loading, setting up

library(googlesheets4) # install.packages("googlesheets4")
library(tidyverse)
library(janitor)
library(jmRtools)
d <- read_sheet("https://docs.google.com/spreadsheets/d/1uq6VCaAxCog3eKHt5rnCLF7bWwOUyLn12UEXSsFDFNQ/edit#gid=1041895723",
                sheet = 4, skip = 1, # and 5
                col_types = "c")

d %>% write_csv("hadi-coded-data.csv")

d <- read_csv("hadi-coded-data.csv")

d <- d %>% clean_names()

d <- d %>% 
  filter(number_of_student_first_names_in_post != "DNE",
         number_of_student_first_names_in_post != "n/a")
create_table_output <- function(m1) {
  
  x0a <- coef(m1) %>% round(3)
    
  x0b <- confint(m1) %>% 
    round(3) %>% 
    paste0(collapse = " , ") %>% 
    str_c("[", ., "]")
  
  x1 <- convert_log_odds(coef(m1))
  
  x2 <- confint(m1) %>% 
    convert_log_odds() %>% 
    round(3) %>% 
    paste0(collapse = " , ") %>% 
    str_c("[", ., "]")
  
  x3 <- coef(m1) %>% 
    convert_log_odds() %>% 
    convert_odds() %>% 
    round(3)
  
  x4 <- confint(m1) %>% 
    convert_log_odds() %>% 
    convert_odds() %>% 
    round(3) %>% 
    paste0(collapse = " , ") %>% 
    str_c("[", ., "]")
  
  tibble(log_odds_coef = x0a, log_odds_ci = x0b, 
         odds_coef = x1, odds_ci = x2,
         prob_coef = x3, prob_ci = x4) %>% 
    gather(key, val)
  
}

images

How about faces — we already have this!

m1 <- glm(as.integer(there_is_a_face_in_this_post) ~ 1, data = d,
          family = "binomial")

create_table_output(m1)
## # A tibble: 6 × 2
##   key           val              
##   <chr>         <chr>            
## 1 log_odds_coef -1.398           
## 2 log_odds_ci   [-1.531 , -1.269]
## 3 odds_coef     0.198            
## 4 odds_ci       [0.178 , 0.22]   
## 5 prob_coef     0.165            
## 6 prob_ci       [0.151 , 0.18]

images + first and/or last name

m2 <- glm(as.integer(is_there_an_identifiable_face_in_this_post) ~ 1, data = d,
          family = "binomial")

create_table_output(m2)
## # A tibble: 6 × 2
##   key           val              
##   <chr>         <chr>            
## 1 log_odds_coef -3.301           
## 2 log_odds_ci   [-3.596 , -3.031]
## 3 odds_coef     0.036            
## 4 odds_ci       [0.027 , 0.046]  
## 5 prob_coef     0.035            
## 6 prob_ci       [0.026 , 0.044]

and images + ethnic group

m3 <- glm(as.integer(ethnic_group_face) ~ 1, data = d,
          family = "binomial")

create_table_output(m3)
## # A tibble: 6 × 2
##   key           val             
##   <chr>         <chr>           
## 1 log_odds_coef -6.555          
## 2 log_odds_ci   [-8.35 , -5.427]
## 3 odds_coef     0.001           
## 4 odds_ci       [0 , 0.004]     
## 5 prob_coef     0.001           
## 6 prob_ci       [0 , 0.004]

and images + gender

m4 <- glm(as.integer(gender_face) ~ 1, data = d,
          family = "binomial")

create_table_output(m4)
## # A tibble: 6 × 2
##   key           val              
##   <chr>         <chr>            
## 1 log_odds_coef -3.794           
## 2 log_odds_ci   [-4.171 , -3.457]
## 3 odds_coef     0.022            
## 4 odds_ci       [0.015 , 0.031]  
## 5 prob_coef     0.022            
## 6 prob_ci       [0.015 , 0.03]

videos

d <- read_sheet("https://docs.google.com/spreadsheets/d/1uq6VCaAxCog3eKHt5rnCLF7bWwOUyLn12UEXSsFDFNQ/edit#gid=1041895723",
                sheet = 5, skip = 1, # and 5
                col_types = "c")

d %>% write_csv("hadi-coded-data-vid.csv")

d <- read_csv("hadi-coded-data-vid.csv")

d <- d %>% clean_names()

d <- d %>% 
  filter(number_of_student_first_names_in_post != "DNE",
         number_of_student_first_names_in_post != "n/a")

How about faces — we already have this!

m1 <- glm(as.integer(there_is_a_face_in_this_post) ~ 1, data = d,
          family = "binomial")

create_table_output(m1)
## # A tibble: 6 × 2
##   key           val             
##   <chr>         <chr>           
## 1 log_odds_coef 0.039           
## 2 log_odds_ci   [-0.512 , 0.593]
## 3 odds_coef     1.04            
## 4 odds_ci       [0.375 , 1.809] 
## 5 prob_coef     0.51            
## 6 prob_ci       [0.273 , 0.644]

images + first and/or last name

m2 <- glm(as.integer(is_there_an_identifiable_face_in_this_post) ~ 1, data = d,
          family = "binomial")

create_table_output(m2)
## # A tibble: 6 × 2
##   key           val              
##   <chr>         <chr>            
## 1 log_odds_coef -1.54            
## 2 log_odds_ci   [-2.326 , -0.868]
## 3 odds_coef     0.176            
## 4 odds_ci       [0.089 , 0.296]  
## 5 prob_coef     0.15             
## 6 prob_ci       [0.082 , 0.228]

and images + gender

m4 <- glm(as.integer(gender_face) ~ 1, data = d,
          family = "binomial")

create_table_output(m4)
## # A tibble: 6 × 2
##   key           val             
##   <chr>         <chr>           
## 1 log_odds_coef -2.773          
## 2 log_odds_ci   [-4.187 , -1.77]
## 3 odds_coef     0.059           
## 4 odds_ci       [0.015 , 0.145] 
## 5 prob_coef     0.056           
## 6 prob_ci       [0.015 , 0.127]