Question 1 How many flights arrived late each month? The late arrival is the flight arrivingmore than 5 minutes after its scheduled arrival time.
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lubridate)
library(scales)
##
## Attaching package: 'scales'
##
## The following object is masked from 'package:purrr':
##
## discard
##
## The following object is masked from 'package:readr':
##
## col_factor
library(nycflights13)
# Late arrivals by month
late_arrivals_by_month <- flights %>%
group_by(month) %>%
summarise(lateflights = sum(arr_delay > 5, na.rm = TRUE))
print(late_arrivals_by_month)
## # A tibble: 12 × 2
## month lateflights
## <int> <int>
## 1 1 8988
## 2 2 8119
## 3 3 9033
## 4 4 10544
## 5 5 8490
## 6 6 10739
## 7 7 11518
## 8 8 9649
## 9 9 5347
## 10 10 7628
## 11 11 7485
## 12 12 12291
# Calculate the total number of flights per month
total_flights_per_month <- flights %>%
group_by(month) %>%
summarise(total = n())
Question 2 What percentage of traffic did each carrier represent, by month?
# Calculate the total number of flights per month
total_flights_per_month <- flights %>%
group_by(month) %>%
summarise(total = n())
# Calculate the number of flights per carrier per month
carrier_flights_per_month <- flights %>%
group_by(carrier, month) %>%
summarise(count = n())
## `summarise()` has grouped output by 'carrier'. You can override using the
## `.groups` argument.
# Join total flights with carrier flights and calculate percentage
carrier_percentage <- left_join(carrier_flights_per_month, total_flights_per_month, by = "month") %>%
mutate(percentage = paste0(round((count / total) * 100, 3), "%"))
# Spread data to wide format for easier viewing
spread_data <- carrier_percentage %>%
select(-count, -total) %>%
spread(key = month, value = percentage)
print(spread_data)
## # A tibble: 16 × 13
## # Groups: carrier [16]
## carrier `1` `2` `3` `4` `5` `6` `7` `8` `9` `10` `11`
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 9E 5.825% 5.847% 5.64… 5.33… 5.07… 5.08… 5.07… 4.96… 5.58… 5.79… 5.84…
## 2 AA 10.347% 10.088% 9.66… 9.60… 9.73… 9.76… 9.79… 9.73… 9.48% 9.39… 9.45…
## 3 AS 0.23% 0.224% 0.21… 0.21… 0.21… 0.21… 0.21… 0.21… 0.21… 0.21… 0.19…
## 4 B6 16.394% 16.444% 16.5… 15.9… 15.8… 16.3… 16.9… 16.8… 15.5… 15.0… 15.7…
## 5 DL 13.665% 13.803% 14.5… 14.4… 14.1… 14.6… 14.4… 14.7… 14.0… 14.1… 14.1…
## 6 EV 15.446% 15.338% 16.3… 16.1% 16.7… 15.7… 15.7… 15.5… 17.1… 16.9… 16.3…
## 7 F9 0.218% 0.196% 0.19… 0.20… 0.20… 0.19… 0.19… 0.18… 0.21% 0.19… 0.22…
## 8 FL 1.215% 1.186% 1.09… 1.09… 1.12… 0.89… 0.89… 0.89… 0.92… 0.81… 0.74…
## 9 HA 0.115% 0.112% 0.10… 0.10… 0.10… 0.10… 0.10… 0.10… 0.09… 0.07… 0.09…
## 10 MQ 8.41% 8.192% 7.82… 7.80… 7.93… 7.71… 7.68… 7.71… 8% 7.71… 7.54%
## 11 OO 0.004% <NA> <NA> <NA> <NA> 0.00… <NA> 0.01… 0.07… <NA> 0.01…
## 12 UA 17.172% 17.418% 17.2… 17.8… 17.2… 17.6… 17.2… 17.4… 17.0… 17.5… 17.8…
## 13 US 5.932% 6.22% 5.96… 6.09… 6.19… 6.14… 6.07% 6.06… 6.15… 6.39% 6.23…
## 14 VX 1.17% 1.086% 1.05… 1.64… 1.72… 1.7% 1.66… 1.66… 1.64… 1.63… 1.65…
## 15 WN 3.688% 3.651% 3.46… 3.45… 3.49… 3.64% 3.65… 3.57% 3.66… 3.77… 3.78…
## 16 YV 0.17% 0.192% 0.06… 0.13… 0.17% 0.17… 0.27… 0.22… 0.15… 0.22… 0.18%
## # ℹ 1 more variable: `12` <chr>
Question 3 What was the latest flight to depart each month?
# Calculate the delay time
flights <- flights %>%
mutate(delay = dep_delay)
# Find the flight with the most delayed departure time each month
most_delayed_flights <- flights %>%
group_by(month) %>%
filter(delay == max(delay, na.rm = TRUE)) %>%
slice(1)
print(most_delayed_flights)
## # A tibble: 12 × 20
## # Groups: month [12]
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 9 641 900 1301 1242 1530
## 2 2013 2 10 2243 830 853 100 1106
## 3 2013 3 17 2321 810 911 135 1020
## 4 2013 4 10 1100 1900 960 1342 2211
## 5 2013 5 3 1133 2055 878 1250 2215
## 6 2013 6 15 1432 1935 1137 1607 2120
## 7 2013 7 22 845 1600 1005 1044 1815
## 8 2013 8 8 2334 1454 520 120 1710
## 9 2013 9 20 1139 1845 1014 1457 2210
## 10 2013 10 14 2042 900 702 2255 1127
## 11 2013 11 3 603 1645 798 829 1913
## 12 2013 12 5 756 1700 896 1058 2020
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, delay <dbl>
Question 4 Count the usefulness by learning platform.
data <- read_csv("multipleChoiceResponses1.csv")
## Rows: 16716 Columns: 47
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (46): LearningPlatformUsefulnessArxiv, LearningPlatformUsefulnessBlogs, ...
## dbl (1): Age
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
usefulness_data <- data %>%
select(starts_with("LearningPlatformUsefulness")) %>%
gather(key = "learning_platform", value = "usefulness") %>%
filter(!is.na(usefulness)) %>%
mutate(learning_platform = str_replace(learning_platform, "LearningPlatformUsefulness", ""))
count_data <- usefulness_data %>%
count(learning_platform, usefulness)
count_data
## # A tibble: 54 × 3
## learning_platform usefulness n
## <chr> <chr> <int>
## 1 Arxiv Not Useful 37
## 2 Arxiv Somewhat useful 1038
## 3 Arxiv Very useful 1316
## 4 Blogs Not Useful 45
## 5 Blogs Somewhat useful 2406
## 6 Blogs Very useful 2314
## 7 College Not Useful 101
## 8 College Somewhat useful 1405
## 9 College Very useful 1853
## 10 Communities Not Useful 16
## # ℹ 44 more rows
Question 5
library(tidyverse)
library(lubridate)
library(dplyr)
library(scales)
library(ggplot2)
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## ######################### Warning from 'xts' package ##########################
## # #
## # The dplyr lag() function breaks how base R's lag() function is supposed to #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or #
## # source() into this session won't work correctly. #
## # #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop #
## # dplyr from breaking base R's lag() function. #
## # #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning. #
## # #
## ###############################################################################
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(zoo)
usefulness_data_filtered <- usefulness_data %>%
filter(usefulness != "Not Useful")
total_responses <- usefulness_data %>%
group_by(learning_platform) %>%
summarise(tot = n())
useful_counts <- usefulness_data_filtered %>%
count(learning_platform)
joined_data <- left_join(useful_counts, total_responses, by = "learning_platform")
perc_usefulness <- joined_data %>%
mutate(perc_usefulness = n / tot)
perc_usefulness
## # A tibble: 18 × 4
## learning_platform n tot perc_usefulness
## <chr> <int> <int> <dbl>
## 1 Arxiv 2354 2391 0.985
## 2 Blogs 4720 4765 0.991
## 3 College 3258 3359 0.970
## 4 Communities 1126 1142 0.986
## 5 Company 940 981 0.958
## 6 Conferences 2063 2182 0.945
## 7 Courses 5945 5992 0.992
## 8 Documentation 2279 2321 0.982
## 9 Friends 1530 1581 0.968
## 10 Kaggle 6527 6583 0.991
## 11 Newsletters 1033 1089 0.949
## 12 Podcasts 1090 1214 0.898
## 13 Projects 4755 4794 0.992
## 14 SO 5576 5640 0.989
## 15 Textbook 4112 4181 0.983
## 16 TradeBook 324 333 0.973
## 17 Tutoring 1394 1426 0.978
## 18 YouTube 5125 5229 0.980
perc_usefulness <- perc_usefulness %>%
mutate(learning_platform = fct_reorder(learning_platform, perc_usefulness)) %>%
mutate(learning_platform = fct_rev(learning_platform))
perc_usefulness <- perc_usefulness %>%
mutate(learning_platform = fct_reorder(learning_platform, perc_usefulness, .desc = TRUE)) # s'
ggplot(perc_usefulness, aes(x = learning_platform, y = perc_usefulness)) +
geom_bar(stat = "identity") +
theme_minimal() +
coord_flip() +
labs(x = "Learning Platform", y = "Percentage of Usefulness", title = "Usefulness of Learning Platforms")