In the realm of data analysis, mastering the art of data manipulation
is akin to wielding a powerful tool that unlocks deeper insights and
facilitates more informed decision-making. In the vast landscape of
statistical programming languages, R stands out as a preferred choice
for data manipulation tasks, and the dplyr
package within R
is a key player in this arena.
Read the complete article and download the code: Data Manipulation I dplyr cheat sheet using R.
You can also Join our community.
You can also Hire us or get free Exploratory Data Analysis.
To embark on our journey with dplyr
, let’s first
acquaint ourselves with the basics. Imagine you have a dataset, say the
classic Iris dataset. You load it into R, and here comes the magic of
dplyr
to streamline your data manipulation process.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
Now, let’s delve into some fundamental dplyr
functions
showcased in the provided code.
dplyr
One of the common tasks in data analysis is filtering rows based on
certain conditions. With dplyr
, this becomes intuitive and
efficient. For instance, let’s filter rows where the Sepal.Length is
greater than 5.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 5.4 3.9 1.7 0.4 setosa
## 3 5.4 3.7 1.5 0.2 setosa
## 4 5.8 4.0 1.2 0.2 setosa
## 5 5.7 4.4 1.5 0.4 setosa
## 6 5.4 3.9 1.3 0.4 setosa
## 7 5.1 3.5 1.4 0.3 setosa
## 8 5.7 3.8 1.7 0.3 setosa
## 9 5.1 3.8 1.5 0.3 setosa
## 10 5.4 3.4 1.7 0.2 setosa
Here, we introduce the concept of Aggregate count, which is crucial in understanding the distribution of data.
With dplyr
, creating new variables is a breeze. Let’s
double the values of Sepal.Length and store them in a new variable,
NewVar.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species NewVar
## 1 5.1 3.5 1.4 0.2 setosa 10.2
## 2 4.9 3.0 1.4 0.2 setosa 9.8
## 3 4.7 3.2 1.3 0.2 setosa 9.4
## 4 4.6 3.1 1.5 0.2 setosa 9.2
## 5 5.0 3.6 1.4 0.2 setosa 10.0
## 6 5.4 3.9 1.7 0.4 setosa 10.8
## 7 4.6 3.4 1.4 0.3 setosa 9.2
## 8 5.0 3.4 1.5 0.2 setosa 10.0
## 9 4.4 2.9 1.4 0.2 setosa 8.8
## 10 4.9 3.1 1.5 0.1 setosa 9.8
This operation aligns with the idea of introducing a New
variable in R, showcasing the flexibility of
dplyr
in augmenting your dataset.
In many scenarios, you might only be interested in specific columns.
dplyr
simplifies this process.
## Sepal.Length Species
## 1 5.1 setosa
## 2 4.9 setosa
## 3 4.7 setosa
## 4 4.6 setosa
## 5 5.0 setosa
## 6 5.4 setosa
## 7 4.6 setosa
## 8 5.0 setosa
## 9 4.4 setosa
## 10 4.9 setosa
Here, we touch upon the concept of Create variable, emphasizing the importance of selectively choosing variables based on your analytical goals.
Sorting your data can provide valuable insights. With
dplyr
, arranging data becomes a straightforward task.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 4.3 3.0 1.1 0.1 setosa
## 2 4.4 2.9 1.4 0.2 setosa
## 3 4.4 3.0 1.3 0.2 setosa
## 4 4.4 3.2 1.3 0.2 setosa
## 5 4.5 2.3 1.3 0.3 setosa
## 6 4.6 3.1 1.5 0.2 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 4.6 3.6 1.0 0.2 setosa
## 9 4.6 3.2 1.4 0.2 setosa
## 10 4.7 3.2 1.3 0.2 setosa
This aligns with the broader theme of Analyzing data in R, showcasing how ordered data can facilitate a deeper understanding.
Summarizing data is a crucial step in exploratory data analysis.
Let’s calculate the mean of Sepal.Length using dplyr
.
## Mean_Sepal_Length
## 1 5.843333
This encapsulates the essence of data exploration, a fundamental aspect of Data analysis.
Grouping data based on certain variables and performing aggregate
functions is a common practice. dplyr
simplifies this
process.
## # A tibble: 3 × 2
## Species Mean_Sepal_Length
## <fct> <dbl>
## 1 setosa 5.01
## 2 versicolor 5.94
## 3 virginica 6.59
Here, we touch upon the concept of EDA (Exploratory Data Analysis), highlighting the importance of examining data variations across different groups.
dplyr
offers versatile functions for selecting specific
rows based on conditions. Let’s explore some of these
functionalities.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
This operation aligns with the broader theme of Data
wrangling, showcasing how dplyr
facilitates
the restructuring of your data for better analysis.
Random sampling is a crucial technique in statistical analysis.
dplyr
provides an elegant solution.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 6.7 3.3 5.7 2.1 virginica
## 2 6.0 2.2 4.0 1.0 versicolor
## 3 6.4 2.8 5.6 2.1 virginica
## 4 5.8 2.7 4.1 1.0 versicolor
## 5 5.8 2.8 5.1 2.4 virginica
This concept ties into the broader theme of dplyr, emphasizing the versatility of the package in handling diverse data manipulation tasks.
Selecting the top N rows based on a specific variable is another
common task. Let’s explore this using dplyr
.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 7.7 3.8 6.7 2.2 virginica
## 2 7.7 2.6 6.9 2.3 virginica
## 3 7.7 2.8 6.7 2.0 virginica
## 4 7.9 3.8 6.4 2.0 virginica
## 5 7.7 3.0 6.1 2.3 virginica
This task aligns with the broader theme of Normalize data, showcasing how selecting top rows can be valuable in certain normalization scenarios.
transmute
The transmute
function in dplyr
allows you
to create new variables while preserving existing ones. Let’s explore
this functionality.
## NewVar
## 1 10.2
## 2 9.8
## 3 9.4
## 4 9.2
## 5 10.0
## 6 10.8
## 7 9.2
## 8 10.0
## 9 8.8
## 10 9.8
This aligns with the broader theme of Create
variable, showcasing the flexibility of dplyr
in augmenting your dataset.
Handling conditional cases is a common task in data manipulation.
Let’s explore this using dplyr
and the
case_when
function.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species Size
## 1 5.1 3.5 1.4 0.2 setosa Large
## 2 4.9 3.0 1.4 0.2 setosa Small
## 3 4.7 3.2 1.3 0.2 setosa Small
## 4 4.6 3.1 1.5 0.2 setosa Small
## 5 5.0 3.6 1.4 0.2 setosa Small
## 6 5.4 3.9 1.7 0.4 setosa Large
## 7 4.6 3.4 1.4 0.3 setosa Small
## 8 5.0 3.4 1.5 0.2 setosa Small
## 9 4.4 2.9 1.4 0.2 setosa Small
## 10 4.9 3.1 1.5 0.1 setosa Small
This aligns with the broader theme of **[Statistics](https://www.data03.online/2023/06/Statistics-A-Guide-from-Basics-to-M
achine-Learning.html)**, showcasing how conditional operations can be applied to enhance the interpretability of your data.
Scaling numeric columns is a common preprocessing step in data
analysis. Let’s explore this using dplyr
and the
scale
function.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 -0.8976739 3.5 -1.335752 0.2 setosa
## 2 -1.1392005 3.0 -1.335752 0.2 setosa
## 3 -1.3807271 3.2 -1.392399 0.2 setosa
## 4 -1.5014904 3.1 -1.279104 0.2 setosa
## 5 -1.0184372 3.6 -1.335752 0.2 setosa
## 6 -0.5353840 3.9 -1.165809 0.4 setosa
## 7 -1.5014904 3.4 -1.335752 0.3 setosa
## 8 -1.0184372 3.4 -1.279104 0.2 setosa
## 9 -1.7430170 2.9 -1.335752 0.2 setosa
## 10 -1.1392005 3.1 -1.279104 0.1 setosa
This operation aligns with the broader theme of RStudio,
showcasing how dplyr
seamlessly integrates with other R
tools for comprehensive data analysis.
if_else
Another approach to handle conditional cases is using
if_else
in dplyr
. Let’s explore this
functionality.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species Size
## 1 5.1 3.5 1.4 0.2 setosa Big
## 2 4.9 3.0 1.4 0.2 setosa Small
## 3 4.7 3.2 1.3 0.2 setosa Small
## 4 4.6 3.1 1.5 0.2 setosa Small
## 5 5.0 3.6 1.4 0.2 setosa Small
## 6 5.4 3.9 1.7 0.4 setosa Big
## 7 4.6 3.4 1.4 0.3 setosa Small
## 8 5.0 3.4 1.5 0.2 setosa Small
## 9 4.4 2.9 1.4 0.2 setosa Small
## 10 4.9 3.1 1.5 0.1 setosa Small
This aligns with the broader theme of Setwd, showcasing how conditional operations can be applied to enhance the interpretability of your data.
Selecting numeric columns and filtering rows based on specific
conditions is a common task. Let’s explore this using
dplyr
.
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 7.0 3.2 4.7 1.4
## 2 6.4 3.2 4.5 1.5
## 3 6.9 3.1 4.9 1.5
## 4 5.5 2.3 4.0 1.3
## 5 6.5 2.8 4.6 1.5
## 6 5.7 2.8 4.5 1.3
## 7 6.3 3.3 4.7 1.6
## 8 6.6 2.9 4.6 1.3
## 9 5.2 2.7 3.9 1.4
## 10 5.9 3.0 4.2 1.5
This aligns with the broader theme of Word
count, showcasing how dplyr
enables the
selection and manipulation of specific types of variables.
Applying functions to numeric columns is a common practice in data
analysis. Let’s explore this using dplyr
and the
mutate_all
function.
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 1.629241 1.252763 0.3364722 -1.6094379
## 2 1.589235 1.098612 0.3364722 -1.6094379
## 3 1.547563 1.163151 0.2623643 -1.6094379
## 4 1.526056 1.131402 0.4054651 -1.6094379
## 5 1.609438 1.280934 0.3364722 -1.6094379
## 6 1.686399 1.360977 0.5306283 -0.9162907
## 7 1.526056 1.223775 0.3364722 -1.2039728
## 8 1.609438 1.223775 0.4054651 -1.6094379
## 9 1.481605 1.064711 0.3364722 -1.6094379
## 10 1.589235 1.131402 0.4054651 -2.3025851
This operation aligns with the broader theme of R
timing, showcasing how dplyr
supports
efficient data transformations.
Arranging all columns in descending order is a useful operation for
visual inspection. Let’s explore this using dplyr
.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 7.9 3.8 6.4 2.0 virginica
## 2 7.7 3.8 6.7 2.2 virginica
## 3 7.7 3.0 6.1 2.3 virginica
## 4 7.7 2.8 6.7 2.0 virginica
## 5 7.7 2.6 6.9 2.3 virginica
## 6 7.6 3.0 6.6 2.1 virginica
## 7 7.4 2.8 6.1 1.9 virginica
## 8 7.3 2.9 6.3 1.8 virginica
## 9 7.2 3.6 6.1 2.5 virginica
## 10 7.2 3.2 6.0 1.8 virginica
This aligns with the broader theme of Data
Analysis: Concepts, Techniques, & Real-World Insights,
showcasing how dplyr
enables comprehensive data
exploration.
Summarizing numeric columns is a common exploratory step in data
analysis. Let’s explore this using dplyr
and the
summarize_all
function.
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.843333 3.057333 3.758 1.199333
This aligns with the broader theme of Unlock
the Power of Data: Your Beginner’s Guide to Statistics,
showcasing how dplyr
supports efficient data
exploration.
Grouping data by multiple variables is a powerful feature of
dplyr
. Let’s explore this using the group_by
and summarize
functions.
## # A tibble: 48 × 3
## # Groups: Species [3]
## Species Petal.Length count
## <fct> <dbl> <int>
## 1 setosa 1 1
## 2 setosa 1.1 1
## 3 setosa 1.2 2
## 4 setosa 1.3 7
## 5 setosa 1.4 13
## 6 setosa 1.5 13
## 7 setosa 1.6 7
## 8 setosa 1.7 4
## 9 setosa 1.9 2
## 10 versicolor 3 1
## # ℹ 38 more rows
This aligns with the broader theme of Descriptive
Analysis, showcasing how dplyr
facilitates
complex grouping operations.
Extracting distinct values across all columns is a useful operation
in data analysis. Let’s explore this using dplyr
and the
distinct_all
function.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
This aligns with the broader theme of RStudio
Documentation: Your Essential Guide to Descriptive
Statistics, showcasing how dplyr
enhances the
exploration of dataset characteristics.
Counting the total number of rows is a fundamental operation. Let’s
explore this using dplyr
and the count
function.
## n
## 1 150
This aligns with the broader theme of Descriptive
Statistics, showcasing how dplyr
simplifies
basic counting operations.
Renaming columns is often necessary for clarity. Let’s explore this
using dplyr
and the rename_all
function.
## New_Sepal.Length New_Sepal.Width New_Petal.Length New_Petal.Width
## 1 5.1 3.5 1.4 0.2
## 2 4.9 3.0 1.4 0.2
## 3 4.7 3.2 1.3 0.2
## 4 4.6 3.1 1.5 0.2
## 5 5.0 3.6 1.4 0.2
## 6 5.4 3.9 1.7 0.4
## 7 4.6 3.4 1.4 0.3
## 8 5.0 3.4 1.5 0.2
## 9 4.4 2.9 1.4 0.2
## 10 4.9 3.1 1.5 0.1
## 11 5.4 3.7 1.5 0.2
## 12 4.8 3.4 1.6 0.2
## 13 4.8 3.0 1.4 0.1
## 14 4.3 3.0 1.1 0.1
## 15 5.8 4.0 1.2 0.2
## 16 5.7 4.4 1.5 0.4
## 17 5.4 3.9 1.3 0.4
## 18 5.1 3.5 1.4 0.3
## 19 5.7 3.8 1.7 0.3
## 20 5.1 3.8 1.5 0.3
## 21 5.4 3.4 1.7 0.2
## 22 5.1 3.7 1.5 0.4
## 23 4.6 3.6 1.0 0.2
## 24 5.1 3.3 1.7 0.5
## 25 4.8 3.4 1.9 0.2
## 26 5.0 3.0 1.6 0.2
## 27 5.0 3.4 1.6 0.4
## 28 5.2 3.5 1.5 0.2
## 29 5.2 3.4 1.4 0.2
## 30 4.7 3.2 1.6 0.2
## 31 4.8 3.1 1.6 0.2
## 32 5.4 3.4 1.5 0.4
## 33 5.2 4.1 1.5 0.1
## 34 5.5 4.2 1.4 0.2
## 35 4.9 3.1 1.5 0.2
## 36 5.0 3.2 1.2 0.2
## 37 5.5 3.5 1.3 0.2
## 38 4.9 3.6 1.4 0.1
## 39 4.4 3.0 1.3 0.2
## 40 5.1 3.4 1.5 0.2
## 41 5.0 3.5 1.3 0.3
## 42 4.5 2.3 1.3 0.3
## 43 4.4 3.2 1.3 0.2
## 44 5.0 3.5 1.6 0.6
## 45 5.1 3.8 1.9 0.4
## 46 4.8 3.0 1.4 0.3
## 47 5.1 3.8 1.6 0.2
## 48 4.6 3.2 1.4 0.2
## 49 5.3 3.7 1.5 0.2
## 50 5.0 3.3 1.4 0.2
## 51 7.0 3.2 4.7 1.4
## 52 6.4 3.2 4.5 1.5
## 53 6.9 3.1 4.9 1.5
## 54 5.5 2.3 4.0 1.3
## 55 6.5 2.8 4.6 1.5
## 56 5.7 2.8 4.5 1.3
## 57 6.3 3.3 4.7 1.6
## 58 4.9 2.4 3.3 1.0
## 59 6.6 2.9 4.6 1.3
## 60 5.2 2.7 3.9 1.4
## 61 5.0 2.0 3.5 1.0
## 62 5.9 3.0 4.2 1.5
## 63 6.0 2.2 4.0 1.0
## 64 6.1 2.9 4.7 1.4
## 65 5.6 2.9 3.6 1.3
## 66 6.7 3.1 4.4 1.4
## 67 5.6 3.0 4.5 1.5
## 68 5.8 2.7 4.1 1.0
## 69 6.2 2.2 4.5 1.5
## 70 5.6 2.5 3.9 1.1
## 71 5.9 3.2 4.8 1.8
## 72 6.1 2.8 4.0 1.3
## 73 6.3 2.5 4.9 1.5
## 74 6.1 2.8 4.7 1.2
## 75 6.4 2.9 4.3 1.3
## 76 6.6 3.0 4.4 1.4
## 77 6.8 2.8 4.8 1.4
## 78 6.7 3.0 5.0 1.7
## 79 6.0 2.9 4.5 1.5
## 80 5.7 2.6 3.5 1.0
## 81 5.5 2.4 3.8 1.1
## 82 5.5 2.4 3.7 1.0
## 83 5.8 2.7 3.9 1.2
## 84 6.0 2.7 5.1 1.6
## 85 5.4 3.0 4.5 1.5
## 86 6.0 3.4 4.5 1.6
## 87 6.7 3.1 4.7 1.5
## 88 6.3 2.3 4.4 1.3
## 89 5.6 3.0 4.1 1.3
## 90 5.5 2.5 4.0 1.3
## 91 5.5 2.6 4.4 1.2
## 92 6.1 3.0 4.6 1.4
## 93 5.8 2.6 4.0 1.2
## 94 5.0 2.3 3.3 1.0
## 95 5.6 2.7 4.2 1.3
## 96 5.7 3.0 4.2 1.2
## 97 5.7 2.9 4.2 1.3
## 98 6.2 2.9 4.3 1.3
## 99 5.1 2.5 3.0 1.1
## 100 5.7 2.8 4.1 1.3
## 101 6.3 3.3 6.0 2.5
## 102 5.8 2.7 5.1 1.9
## 103 7.1 3.0 5.9 2.1
## 104 6.3 2.9 5.6 1.8
## 105 6.5 3.0 5.8 2.2
## 106 7.6 3.0 6.6 2.1
## 107 4.9 2.5 4.5 1.7
## 108 7.3 2.9 6.3 1.8
## 109 6.7 2.5 5.8 1.8
## 110 7.2 3.6 6.1 2.5
## 111 6.5 3.2 5.1 2.0
## 112 6.4 2.7 5.3 1.9
## 113 6.8 3.0 5.5 2.1
## 114 5.7 2.5 5.0 2.0
## 115 5.8 2.8 5.1 2.4
## 116 6.4 3.2 5.3 2.3
## 117 6.5 3.0 5.5 1.8
## 118 7.7 3.8 6.7 2.2
## 119 7.7 2.6 6.9 2.3
## 120 6.0 2.2 5.0 1.5
## 121 6.9 3.2 5.7 2.3
## 122 5.6 2.8 4.9 2.0
## 123 7.7 2.8 6.7 2.0
## 124 6.3 2.7 4.9 1.8
## 125 6.7 3.3 5.7 2.1
## 126 7.2 3.2 6.0 1.8
## 127 6.2 2.8 4.8 1.8
## 128 6.1 3.0 4.9 1.8
## 129 6.4 2.8 5.6 2.1
## 130 7.2 3.0 5.8 1.6
## 131 7.4 2.8 6.1 1.9
## 132 7.9 3.8 6.4 2.0
## 133 6.4 2.8 5.6 2.2
## 134 6.3 2.8 5.1 1.5
## 135 6.1 2.6 5.6 1.4
## 136 7.7 3.0 6.1 2.3
## 137 6.3 3.4 5.6 2.4
## 138 6.4 3.1 5.5 1.8
## 139 6.0 3.0 4.8 1.8
## 140 6.9 3.1 5.4 2.1
## 141 6.7 3.1 5.6 2.4
## 142 6.9 3.1 5.1 2.3
## 143 5.8 2.7 5.1 1.9
## 144 6.8 3.2 5.9 2.3
## 145 6.7 3.3 5.7 2.5
## 146 6.7 3.0 5.2 2.3
## 147 6.3 2.5 5.0 1.9
## 148 6.5 3.0 5.2 2.0
## 149 6.2 3.4 5.4 2.3
## 150 5.9 3.0 5.1 1.8
## New_Species
## 1 setosa
## 2 setosa
## 3 setosa
## 4 setosa
## 5 setosa
## 6 setosa
## 7 setosa
## 8 setosa
## 9 setosa
## 10 setosa
## 11 setosa
## 12 setosa
## 13 setosa
## 14 setosa
## 15 setosa
## 16 setosa
## 17 setosa
## 18 setosa
## 19 setosa
## 20 setosa
## 21 setosa
## 22 setosa
## 23 setosa
## 24 setosa
## 25 setosa
## 26 setosa
## 27 setosa
## 28 setosa
## 29 setosa
## 30 setosa
## 31 setosa
## 32 setosa
## 33 setosa
## 34 setosa
## 35 setosa
## 36 setosa
## 37 setosa
## 38 setosa
## 39 setosa
## 40 setosa
## 41 setosa
## 42 setosa
## 43 setosa
## 44 setosa
## 45 setosa
## 46 setosa
## 47 setosa
## 48 setosa
## 49 setosa
## 50 setosa
## 51 versicolor
## 52 versicolor
## 53 versicolor
## 54 versicolor
## 55 versicolor
## 56 versicolor
## 57 versicolor
## 58 versicolor
## 59 versicolor
## 60 versicolor
## 61 versicolor
## 62 versicolor
## 63 versicolor
## 64 versicolor
## 65 versicolor
## 66 versicolor
## 67 versicolor
## 68 versicolor
## 69 versicolor
## 70 versicolor
## 71 versicolor
## 72 versicolor
## 73 versicolor
## 74 versicolor
## 75 versicolor
## 76 versicolor
## 77 versicolor
## 78 versicolor
## 79 versicolor
## 80 versicolor
## 81 versicolor
## 82 versicolor
## 83 versicolor
## 84 versicolor
## 85 versicolor
## 86 versicolor
## 87 versicolor
## 88 versicolor
## 89 versicolor
## 90 versicolor
## 91 versicolor
## 92 versicolor
## 93 versicolor
## 94 versicolor
## 95 versicolor
## 96 versicolor
## 97 versicolor
## 98 versicolor
## 99 versicolor
## 100 versicolor
## 101 virginica
## 102 virginica
## 103 virginica
## 104 virginica
## 105 virginica
## 106 virginica
## 107 virginica
## 108 virginica
## 109 virginica
## 110 virginica
## 111 virginica
## 112 virginica
## 113 virginica
## 114 virginica
## 115 virginica
## 116 virginica
## 117 virginica
## 118 virginica
## 119 virginica
## 120 virginica
## 121 virginica
## 122 virginica
## 123 virginica
## 124 virginica
## 125 virginica
## 126 virginica
## 127 virginica
## 128 virginica
## 129 virginica
## 130 virginica
## 131 virginica
## 132 virginica
## 133 virginica
## 134 virginica
## 135 virginica
## 136 virginica
## 137 virginica
## 138 virginica
## 139 virginica
## 140 virginica
## 141 virginica
## 142 virginica
## 143 virginica
## 144 virginica
## 145 virginica
## 146 virginica
## 147 virginica
## 148 virginica
## 149 virginica
## 150 virginica
This aligns with the broader theme of Statistics,
showcasing how dplyr
supports efficient data
manipulation.
Extracting specific rows from a dataset is a common operation. Let’s
explore this using dplyr
and the slice
function.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
This aligns with the broader theme of Data
Analysis: Concepts, Techniques, & Real-World Insights,
showcasing how dplyr
enables specific row extractions.
Randomly sampling rows is useful for creating representative subsets.
Let’s explore this using dplyr
and the
sample_n
function.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.7 1.5 0.4 setosa
## 2 4.4 2.9 1.4 0.2 setosa
## 3 5.2 3.5 1.5 0.2 setosa
## 4 4.6 3.4 1.4 0.3 setosa
## 5 5.2 3.4 1.4 0.2 setosa
This aligns with the broader theme of dplyr Conclusion In conclusion, dplyr emerges as a versatile and efficient package for data manipulation in R. Whether you are a beginner or an experienced data analyst, mastering dplyr opens up a world of possibilities for handling and transforming datasets with ease.
Continue your exploration of data analysis with related articles: