These interactive 3D figures are created using few lines of R code. Play with them!

Want to learn how to do it - visit: https://www.facebook.com/iskulghar

Scatter plot of iris dataset

3D PCA

Support Vector Regresion Surface

Math Function Plot

LS0tCnRpdGxlOiAiUiBQcm9ncmFtbWluZyBhbmQgRGF0YSBTY2llbmNlIC0gSXNrdWxnaGFyIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIyMjIFRoZXNlIGludGVyYWN0aXZlIDNEIGZpZ3VyZXMgYXJlIGNyZWF0ZWQgdXNpbmcgZmV3IGxpbmVzIG9mIFIgY29kZS4gUGxheSB3aXRoIHRoZW0hCiMjIyMgV2FudCB0byBsZWFybiBob3cgdG8gZG8gaXQgLSB2aXNpdDogaHR0cHM6Ly93d3cuZmFjZWJvb2suY29tL2lza3VsZ2hhcgoKIyMgU2NhdHRlciBwbG90IG9mIGlyaXMgZGF0YXNldCAKYGBge3IsIGVjaG8gPSBGQUxTRX0KIyBMb2FkIHJlcXVpcmVkIGxpYnJhcmllcwpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkocGxvdGx5KQoKIyBVc2UgcGxvdF9seSB0byBjcmVhdGUgYSAzRCBzY2F0dGVyIHBsb3QKcGxvdF9seShkYXRhID0gaXJpcywgeCA9IH5TZXBhbC5MZW5ndGgsIHkgPSB+U2VwYWwuV2lkdGgsIHogPSB+UGV0YWwuTGVuZ3RoLCBjb2xvciA9IH5TcGVjaWVzLCB0eXBlID0gInNjYXR0ZXIzZCIsIG1vZGUgPSAibWFya2VycyIpICU+JQogIGxheW91dChzY2VuZSA9IGxpc3QoeGF4aXMgPSBsaXN0KHRpdGxlID0gIlNlcGFsIExlbmd0aCIpLAogICAgICAgICAgICAgICAgICAgICAgeWF4aXMgPSBsaXN0KHRpdGxlID0gIlNlcGFsIFdpZHRoIiksCiAgICAgICAgICAgICAgICAgICAgICB6YXhpcyA9IGxpc3QodGl0bGUgPSAiUGV0YWwgTGVuZ3RoIikpKQoKYGBgCgoKIyMgM0QgUENBCmBgYHtyLCBlY2hvID0gRkFMU0V9CiMgTG9hZCByZXF1aXJlZCBsaWJyYXJpZXMKbGlicmFyeShwbG90bHkpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkoTUFTUykgICMgRm9yIHRoZSBCb3N0b24gZGF0YXNldAoKIyBMb2FkIGEgYnVpbGRpbmcgZGF0YXNldCAocmVwbGFjZSB0aGlzIHdpdGggeW91ciBhY3R1YWwgZGF0YXNldCkKZGF0YShCb3N0b24sIHBhY2thZ2UgPSAiTUFTUyIpCmJ1aWxkaW5nX2RhdGEgPC0gYXMuZGF0YS5mcmFtZShCb3N0b24pCgojIFBlcmZvcm0gUENBCnBjYV9yZXN1bHQgPC0gcHJjb21wKGJ1aWxkaW5nX2RhdGFbLCAtMTRdLCBzY2FsZS4gPSBUUlVFKQoKIyBFeHRyYWN0IHByaW5jaXBhbCBjb21wb25lbnRzCnBjcyA8LSBkYXRhLmZyYW1lKHBjYV9yZXN1bHQkeFssIDE6M10pCgojIEFkZCBjbHVzdGVyIGluZm9ybWF0aW9uIChyZXBsYWNlIHRoaXMgd2l0aCB5b3VyIGNsdXN0ZXJpbmcgYWxnb3JpdGhtKQojIEZvciBkZW1vbnN0cmF0aW9uLCB1c2luZyBrLW1lYW5zIGNsdXN0ZXJpbmcKc2V0LnNlZWQoMTIzKQpidWlsZGluZ19kYXRhJGNsdXN0ZXIgPC0ga21lYW5zKHBjcywgY2VudGVycyA9IDMpJGNsdXN0ZXIKCiMgQ3JlYXRlIGEgM0QgUENBIGNsdXN0ZXJpbmcgcGxvdApwbG90X2x5KGRhdGEgPSBidWlsZGluZ19kYXRhLCAKICAgICAgICB4ID0gcGNzJFBDMSwgeSA9IHBjcyRQQzIsIHogPSBwY3MkUEMzLCAKICAgICAgICB0eXBlID0gInNjYXR0ZXIzZCIsIG1vZGUgPSAibWFya2VycyIsCiAgICAgICAgbWFya2VyID0gbGlzdChjb2xvciA9IGJ1aWxkaW5nX2RhdGEkY2x1c3RlciwgY29sb3JzY2FsZSA9ICJWaXJpZGlzIikpICU+JQogIGxheW91dChzY2VuZSA9IGxpc3QoCiAgICB4YXhpcyA9IGxpc3QodGl0bGUgPSAnUEMxJyksCiAgICB5YXhpcyA9IGxpc3QodGl0bGUgPSAnUEMyJyksCiAgICB6YXhpcyA9IGxpc3QodGl0bGUgPSAnUEMzJykKICApKQoKYGBgCgoKIyMgU3VwcG9ydCBWZWN0b3IgUmVncmVzaW9uIFN1cmZhY2UKYGBge3IsIGVjaG8gPSBGQUxTRX0KCmxpYnJhcnkocmVzaGFwZTIpCmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KHRpZHltb2RlbHMpCmxpYnJhcnkocGxvdGx5KQpsaWJyYXJ5KGtlcm5sYWIpCmxpYnJhcnkocHJhY21hKSAjRm9yIG1lc2hncmlkKCkKZGF0YShpcmlzKQoKbWVzaF9zaXplIDwtIC4wMgptYXJnaW4gPC0gMAoKCm1vZGVsIDwtIHN2bV9yYmYoY29zdCA9IDEuMCkgJT4lIAogIHNldF9lbmdpbmUoImtlcm5sYWIiKSAlPiUgCiAgc2V0X21vZGUoInJlZ3Jlc3Npb24iKSAlPiUgCiAgZml0KFBldGFsLldpZHRoIH4gU2VwYWwuV2lkdGggKyBTZXBhbC5MZW5ndGgsIGRhdGEgPSBpcmlzKQoKeF9taW4gPC0gbWluKFgkU2VwYWwuV2lkdGgpIC0gbWFyZ2luCnhfbWF4IDwtIG1heChYJFNlcGFsLldpZHRoKSAtIG1hcmdpbgp5X21pbiA8LSBtaW4oWCRTZXBhbC5MZW5ndGgpIC0gbWFyZ2luCnlfbWF4IDwtIG1heChYJFNlcGFsLkxlbmd0aCkgLSBtYXJnaW4KeHJhbmdlIDwtIHNlcSh4X21pbiwgeF9tYXgsIG1lc2hfc2l6ZSkKeXJhbmdlIDwtIHNlcSh5X21pbiwgeV9tYXgsIG1lc2hfc2l6ZSkKeHkgPC0gbWVzaGdyaWQoeCA9IHhyYW5nZSwgeSA9IHlyYW5nZSkKeHggPC0geHkkWAp5eSA8LSB4eSRZCmRpbV92YWwgPC0gZGltKHh4KQp4eDEgPC0gbWF0cml4KHh4LCBsZW5ndGgoeHgpLCAxKQp5eTEgPC0gbWF0cml4KHl5LCBsZW5ndGgoeXkpLCAxKQpmaW5hbCA8LSBjYmluZCh4eDEsIHl5MSkKcHJlZCA8LSBtb2RlbCAlPiUKICBwcmVkaWN0KGZpbmFsKQoKcHJlZCA8LSBwcmVkJC5wcmVkCnByZWQgPC0gbWF0cml4KHByZWQsIGRpbV92YWxbMV0sIGRpbV92YWxbMl0pCgpjb2xvcl9zY2FsZSA8LSBjKCJibHVlIiwgImRhcmtncmVlbiIsICJ5ZWxsb3ciKQoKZmlnIDwtIHBsb3RfbHkoaXJpcywgeCA9IH5TZXBhbC5XaWR0aCwgeSA9IH5TZXBhbC5MZW5ndGgsIHogPSB+UGV0YWwuV2lkdGgsIGNvbG9ycyA9ICBjb2xvcl9zY2FsZSkgJT4lIAogIGFkZF9tYXJrZXJzKHNpemUgPSA1KSAlPiUgCiAgYWRkX3N1cmZhY2UoeD14cmFuZ2UsIHk9eXJhbmdlLCB6PXByZWQsIGFscGhhID0gMC42NSwgdHlwZSA9ICdtZXNoM2QnLCBuYW1lID0gJ3ByZWRfc3VyZmFjZScpCmZpZwpgYGAKCgoKCgoKIyMgTWF0aCBGdW5jdGlvbiBQbG90CmBgYHtyLCBlY2hvID0gRkFMU0V9CiMgTG9hZCByZXF1aXJlZCBsaWJyYXJpZXMKbGlicmFyeShwbG90bHkpCgojIENyZWF0ZSBzYW1wbGUgZGF0YSBmb3IgdGhlIHN1cmZhY2UgcGxvdAp4IDwtIHNlcSgtNSwgNSwgbGVuZ3RoLm91dCA9IDEwMCkKeSA8LSBzZXEoLTUsIDUsIGxlbmd0aC5vdXQgPSAxMDApCnogPC0gb3V0ZXIoeCwgeSwgZnVuY3Rpb24oeCwgeSkgc2luKHNxcnQoeF4yICsgeV4yKSkgLyBzcXJ0KHheMiArIHleMikpCgojIERlZmluZSBhIGN1c3RvbSBjb2xvciBzY2FsZQpjb2xvcl9zY2FsZSA8LSBjKCIjNDQwMTU0IiwgIiM0ODI4NzgiLCAiIzNFNDk4OSIsICIjMzE2ODhFIiwgIiMyNjgzOEUiLCAiIzFGOUU4OSIsICIjMzVCNzc5IiwgIiM2RENENTkiLCAiI0I0REUyQyIsICIjRkRFNzI1IikKCiMgQ3JlYXRlIGEgM0Qgc3VyZmFjZSBwbG90CnBsb3RfbHkoeiA9IH56LCB4ID0gfngsIHkgPSB+eSwgdHlwZSA9ICJzdXJmYWNlIiwgY29sb3JzID0gY29sb3Jfc2NhbGUpICU+JQogIGxheW91dChzY2VuZSA9IGxpc3QoCiAgICB4YXhpcyA9IGxpc3QodGl0bGUgPSAnWC1heGlzJyksCiAgICB5YXhpcyA9IGxpc3QodGl0bGUgPSAnWS1heGlzJyksCiAgICB6YXhpcyA9IGxpc3QodGl0bGUgPSAnWi1heGlzJykKICApKQoKYGBg