# Create a data frame for student scores
student_scores <- data.frame(
StudentA = c(52, 46, 62, 48, 57, 54),
StudentB = c(66, 49, 64, 53, 68, NA), # Note: Replace the missing value with the actual score
StudentC = c(63, 65, 58, 70, 71, 73)
)
# Display the data frame
print(student_scores)
## StudentA StudentB StudentC
## 1 52 66 63
## 2 46 49 65
## 3 62 64 58
## 4 48 53 70
## 5 57 68 71
## 6 54 NA 73
# Check for missing values and replace them if needed
any_missing <- any(is.na(student_scores))
if (any_missing) {
print("Missing values detected. Please replace them with actual scores.")
# Replace missing values with actual scores
# For example, you can replace the missing value in StudentB with 60
student_scores$StudentB[is.na(student_scores$StudentB)] <- 60
}
## [1] "Missing values detected. Please replace them with actual scores."
# Display the updated data frame
print(student_scores)
## StudentA StudentB StudentC
## 1 52 66 63
## 2 46 49 65
## 3 62 64 58
## 4 48 53 70
## 5 57 68 71
## 6 54 60 73
# Perform Kruskal-Wallis test
res<-kruskal.test(student_scores$StudentA, student_scores$StudentB, student_scores$StudentC)
print(res)
##
## Kruskal-Wallis rank sum test
##
## data: student_scores$StudentA and student_scores$StudentB
## Kruskal-Wallis chi-squared = 5, df = 5, p-value = 0.4159
# Q2
# Given data
values <- matrix(c(120, 110, 90, 95, 40, 45), nrow = 2)
colnames(values) <- c("Republican", "Democratic", "Independent")
rownames(values) <- c("Male", "Female")
# Perform Chi-Square Test of Independence
chi_square_result <- chisq.test(values)
chi_square_result
##
## Pearson's Chi-squared test
##
## data: values
## X-squared = 0.86404, df = 2, p-value = 0.6492
#Q1
data<-c(5260,5470,5640,6180,6390,6515,6805,7515,7575,8230,8070)
data
## [1] 5260 5470 5640 6180 6390 6515 6805 7515 7575 8230 8070
n<-length(data)
n
## [1] 11
#mean
mean<-mean(data)
mean
## [1] 6695.455
variance<-var(data)
variance
## [1] 1076927
standard_dev<-sd(data)
standard_dev
## [1] 1037.751
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.3.2
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.3.2
boxplot(data)
#t test
res<-t.test(data,mu=7525,alternative="two.sided")
res
##
## One Sample t-test
##
## data: data
## t = -2.6512, df = 10, p-value = 0.02426
## alternative hypothesis: true mean is not equal to 7525
## 95 percent confidence interval:
## 5998.284 7392.625
## sample estimates:
## mean of x
## 6695.455