##
## Call:
## lm(formula = sleep ~ totwrk + educ + age + agesq + male, data = sleep75)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2378.00 -243.29 6.74 259.24 1350.19
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3840.83197 235.10870 16.336 <2e-16 ***
## totwrk -0.16342 0.01813 -9.013 <2e-16 ***
## educ -11.71332 5.86689 -1.997 0.0463 *
## age -8.69668 11.20746 -0.776 0.4380
## agesq 0.12844 0.13390 0.959 0.3378
## male 87.75243 34.32616 2.556 0.0108 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 417.7 on 700 degrees of freedom
## Multiple R-squared: 0.1228, Adjusted R-squared: 0.1165
## F-statistic: 19.59 on 5 and 700 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = sleep ~ totwrk + educ + male, data = sleep75)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2380.27 -239.15 6.74 257.31 1370.63
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3747.51727 81.00609 46.262 < 2e-16 ***
## totwrk -0.16734 0.01794 -9.329 < 2e-16 ***
## educ -13.88479 5.65757 -2.454 0.01436 *
## male 90.96919 34.27441 2.654 0.00813 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 418 on 702 degrees of freedom
## Multiple R-squared: 0.1193, Adjusted R-squared: 0.1155
## F-statistic: 31.69 on 3 and 702 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = sat ~ hsize + hsizesq + female + black + I(female *
## black), data = gpa2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -570.45 -89.54 -5.24 85.41 479.13
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1028.0972 6.2902 163.445 < 2e-16 ***
## hsize 19.2971 3.8323 5.035 4.97e-07 ***
## hsizesq -2.1948 0.5272 -4.163 3.20e-05 ***
## female -45.0915 4.2911 -10.508 < 2e-16 ***
## black -169.8126 12.7131 -13.357 < 2e-16 ***
## I(female * black) 62.3064 18.1542 3.432 0.000605 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 133.4 on 4131 degrees of freedom
## Multiple R-squared: 0.08578, Adjusted R-squared: 0.08468
## F-statistic: 77.52 on 5 and 4131 DF, p-value: < 2.2e-16
## [1] "age" "soph" "junior" "senior" "senior5" "male"
## [7] "campus" "business" "engineer" "colGPA" "hsGPA" "ACT"
## [13] "job19" "job20" "drive" "bike" "walk" "voluntr"
## [19] "PC" "greek" "car" "siblings" "bgfriend" "clubs"
## [25] "skipped" "alcohol" "gradMI" "fathcoll" "mothcoll"
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Call:
## lm(formula = hsGPA ~ mothcoll + fathcoll, data = gpa1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.99342 -0.20982 0.00926 0.20926 0.60658
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.393421 0.046719 72.635 <2e-16 ***
## mothcoll 0.019080 0.057555 0.332 0.741
## fathcoll -0.002679 0.058303 -0.046 0.963
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3221 on 138 degrees of freedom
## Multiple R-squared: 0.0008268, Adjusted R-squared: -0.01365
## F-statistic: 0.0571 on 2 and 138 DF, p-value: 0.9445
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3934207 0.0542083 62.5996 <2e-16 ***
## mothcoll 0.0190800 0.0571079 0.3341 0.7388
## fathcoll -0.0026795 0.0600842 -0.0446 0.9645
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in anova.lmlist(object, ...): models with response '"PC"' removed
## because response differs from model 1
## Analysis of Variance Table
##
## Response: hsGPA
## Df Sum Sq Mean Sq F value Pr(>F)
## mothcoll 1 0.0116 0.011629 0.1121 0.7383
## fathcoll 1 0.0002 0.000219 0.0021 0.9634
## Residuals 138 14.3175 0.103750
##
## Call:
## lm(formula = log(wage) ~ educ + exper + tenure + married + black +
## south + urban, data = wage2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.98069 -0.21996 0.00707 0.24288 1.22822
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.395497 0.113225 47.653 < 2e-16 ***
## educ 0.065431 0.006250 10.468 < 2e-16 ***
## exper 0.014043 0.003185 4.409 1.16e-05 ***
## tenure 0.011747 0.002453 4.789 1.95e-06 ***
## married 0.199417 0.039050 5.107 3.98e-07 ***
## black -0.188350 0.037667 -5.000 6.84e-07 ***
## south -0.090904 0.026249 -3.463 0.000558 ***
## urban 0.183912 0.026958 6.822 1.62e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3655 on 927 degrees of freedom
## Multiple R-squared: 0.2526, Adjusted R-squared: 0.2469
## F-statistic: 44.75 on 7 and 927 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Model 1: log(wage) ~ educ + exper + tenure + married + black + south +
## urban
## Model 2: log(wage) ~ educ + exper + tenure + married + black + south +
## urban + exper + tenure
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 927 123.82
## 2 927 123.82 0 0
##
## Call:
## lm(formula = log(wage) ~ educ * black + exper + tenure + married +
## south + urban, data = wage2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.97782 -0.21832 0.00475 0.24136 1.23226
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.374817 0.114703 46.859 < 2e-16 ***
## educ 0.067115 0.006428 10.442 < 2e-16 ***
## black 0.094809 0.255399 0.371 0.710561
## exper 0.013826 0.003191 4.333 1.63e-05 ***
## tenure 0.011787 0.002453 4.805 1.80e-06 ***
## married 0.198908 0.039047 5.094 4.25e-07 ***
## south -0.089450 0.026277 -3.404 0.000692 ***
## urban 0.183852 0.026955 6.821 1.63e-11 ***
## educ:black -0.022624 0.020183 -1.121 0.262603
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3654 on 926 degrees of freedom
## Multiple R-squared: 0.2536, Adjusted R-squared: 0.2471
## F-statistic: 39.32 on 8 and 926 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = log(wage) ~ educ + exper + tenure + married + black +
## south + urban, data = wage2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.98069 -0.21996 0.00707 0.24288 1.22822
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.395497 0.113225 47.653 < 2e-16 ***
## educ 0.065431 0.006250 10.468 < 2e-16 ***
## exper 0.014043 0.003185 4.409 1.16e-05 ***
## tenure 0.011747 0.002453 4.789 1.95e-06 ***
## married 0.199417 0.039050 5.107 3.98e-07 ***
## black -0.188350 0.037667 -5.000 6.84e-07 ***
## south -0.090904 0.026249 -3.463 0.000558 ***
## urban 0.183912 0.026958 6.822 1.62e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3655 on 927 degrees of freedom
## Multiple R-squared: 0.2526, Adjusted R-squared: 0.2469
## F-statistic: 44.75 on 7 and 927 DF, p-value: < 2.2e-16
## <NA>
## NA
*The OLS estimators, b^j, are still unbiased, but they are no longer efficient (i.e., not BLUE - Best Linear Unbiased Estimators). Heteroskedasticity does not make the OLS estimators inconsistent, but it affects their efficiency.
*The usual F statistic for testing overall significance may not have an F distribution under heteroskedasticity. This can lead to incorrect inference in hypothesis testing.
*As mentioned in (i), the OLS estimators are no longer BLUE when heteroskedasticity is present. The Best Linear Unbiased Estimators (BLUE) property relies on the assumption of homoskedasticity. All three statements are consequences of heteroskedasticity. It is important to detect and address heteroskedasticity to obtain valid and efficient inference in regression analysis. Common remedies include using heteroskedasticity-robust standard errors or transforming the data to stabilize the variance.
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## 'data.frame': 807 obs. of 10 variables:
## $ educ : num 16 16 12 13.5 10 6 12 15 12 12 ...
## $ cigpric : num 60.5 57.9 57.7 57.9 58.3 ...
## $ white : int 1 1 1 1 1 1 1 1 1 1 ...
## $ age : int 46 40 58 30 17 86 35 48 48 31 ...
## $ income : int 20000 30000 30000 20000 20000 6500 20000 30000 20000 20000 ...
## $ cigs : int 0 0 3 0 0 0 0 0 0 0 ...
## $ restaurn: int 0 0 0 0 0 0 0 0 0 0 ...
## $ lincome : num 9.9 10.3 10.3 9.9 9.9 ...
## $ agesq : int 2116 1600 3364 900 289 7396 1225 2304 2304 961 ...
## $ lcigpric: num 4.1 4.06 4.05 4.06 4.07 ...
## - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"
## [1] "educ" "cigpric" "white" "age" "income" "cigs"
## [7] "restaurn" "lincome" "agesq" "lcigpric"
## (Intercept) educ exper tenure married black
## 0.113225045 0.006250395 0.003185185 0.002452973 0.039050151 0.037666636
## south urban
## 0.026248508 0.026958329
## educ
## 0.2617229
## <NA>
## NA
##
## studentized Breusch-Pagan test
##
## data: model
## BP = 23.753, df = 7, p-value = 0.001259
coef_restaurant <- coef(model)["restaurn"]
coef_restaurant
## <NA>
## NA
## state district democA voteA expendA expendB prtystrA lexpendA lexpendB
## 1 AL 7 1 68 328.296 8.737 41 5.793916 2.167567
## 2 AK 1 0 62 626.377 402.477 60 6.439952 5.997638
## 3 AZ 2 1 73 99.607 3.065 55 4.601233 1.120048
## 4 AZ 3 0 69 319.690 26.281 64 5.767352 3.268846
## 5 AR 3 0 75 159.221 60.054 66 5.070293 4.095244
## 6 AR 4 1 69 570.155 21.393 46 6.345908 3.063064
## shareA
## 1 97.40767
## 2 60.88104
## 3 97.01476
## 4 92.40370
## 5 72.61247
## 6 96.38355
##
## Call:
## lm(formula = voteA ~ prtystrA + democA + log(expendA) + log(expendB),
## data = data5)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.576 -4.864 -1.146 4.903 24.566
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.66141 4.73604 7.952 2.56e-13 ***
## prtystrA 0.25192 0.07129 3.534 0.00053 ***
## democA 3.79294 1.40652 2.697 0.00772 **
## log(expendA) 5.77929 0.39182 14.750 < 2e-16 ***
## log(expendB) -6.23784 0.39746 -15.694 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.573 on 168 degrees of freedom
## Multiple R-squared: 0.8012, Adjusted R-squared: 0.7964
## F-statistic: 169.2 on 4 and 168 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = residuals ~ prtystrA + democA + log(expendA) + log(expendB),
## data = data5)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.576 -4.864 -1.146 4.903 24.566
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.183e-14 4.736e+00 0 1
## prtystrA 1.493e-16 7.129e-02 0 1
## democA 1.843e-15 1.407e+00 0 1
## log(expendA) -3.811e-16 3.918e-01 0 1
## log(expendB) 1.119e-15 3.975e-01 0 1
##
## Residual standard error: 7.573 on 168 degrees of freedom
## Multiple R-squared: 5.525e-32, Adjusted R-squared: -0.02381
## F-statistic: 2.32e-30 on 4 and 168 DF, p-value: 1
##
## studentized Breusch-Pagan test
##
## data: model9
## BP = 9.0934, df = 4, p-value = 0.05881
## [1] "F-statistic: 2.33011268371627 P-value: 0.0580575140885532"
##
## Call:
## lm(formula = children ~ age + I(age^2) + educ + electric + urban,
## data = data_8C13)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9012 -0.7136 -0.0039 0.7119 7.4318
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.2225162 0.2401888 -17.580 < 2e-16 ***
## age 0.3409255 0.0165082 20.652 < 2e-16 ***
## I(age^2) -0.0027412 0.0002718 -10.086 < 2e-16 ***
## educ -0.0752323 0.0062966 -11.948 < 2e-16 ***
## electric -0.3100404 0.0690045 -4.493 7.20e-06 ***
## urban -0.2000339 0.0465062 -4.301 1.74e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.452 on 4352 degrees of freedom
## Multiple R-squared: 0.5734, Adjusted R-squared: 0.5729
## F-statistic: 1170 on 5 and 4352 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = log(wage) ~ educ + exper + tenure + married + black +
## south + urban, data = wage2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.98069 -0.21996 0.00707 0.24288 1.22822
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.395497 0.113225 47.653 < 2e-16 ***
## educ 0.065431 0.006250 10.468 < 2e-16 ***
## exper 0.014043 0.003185 4.409 1.16e-05 ***
## tenure 0.011747 0.002453 4.789 1.95e-06 ***
## married 0.199417 0.039050 5.107 3.98e-07 ***
## black -0.188350 0.037667 -5.000 6.84e-07 ***
## south -0.090904 0.026249 -3.463 0.000558 ***
## urban 0.183912 0.026958 6.822 1.62e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3655 on 927 degrees of freedom
## Multiple R-squared: 0.2526, Adjusted R-squared: 0.2469
## F-statistic: 44.75 on 7 and 927 DF, p-value: < 2.2e-16
## Robust SE
## (Intercept) 5.39549702 0.113796565
## educ 0.06543073 0.006445195
## exper 0.01404301 0.003261112
## tenure 0.01174728 0.002553205
## married 0.19941705 0.040126899
## black -0.18834991 0.037030313
## south -0.09090366 0.027505137
## urban 0.18391207 0.027262390
## (Intercept) educ exper tenure married
## 4.716024e-250 4.939470e-23 1.837738e-05 4.789239e-06 7.986371e-07
## black south urban
## 4.416935e-07 9.862904e-04 2.672972e-11
##
## Call:
## lm(formula = residuals^2 ~ fitted_values)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1616 -0.1178 -0.0770 0.0238 3.7877
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.50924 0.25575 1.991 0.0468 *
## fitted_values -0.05559 0.03771 -1.474 0.1408
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2439 on 933 degrees of freedom
## Multiple R-squared: 0.002324, Adjusted R-squared: 0.001254
## F-statistic: 2.173 on 1 and 933 DF, p-value: 0.1408
##
## RESET test
##
## data: model_before
## RESET = 3.5014, df1 = 1, df2 = 170, p-value = 0.06303
##
## RESET test
##
## data: model_after
## RESET = 3.5014, df1 = 1, df2 = 170, p-value = 0.06303
In Example 4.4, we estimated a model relating the number of campus crimes to student enrollment for a sample of colleges. It’s important to note that the sample used in this analysis was not a random sample of all colleges in the United States in 1992. This is because many schools did not report campus crimes.
Exogenous sample selection occurs when the process of selecting the sample is unrelated to the dependent variable or outcomes of interest.
Independence from Outcomes: For the failure to report crimes to be exogenous, it should be independent of the actual crime rates on campuses. In other words, colleges that do not report crimes should not systematically differ in their crime rates compared to those that do report.
Randomness in Non-Reporting: If the decision of a college to report or not report crimes is random and unrelated to the true crime situation, it can be considered exogenous sample selection.
It’s important to critically assess whether these conditions hold in the context of the data and the sample used in Example 4.4.
## Reject the null hypothesis H0: B1 = 1 in favor of H1: B1 > 1 at the 5% level.
## Test for lscrap_1 parameter: Statistically significant
## [1] 54
##
## Call:
## lm(formula = log(scrap) ~ grant, data = data_9C3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4043 -0.9536 -0.0465 0.9636 2.8103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4085 0.2406 1.698 0.0954 .
## grant 0.0566 0.4056 0.140 0.8895
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.423 on 52 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.0003744, Adjusted R-squared: -0.01885
## F-statistic: 0.01948 on 1 and 52 DF, p-value: 0.8895
##
## Call:
## lm(formula = log(scrap1988) ~ grant1988 + log(scrap1987), data = data_9C3_3_tran)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9146 -0.1763 0.0057 0.2308 1.5991
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.02124 0.08910 0.238 0.8126
## grant1988 -0.25397 0.14703 -1.727 0.0902 .
## log(scrap1987) 0.83116 0.04444 18.701 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5127 on 51 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.8728, Adjusted R-squared: 0.8678
## F-statistic: 174.9 on 2 and 51 DF, p-value: < 2.2e-16
## [1] "One-sided p-value:"
## [1] 0.04508135
*Following the addition of the explanatory variable log(scrap1987), the estimated values turn negative and the significance of grant 1988 increases. To be more precise, the coefficient of grant1988 is -0.254, meaning that, on average, companies with grants have a 25.4% lower scrap rate than companies without grants. Statistically significant at the 5% level, this result outperforms the one-sided alternative H1: Bgrant <0. The reason for this is that the model yielded a p-value of 0.045 <0.05.
##
## Call:
## lm(formula = infmort ~ log(pcinc) + log(physic) + log(popul) +
## DC, data = infmrt_1990)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4964 -0.8076 0.0000 0.9358 2.6077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.9548 12.4195 1.929 0.05994 .
## log(pcinc) -0.5669 1.6412 -0.345 0.73135
## log(physic) -2.7418 1.1908 -2.303 0.02588 *
## log(popul) 0.6292 0.1911 3.293 0.00191 **
## DC 16.0350 1.7692 9.064 8.43e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.246 on 46 degrees of freedom
## Multiple R-squared: 0.691, Adjusted R-squared: 0.6641
## F-statistic: 25.71 on 4 and 46 DF, p-value: 3.146e-11
##
## studentized Breusch-Pagan test
##
## data: model
## BP = 23.753, df = 7, p-value = 0.001259
##
## Call:
## lm(formula = inf ~ dummy + ci3 + cdef + cinf, data = intdef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1867 -1.8047 -0.8382 0.9943 6.7831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3937 0.5193 6.535 3.21e-08 ***
## dummy 0.9400 0.7977 1.178 0.24423
## ci3 0.4391 0.3172 1.385 0.17233
## cdef 0.4382 0.3370 1.300 0.19954
## cinf 0.5707 0.2103 2.714 0.00909 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.799 on 50 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.2012, Adjusted R-squared: 0.1373
## F-statistic: 3.148 on 4 and 50 DF, p-value: 0.02196
## Conclusion regarding the model:
## From the regression results:
## - The policy change after 1979 represented by the 'dummy' variable doesn't appear to have a statistically significant impact on CPI inflation rates (p-value = 0.24423).
## - Among additional variables, only 'cinf' (change in federal outlays minus federal receipts) shows a statistically significant relationship with CPI inflation rates (p-value = 0.00909).
## - The overall model explains a small proportion of the variance in CPI inflation rates (Adjusted R-squared = 0.1373).
## Therefore, while 'cinf' seems to be related to CPI inflation rates, the policy change after 1979, as represented by the 'dummy' variable, does not show a significant impact in this model.
## Warning in summary.lm(model_10_35): essentially perfect fit: summary may be
## unreliable
##
## Call:
## lm(formula = residuals_gft ~ pe + year + tsq + pe_1 + pe_2 +
## pe_3 + pe_4 + pill + ww2 + tcu + cgfr + cpe + cpe_1 + cpe_2 +
## cpe_3 + cpe_4 + gfr_1 + cgfr_1 + cgfr_2 + cgfr_3 + cgfr_4 +
## gfr_2 + t + tsq, data = fertil3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.495e-14 -2.374e-15 -2.200e-17 2.638e-15 3.812e-14
##
## Coefficients: (6 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.003e+01 4.452e-12 6.746e+12 <2e-16 ***
## pe -2.624e-16 1.381e-16 -1.900e+00 0.0634 .
## year -7.170e-02 2.307e-15 -3.107e+13 <2e-16 ***
## tsq 7.959e-03 6.783e-17 1.173e+14 <2e-16 ***
## pe_1 3.803e-16 1.519e-16 2.504e+00 0.0157 *
## pe_2 2.118e-17 1.653e-16 1.280e-01 0.8986
## pe_3 -2.758e-16 1.563e-16 -1.764e+00 0.0839 .
## pe_4 1.363e-17 1.222e-16 1.120e-01 0.9117
## pill 5.956e-15 1.134e-14 5.250e-01 0.6020
## ww2 -3.761e-15 1.268e-14 -2.970e-01 0.7679
## tcu 1.130e-18 5.813e-19 1.945e+00 0.0576 .
## cgfr 1.000e+00 5.225e-16 1.914e+15 <2e-16 ***
## cpe NA NA NA NA
## cpe_1 NA NA NA NA
## cpe_2 NA NA NA NA
## cpe_3 NA NA NA NA
## cpe_4 -2.998e-17 1.239e-16 -2.420e-01 0.8098
## gfr_1 1.000e+00 2.436e-16 4.105e+15 <2e-16 ***
## cgfr_1 -2.649e-16 5.109e-16 -5.190e-01 0.6064
## cgfr_2 4.872e-16 5.394e-16 9.030e-01 0.3708
## cgfr_3 -7.235e-16 4.843e-16 -1.494e+00 0.1416
## cgfr_4 8.808e-19 4.778e-16 2.000e-03 0.9985
## gfr_2 NA NA NA NA
## t NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.244e-14 on 49 degrees of freedom
## (5 observations deleted due to missingness)
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 6.667e+30 on 17 and 49 DF, p-value: < 2.2e-16
## Warning in summary.lm(model_with_pe_3): essentially perfect fit: summary may be
## unreliable
##
## Call:
## lm(formula = gfr ~ pe + year + tsq + pe_1 + pe_2 + pe_3 + pe_4 +
## pill + ww2 + tcu + cgfr + cpe + cpe_1 + cpe_2 + cpe_3 + cpe_4 +
## gfr_1 + cgfr_1 + cgfr_2 + cgfr_3 + cgfr_4 + gfr_2 + t + tsq +
## pe_3, data = fertil3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.294e-14 -3.614e-15 3.870e-16 3.960e-15 5.021e-14
##
## Coefficients: (6 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.849e-12 4.744e-12 -1.233e+00 0.224
## pe -6.052e-17 1.472e-16 -4.110e-01 0.683
## year 3.028e-15 2.459e-15 1.231e+00 0.224
## tsq -7.141e-17 7.229e-17 -9.880e-01 0.328
## pe_1 1.081e-16 1.618e-16 6.680e-01 0.507
## pe_2 3.984e-18 1.762e-16 2.300e-02 0.982
## pe_3 -2.328e-17 1.666e-16 -1.400e-01 0.889
## pe_4 -5.775e-17 1.303e-16 -4.430e-01 0.660
## pill -1.025e-14 1.209e-14 -8.480e-01 0.401
## ww2 1.107e-14 1.351e-14 8.190e-01 0.417
## tcu 5.447e-19 6.195e-19 8.790e-01 0.384
## cgfr 1.000e+00 5.569e-16 1.796e+15 <2e-16 ***
## cpe NA NA NA NA
## cpe_1 NA NA NA NA
## cpe_2 NA NA NA NA
## cpe_3 NA NA NA NA
## cpe_4 5.996e-17 1.320e-16 4.540e-01 0.652
## gfr_1 1.000e+00 2.596e-16 3.852e+15 <2e-16 ***
## cgfr_1 -7.823e-16 5.445e-16 -1.437e+00 0.157
## cgfr_2 5.662e-17 5.749e-16 9.900e-02 0.922
## cgfr_3 -5.129e-16 5.162e-16 -9.940e-01 0.325
## cgfr_4 -1.866e-16 5.092e-16 -3.660e-01 0.716
## gfr_2 NA NA NA NA
## t NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.326e-14 on 49 degrees of freedom
## (5 observations deleted due to missingness)
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 7.853e+30 on 17 and 49 DF, p-value: < 2.2e-16