254936  1.08088
  3:     82.438031:  12.5912 -0.0821163 0.683385
  4:     82.122344:  12.5948 -0.155777 0.720669
  5:     82.100766:  12.5345 -0.155579 0.765341
  6:     82.098312:  12.5181 -0.160448 0.767942
  7:     82.098247:  12.5178 -0.159771 0.766545
  8:     82.098246:  12.5178 -0.159745 0.766449
  9:     82.098246:  12.5178 -0.159745 0.766450
  0:     78.461633:  16.5552 -0.916291 -0.261546
  1:     45.668462:  16.9460 -0.0101555 -0.0998106
  2:     42.434501:  17.2165 -0.251476 -0.0316525
  3:     42.044121:  17.1927 -0.373741 -0.0920500
  4:     41.968374:  17.2318 -0.315044 -0.211159
  5:     41.942150:  17.2671 -0.342571 -0.201795
  6:     41.937215:  17.2478 -0.338028 -0.177828
  7:     41.936904:  17.2294 -0.338237 -0.178239
  8:     41.936377:  17.2390 -0.336990 -0.180031
  9:     41.936372:  17.2386 -0.337363 -0.179497
 10:     41.936372:  17.2386 -0.337295 -0.179580
 11:     41.936372:  17.2386 -0.337295 -0.179580

Figure 7

Figure 8

Error in (function (cond)  : 
  error in evaluating the argument 'object' in selecting a method for function 'rebuildTime': subscript out of bounds
Error in (function (cond)  : 
  error in evaluating the argument 'object' in selecting a method for function 'rebuildTime': subscript out of bounds
Error in (function (cond)  : 
  error in evaluating the argument 'object' in selecting a method for function 'rebuildTime': subscript out of bounds
Error in (function (cond)  : 
  error in evaluating the argument 'object' in selecting a method for function 'rebuildTime': subscript out of bounds
Error in (function (cond)  : 
  error in evaluating the argument 'object' in selecting a method for function 'rebuildTime': subscript out of bounds
Error in (function (cond)  : 
  error in evaluating the argument 'object' in selecting a method for function 'rebuildTime': subscript out of bounds
Error in (function (cond)  : 
  error in evaluating the argument 'object' in selecting a method for function 'rebuildTime': subscript out of bounds
Error in (function (cond)  : 
  error in evaluating the argument 'object' in selecting a method for function 'rebuildTime': subscript out of bounds
Error in (function (cond)  : 
  error in evaluating the argument 'object' in selecting a method for function 'rebuildTime': subscript out of bounds

Table 1: Ratio between ICES and scenario \(B_{MSY}\)
.id Beverton & Holt Steepness Prior Steepness=0.6 Steepness=0.9 Depensation
bss.27.8ab 0.455 2.015 NA 2.068 0.328
cod.27.6a 0.381 1.352 0.723 1.565 0.375
her.27.3a47d 1.216 1.165 1.192 2.252 1.285
mac.27.nea 1.027 0.945 0.854 1.566 0.980
mon.27.78abd 0.987 1.264 0.532 1.155 0.835
pil.27.8c9a 2.267 4.416 2.838 8.067 1.696
ple.27.420 1.031 2.500 1.261 3.570 0.871
sol.27.4 1.767 0.194 0.180 0.956 1.484
whb.27.1-91214 0.771 0.989 1.125 2.096 NA
Table 2: Rebuilding Time
.id Beverton & Holt Steepness Prior Steepness=0.6 Steepness=0.9 Depensation
bss.27.8ab 18.010 -0.200 NA -0.338 28.834
cod.27.6a 9.508 3.786 5.014 3.401 6.216
her.27.3a47d 3.102 3.517 3.385 -0.249 2.333
mac.27.nea 4.115 2.934 3.776 0.259 3.498
mon.27.78abd 3.614 2.175 9.059 2.610 3.956
pil.27.8c9a -0.038 -9.249 -7.736 -27.194 3.643
ple.27.420 4.654 -1.674 2.471 -3.084 4.151
sol.27.4 2.180 29.992 31.341 4.229 12.868
whb.27.1-91214 7.136 5.951 5.179 1.439 NA
Table 3: AIC weights
.id Beverton & Holt Steepness=0.9 Steepness=0.6 Steepness Prior Depensation
bss.27.8ab 0.383 0.724 0.722 1.000 0.969
cod.27.6a 1.000 0.001 0.000 0.499 0.089
her.27.3a47d 0.001 0.030 0.000 0.028 1.000
mac.27.nea 0.000 0.550 0.008 1.000 0.429
mon.27.78abd 0.429 0.906 1.000 0.005 0.762
pil.27.8c9a 0.045 0.001 0.000 0.023 1.000
ple.27.420 0.000 0.510 0.387 1.000 0.631
sol.27.4 0.368 0.000 0.546 0.000 1.000
whb.27.1-91214 0.351 0.721 0.218 0.598 1.000
             .id     s           1
1     bss.27.8ab 0.897   101489.41
2      cod.27.6a 0.793    32580.95
3   her.27.3a47d 0.579 39313400.88
4     mac.27.nea 0.643  5385707.23
5   mon.27.78abd 0.916   110879.42
6    pil.27.8c9a 0.769 25019950.00
7     ple.27.420 0.824  4090214.64
8       sol.27.4 0.605   111825.86
9 whb.27.1-91214 0.548 27321117.97
             .id     s           1
1     bss.27.8ab 0.897   101489.41
2      cod.27.6a 0.793    32580.95
3   her.27.3a47d 0.579 39313400.88
4     mac.27.nea 0.643  5385707.23
5   mon.27.78abd 0.916   110879.42
6    pil.27.8c9a 0.769 25019950.00
7     ple.27.420 0.824  4090214.64
8       sol.27.4 0.605   111825.86
9 whb.27.1-91214 0.548 27321117.97

Fitting depensation (blue) using

sr=fmle(as.FLSR(x, model=bevholtDa), fixed=list(d=1.4),control=list(silent=TRUE))

is equivalent to the bev & holt (red) fitted using

fmle(as.FLSR(stks[[.id]],model=“bevholt”),control=list(silent=TRUE),

There are 3 things of importance i.e. 

  • scaling, e.g. virgin biomass and MSY
  • ratio between BMSY & Virgin
  • r and FMSY

As M, wt, mat are all held constant SPR0 is fixed, so the production function is determined by the SRR. i.e. 2 parameters for Bev Holt

In the case of depensation what does steepness mean? All the stuff at low SSB messes up everything on the left-hand limb of the production function r, FMSY, shape, …

I suggest therefore that we fix R0/Virgin, i.e. “a” of the Bev Holt, that way we keep the scale, and explore rates & shape (i.e. differences between targets & limits) i.e.

sr=fmle(as.FLSR(x, model=bevholtDa), fixed=list(d=1.4,a=a),control=list(silent=TRUE))

References