Load required libraries

library(conflicted)
library(dplyr)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ readr     2.1.4
## ✔ ggplot2   3.4.4     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.0
library(ggplot2)
library(zoo)

Read data

hotel_bookings <- read.csv("challenge_datasets/hotel_bookings.csv")
as_tibble(hotel_bookings)
## # A tibble: 119,390 × 32
##    hotel        is_canceled lead_time arrival_date_year arrival_date_month
##    <chr>              <int>     <int>             <int> <chr>             
##  1 Resort Hotel           0       342              2015 July              
##  2 Resort Hotel           0       737              2015 July              
##  3 Resort Hotel           0         7              2015 July              
##  4 Resort Hotel           0        13              2015 July              
##  5 Resort Hotel           0        14              2015 July              
##  6 Resort Hotel           0        14              2015 July              
##  7 Resort Hotel           0         0              2015 July              
##  8 Resort Hotel           0         9              2015 July              
##  9 Resort Hotel           1        85              2015 July              
## 10 Resort Hotel           1        75              2015 July              
## # ℹ 119,380 more rows
## # ℹ 27 more variables: arrival_date_week_number <int>,
## #   arrival_date_day_of_month <int>, stays_in_weekend_nights <int>,
## #   stays_in_week_nights <int>, adults <int>, children <int>, babies <int>,
## #   meal <chr>, country <chr>, market_segment <chr>,
## #   distribution_channel <chr>, is_repeated_guest <int>,
## #   previous_cancellations <int>, previous_bookings_not_canceled <int>, …

Analyzing data

In this section, we will do an elementary analysis to understand the data.

# Visualize the first few rows of the data
head(hotel_bookings)
##          hotel is_canceled lead_time arrival_date_year arrival_date_month
## 1 Resort Hotel           0       342              2015               July
## 2 Resort Hotel           0       737              2015               July
## 3 Resort Hotel           0         7              2015               July
## 4 Resort Hotel           0        13              2015               July
## 5 Resort Hotel           0        14              2015               July
## 6 Resort Hotel           0        14              2015               July
##   arrival_date_week_number arrival_date_day_of_month stays_in_weekend_nights
## 1                       27                         1                       0
## 2                       27                         1                       0
## 3                       27                         1                       0
## 4                       27                         1                       0
## 5                       27                         1                       0
## 6                       27                         1                       0
##   stays_in_week_nights adults children babies meal country market_segment
## 1                    0      2        0      0   BB     PRT         Direct
## 2                    0      2        0      0   BB     PRT         Direct
## 3                    1      1        0      0   BB     GBR         Direct
## 4                    1      1        0      0   BB     GBR      Corporate
## 5                    2      2        0      0   BB     GBR      Online TA
## 6                    2      2        0      0   BB     GBR      Online TA
##   distribution_channel is_repeated_guest previous_cancellations
## 1               Direct                 0                      0
## 2               Direct                 0                      0
## 3               Direct                 0                      0
## 4            Corporate                 0                      0
## 5                TA/TO                 0                      0
## 6                TA/TO                 0                      0
##   previous_bookings_not_canceled reserved_room_type assigned_room_type
## 1                              0                  C                  C
## 2                              0                  C                  C
## 3                              0                  A                  C
## 4                              0                  A                  A
## 5                              0                  A                  A
## 6                              0                  A                  A
##   booking_changes deposit_type agent company days_in_waiting_list customer_type
## 1               3   No Deposit  NULL    NULL                    0     Transient
## 2               4   No Deposit  NULL    NULL                    0     Transient
## 3               0   No Deposit  NULL    NULL                    0     Transient
## 4               0   No Deposit   304    NULL                    0     Transient
## 5               0   No Deposit   240    NULL                    0     Transient
## 6               0   No Deposit   240    NULL                    0     Transient
##   adr required_car_parking_spaces total_of_special_requests reservation_status
## 1   0                           0                         0          Check-Out
## 2   0                           0                         0          Check-Out
## 3  75                           0                         0          Check-Out
## 4  75                           0                         0          Check-Out
## 5  98                           0                         1          Check-Out
## 6  98                           0                         1          Check-Out
##   reservation_status_date
## 1              2015-07-01
## 2              2015-07-01
## 3              2015-07-02
## 4              2015-07-02
## 5              2015-07-03
## 6              2015-07-03

The summary table provides a lot of insights on the hotel bookings data.

# Get a summary of the dataset
summary(hotel_bookings)
##     hotel            is_canceled       lead_time   arrival_date_year
##  Length:119390      Min.   :0.0000   Min.   :  0   Min.   :2015     
##  Class :character   1st Qu.:0.0000   1st Qu.: 18   1st Qu.:2016     
##  Mode  :character   Median :0.0000   Median : 69   Median :2016     
##                     Mean   :0.3704   Mean   :104   Mean   :2016     
##                     3rd Qu.:1.0000   3rd Qu.:160   3rd Qu.:2017     
##                     Max.   :1.0000   Max.   :737   Max.   :2017     
##                                                                     
##  arrival_date_month arrival_date_week_number arrival_date_day_of_month
##  Length:119390      Min.   : 1.00            Min.   : 1.0             
##  Class :character   1st Qu.:16.00            1st Qu.: 8.0             
##  Mode  :character   Median :28.00            Median :16.0             
##                     Mean   :27.17            Mean   :15.8             
##                     3rd Qu.:38.00            3rd Qu.:23.0             
##                     Max.   :53.00            Max.   :31.0             
##                                                                       
##  stays_in_weekend_nights stays_in_week_nights     adults      
##  Min.   : 0.0000         Min.   : 0.0         Min.   : 0.000  
##  1st Qu.: 0.0000         1st Qu.: 1.0         1st Qu.: 2.000  
##  Median : 1.0000         Median : 2.0         Median : 2.000  
##  Mean   : 0.9276         Mean   : 2.5         Mean   : 1.856  
##  3rd Qu.: 2.0000         3rd Qu.: 3.0         3rd Qu.: 2.000  
##  Max.   :19.0000         Max.   :50.0         Max.   :55.000  
##                                                               
##     children           babies              meal             country         
##  Min.   : 0.0000   Min.   : 0.000000   Length:119390      Length:119390     
##  1st Qu.: 0.0000   1st Qu.: 0.000000   Class :character   Class :character  
##  Median : 0.0000   Median : 0.000000   Mode  :character   Mode  :character  
##  Mean   : 0.1039   Mean   : 0.007949                                        
##  3rd Qu.: 0.0000   3rd Qu.: 0.000000                                        
##  Max.   :10.0000   Max.   :10.000000                                        
##  NA's   :4                                                                  
##  market_segment     distribution_channel is_repeated_guest
##  Length:119390      Length:119390        Min.   :0.00000  
##  Class :character   Class :character     1st Qu.:0.00000  
##  Mode  :character   Mode  :character     Median :0.00000  
##                                          Mean   :0.03191  
##                                          3rd Qu.:0.00000  
##                                          Max.   :1.00000  
##                                                           
##  previous_cancellations previous_bookings_not_canceled reserved_room_type
##  Min.   : 0.00000       Min.   : 0.0000                Length:119390     
##  1st Qu.: 0.00000       1st Qu.: 0.0000                Class :character  
##  Median : 0.00000       Median : 0.0000                Mode  :character  
##  Mean   : 0.08712       Mean   : 0.1371                                  
##  3rd Qu.: 0.00000       3rd Qu.: 0.0000                                  
##  Max.   :26.00000       Max.   :72.0000                                  
##                                                                          
##  assigned_room_type booking_changes   deposit_type          agent          
##  Length:119390      Min.   : 0.0000   Length:119390      Length:119390     
##  Class :character   1st Qu.: 0.0000   Class :character   Class :character  
##  Mode  :character   Median : 0.0000   Mode  :character   Mode  :character  
##                     Mean   : 0.2211                                        
##                     3rd Qu.: 0.0000                                        
##                     Max.   :21.0000                                        
##                                                                            
##    company          days_in_waiting_list customer_type           adr         
##  Length:119390      Min.   :  0.000      Length:119390      Min.   :  -6.38  
##  Class :character   1st Qu.:  0.000      Class :character   1st Qu.:  69.29  
##  Mode  :character   Median :  0.000      Mode  :character   Median :  94.58  
##                     Mean   :  2.321                         Mean   : 101.83  
##                     3rd Qu.:  0.000                         3rd Qu.: 126.00  
##                     Max.   :391.000                         Max.   :5400.00  
##                                                                              
##  required_car_parking_spaces total_of_special_requests reservation_status
##  Min.   :0.00000             Min.   :0.0000            Length:119390     
##  1st Qu.:0.00000             1st Qu.:0.0000            Class :character  
##  Median :0.00000             Median :0.0000            Mode  :character  
##  Mean   :0.06252             Mean   :0.5714                              
##  3rd Qu.:0.00000             3rd Qu.:1.0000                              
##  Max.   :8.00000             Max.   :5.0000                              
##                                                                          
##  reservation_status_date
##  Length:119390          
##  Class :character       
##  Mode  :character       
##                         
##                         
##                         
## 
# View the structure of the data
str(hotel_bookings)
## 'data.frame':    119390 obs. of  32 variables:
##  $ hotel                         : chr  "Resort Hotel" "Resort Hotel" "Resort Hotel" "Resort Hotel" ...
##  $ is_canceled                   : int  0 0 0 0 0 0 0 0 1 1 ...
##  $ lead_time                     : int  342 737 7 13 14 14 0 9 85 75 ...
##  $ arrival_date_year             : int  2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 ...
##  $ arrival_date_month            : chr  "July" "July" "July" "July" ...
##  $ arrival_date_week_number      : int  27 27 27 27 27 27 27 27 27 27 ...
##  $ arrival_date_day_of_month     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ stays_in_weekend_nights       : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ stays_in_week_nights          : int  0 0 1 1 2 2 2 2 3 3 ...
##  $ adults                        : int  2 2 1 1 2 2 2 2 2 2 ...
##  $ children                      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ babies                        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ meal                          : chr  "BB" "BB" "BB" "BB" ...
##  $ country                       : chr  "PRT" "PRT" "GBR" "GBR" ...
##  $ market_segment                : chr  "Direct" "Direct" "Direct" "Corporate" ...
##  $ distribution_channel          : chr  "Direct" "Direct" "Direct" "Corporate" ...
##  $ is_repeated_guest             : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ previous_cancellations        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ previous_bookings_not_canceled: int  0 0 0 0 0 0 0 0 0 0 ...
##  $ reserved_room_type            : chr  "C" "C" "A" "A" ...
##  $ assigned_room_type            : chr  "C" "C" "C" "A" ...
##  $ booking_changes               : int  3 4 0 0 0 0 0 0 0 0 ...
##  $ deposit_type                  : chr  "No Deposit" "No Deposit" "No Deposit" "No Deposit" ...
##  $ agent                         : chr  "NULL" "NULL" "NULL" "304" ...
##  $ company                       : chr  "NULL" "NULL" "NULL" "NULL" ...
##  $ days_in_waiting_list          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ customer_type                 : chr  "Transient" "Transient" "Transient" "Transient" ...
##  $ adr                           : num  0 0 75 75 98 ...
##  $ required_car_parking_spaces   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ total_of_special_requests     : int  0 0 0 0 1 1 0 1 1 0 ...
##  $ reservation_status            : chr  "Check-Out" "Check-Out" "Check-Out" "Check-Out" ...
##  $ reservation_status_date       : chr  "2015-07-01" "2015-07-01" "2015-07-02" "2015-07-02" ...

We get to understand the hotel types using the following command.

# Get unique hotel types, countries
print(unique(hotel_bookings$hotel))
## [1] "Resort Hotel" "City Hotel"
print(unique(hotel_bookings$country))
##   [1] "PRT"  "GBR"  "USA"  "ESP"  "IRL"  "FRA"  "NULL" "ROU"  "NOR"  "OMN" 
##  [11] "ARG"  "POL"  "DEU"  "BEL"  "CHE"  "CN"   "GRC"  "ITA"  "NLD"  "DNK" 
##  [21] "RUS"  "SWE"  "AUS"  "EST"  "CZE"  "BRA"  "FIN"  "MOZ"  "BWA"  "LUX" 
##  [31] "SVN"  "ALB"  "IND"  "CHN"  "MEX"  "MAR"  "UKR"  "SMR"  "LVA"  "PRI" 
##  [41] "SRB"  "CHL"  "AUT"  "BLR"  "LTU"  "TUR"  "ZAF"  "AGO"  "ISR"  "CYM" 
##  [51] "ZMB"  "CPV"  "ZWE"  "DZA"  "KOR"  "CRI"  "HUN"  "ARE"  "TUN"  "JAM" 
##  [61] "HRV"  "HKG"  "IRN"  "GEO"  "AND"  "GIB"  "URY"  "JEY"  "CAF"  "CYP" 
##  [71] "COL"  "GGY"  "KWT"  "NGA"  "MDV"  "VEN"  "SVK"  "FJI"  "KAZ"  "PAK" 
##  [81] "IDN"  "LBN"  "PHL"  "SEN"  "SYC"  "AZE"  "BHR"  "NZL"  "THA"  "DOM" 
##  [91] "MKD"  "MYS"  "ARM"  "JPN"  "LKA"  "CUB"  "CMR"  "BIH"  "MUS"  "COM" 
## [101] "SUR"  "UGA"  "BGR"  "CIV"  "JOR"  "SYR"  "SGP"  "BDI"  "SAU"  "VNM" 
## [111] "PLW"  "QAT"  "EGY"  "PER"  "MLT"  "MWI"  "ECU"  "MDG"  "ISL"  "UZB" 
## [121] "NPL"  "BHS"  "MAC"  "TGO"  "TWN"  "DJI"  "STP"  "KNA"  "ETH"  "IRQ" 
## [131] "HND"  "RWA"  "KHM"  "MCO"  "BGD"  "IMN"  "TJK"  "NIC"  "BEN"  "VGB" 
## [141] "TZA"  "GAB"  "GHA"  "TMP"  "GLP"  "KEN"  "LIE"  "GNB"  "MNE"  "UMI" 
## [151] "MYT"  "FRO"  "MMR"  "PAN"  "BFA"  "LBY"  "MLI"  "NAM"  "BOL"  "PRY" 
## [161] "BRB"  "ABW"  "AIA"  "SLV"  "DMA"  "PYF"  "GUY"  "LCA"  "ATA"  "GTM" 
## [171] "ASM"  "MRT"  "NCL"  "KIR"  "SDN"  "ATF"  "SLE"  "LAO"

Is the data tidy?

The hotel_bookings dataset seems to be in a tidy format. This is because, each variable forms a column, and all the variables are distinct, such as hotel, is_cancelled, lead_time, etc. Each row in the dataset represents a single observation, observation in our case is a booking record.

Mutations

The reservation_status_date column is an object type but should be in a Date format for any time series analysis or date-based filtering.

# Convert reservation_status_date to Date format
hotel_bookings <- hotel_bookings %>%
  mutate(reservation_status_date = as.Date(reservation_status_date, format = "%Y-%m-%d"))

Columns such as hotel, arrival_date_month, meal, country, market_segment, distribution_channel, reserved_room_type, assigned_room_type, deposit_type, customer_type, and reservation_status are of object type. These might be better represented as categorical variables (factors) if used for grouping or statistical analysis.

month_levels <- c('January', 'February', 'March', 'April', 'May', 'June', 'July',
                  'August', 'September', 'October', 'November', 'December')

hotel_bookings <- hotel_bookings %>%
  mutate(
    arrival_date_month = factor(arrival_date_month, levels = month_levels),
    meal = factor(meal),
    country = factor(country),
    market_segment = factor(market_segment),
    distribution_channel = factor(distribution_channel),
    reserved_room_type = factor(reserved_room_type),
    assigned_room_type = factor(assigned_room_type),
    deposit_type = factor(deposit_type),
    customer_type = factor(customer_type),
    reservation_status = factor(reservation_status)
  )

Columns like agent, and company are floats, indicating missing values (NaNs). We want to handle these missing values by filling them with a default value, like 0.

# Handle 'agent' and 'company' columns where "NULL" represents missing values
hotel_bookings$agent[hotel_bookings$agent == "NULL"] <- NA
hotel_bookings$company[hotel_bookings$company == "NULL"] <- NA


# Convert 'agent' and 'company' to numeric, assuming NA where they were "NULL"
hotel_bookings <- hotel_bookings %>%
  mutate(
    agent = as.numeric(agent),
    company = as.numeric(company)
  )

# Replace NA values with 0 for 'agent' and 'company'
hotel_bookings <- hotel_bookings %>%
  mutate(
    agent = ifelse(is.na(agent), 0, agent),
    company = ifelse(is.na(company), 0, company)
  )

`stays_in_weekend_nights and stays_in_week_nights can be combined into a single total_stay_nights column.

# Create a total_stay_nights variable
hotel_bookings <- hotel_bookings %>%
  mutate(total_stay_nights = stays_in_weekend_nights + stays_in_week_nights)

The dataset now includes these transformations, making it more suitable for further analysis. As a sanity check we will check the structure of the dataset once again.

# Sanity check: Check the structure of the dataset after mutation
str(hotel_bookings)
## 'data.frame':    119390 obs. of  33 variables:
##  $ hotel                         : chr  "Resort Hotel" "Resort Hotel" "Resort Hotel" "Resort Hotel" ...
##  $ is_canceled                   : int  0 0 0 0 0 0 0 0 1 1 ...
##  $ lead_time                     : int  342 737 7 13 14 14 0 9 85 75 ...
##  $ arrival_date_year             : int  2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 ...
##  $ arrival_date_month            : Factor w/ 12 levels "January","February",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ arrival_date_week_number      : int  27 27 27 27 27 27 27 27 27 27 ...
##  $ arrival_date_day_of_month     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ stays_in_weekend_nights       : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ stays_in_week_nights          : int  0 0 1 1 2 2 2 2 3 3 ...
##  $ adults                        : int  2 2 1 1 2 2 2 2 2 2 ...
##  $ children                      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ babies                        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ meal                          : Factor w/ 5 levels "BB","FB","HB",..: 1 1 1 1 1 1 1 2 1 3 ...
##  $ country                       : Factor w/ 178 levels "ABW","AGO","AIA",..: 137 137 60 60 60 60 137 137 137 137 ...
##  $ market_segment                : Factor w/ 8 levels "Aviation","Complementary",..: 4 4 4 3 7 7 4 4 7 6 ...
##  $ distribution_channel          : Factor w/ 5 levels "Corporate","Direct",..: 2 2 2 1 4 4 2 2 4 4 ...
##  $ is_repeated_guest             : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ previous_cancellations        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ previous_bookings_not_canceled: int  0 0 0 0 0 0 0 0 0 0 ...
##  $ reserved_room_type            : Factor w/ 10 levels "A","B","C","D",..: 3 3 1 1 1 1 3 3 1 4 ...
##  $ assigned_room_type            : Factor w/ 12 levels "A","B","C","D",..: 3 3 3 1 1 1 3 3 1 4 ...
##  $ booking_changes               : int  3 4 0 0 0 0 0 0 0 0 ...
##  $ deposit_type                  : Factor w/ 3 levels "No Deposit","Non Refund",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ agent                         : num  0 0 0 304 240 240 0 303 240 15 ...
##  $ company                       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ days_in_waiting_list          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ customer_type                 : Factor w/ 4 levels "Contract","Group",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ adr                           : num  0 0 75 75 98 ...
##  $ required_car_parking_spaces   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ total_of_special_requests     : int  0 0 0 0 1 1 0 1 1 0 ...
##  $ reservation_status            : Factor w/ 3 levels "Canceled","Check-Out",..: 2 2 2 2 2 2 2 2 1 1 ...
##  $ reservation_status_date       : Date, format: "2015-07-01" "2015-07-01" ...
##  $ total_stay_nights             : int  0 0 1 1 2 2 2 2 3 3 ...