O disprósio (Dy) é um elemento químico metálico de símbolo Dy e de número atómico igual a 66, com massa atómica 162,5 u. À temperatura ambiente, o disprósio encontra-se no estado sólido. Faz parte do grupo das terras raras.
Visualizando o mapa:
plot(geosolo,low=T)
## Componente de tendência na coordenada X
plot(geosolo,low=T, trend=~X1)
plot(geosolo,low=T, trend=~Y1)
plot(geosolo,low=T, trend=~X1+Y1)
v1 = variog(geosolo, max.dist=400, uvec=seq(0,400,l=50))
## variog: computing omnidirectional variogram
env.var = variog.mc.env(geosolo, obj.v=v1, nsim=50)
## variog.env: generating 50 simulations by permutating data values
## variog.env: computing the empirical variogram for the 50 simulations
## variog.env: computing the envelops
plot(v1, env=env.var)
v1 = variog(geosolo, max.dist=400)
## variog: computing omnidirectional variogram
plot(v1, xlim=c(0,333))
v1 = variog(geosolo, max.dist=400, trend=~X1)
## variog: computing omnidirectional variogram
plot(v1, xlim=c(0,300))
v1 = variog(geosolo, max.dist=400, trend=~Y1)
## variog: computing omnidirectional variogram
plot(v1, xlim=c(0,400))
v1 = variog(geosolo, max.dist=400, trend=~X1+Y1)
## variog: computing omnidirectional variogram
plot(v1, xlim=c(0,400))
ml1 <- likfit(geosolo, ini=c(48.73,128.2), nug=6.09, cov.model = "matern")
## ---------------------------------------------------------------
## likfit: likelihood maximisation using the function optim.
## likfit: Use control() to pass additional
## arguments for the maximisation function.
## For further details see documentation for optim.
## likfit: It is highly advisable to run this function several
## times with different initial values for the parameters.
## likfit: WARNING: This step can be time demanding!
## ---------------------------------------------------------------
## likfit: end of numerical maximisation.
ml2 <- likfit(geosolo, ini=c(48.73,128.2), nug=6.09, cov.model = "spherical")
## kappa not used for the spherical correlation function
## ---------------------------------------------------------------
## likfit: likelihood maximisation using the function optim.
## likfit: Use control() to pass additional
## arguments for the maximisation function.
## For further details see documentation for optim.
## likfit: It is highly advisable to run this function several
## times with different initial values for the parameters.
## likfit: WARNING: This step can be time demanding!
## ---------------------------------------------------------------
## likfit: end of numerical maximisation.
ml3 <- likfit(geosolo, ini=c(33.85,310.45), nug=4.23, trend=~X1, cov.model = "matern")
## ---------------------------------------------------------------
## likfit: likelihood maximisation using the function optim.
## likfit: Use control() to pass additional
## arguments for the maximisation function.
## For further details see documentation for optim.
## likfit: It is highly advisable to run this function several
## times with different initial values for the parameters.
## likfit: WARNING: This step can be time demanding!
## ---------------------------------------------------------------
## likfit: end of numerical maximisation.
ml4 <- likfit(geosolo, ini=c(33.85,310.45), nug=4.23, trend=~X1, cov.model = "spherical")
## kappa not used for the spherical correlation function
## ---------------------------------------------------------------
## likfit: likelihood maximisation using the function optim.
## likfit: Use control() to pass additional
## arguments for the maximisation function.
## For further details see documentation for optim.
## likfit: It is highly advisable to run this function several
## times with different initial values for the parameters.
## likfit: WARNING: This step can be time demanding!
## ---------------------------------------------------------------
## likfit: end of numerical maximisation.
ml5 <- likfit(geosolo, ini=c(48.73,128.2), nug=6.09, trend=~Y1, cov.model = "matern")
## ---------------------------------------------------------------
## likfit: likelihood maximisation using the function optim.
## likfit: Use control() to pass additional
## arguments for the maximisation function.
## For further details see documentation for optim.
## likfit: It is highly advisable to run this function several
## times with different initial values for the parameters.
## likfit: WARNING: This step can be time demanding!
## ---------------------------------------------------------------
## likfit: end of numerical maximisation.
ml6 <- likfit(geosolo, ini=c(48.73,128.2), nug=6.09, trend=~Y1, cov.model = "spherical")
## kappa not used for the spherical correlation function
## ---------------------------------------------------------------
## likfit: likelihood maximisation using the function optim.
## likfit: Use control() to pass additional
## arguments for the maximisation function.
## For further details see documentation for optim.
## likfit: It is highly advisable to run this function several
## times with different initial values for the parameters.
## likfit: WARNING: This step can be time demanding!
## ---------------------------------------------------------------
## likfit: end of numerical maximisation.
ml7 <- likfit(geosolo, ini=c(32.63,128.2), nug=4.08, trend=~X1+Y1, cov.model="matern")
## ---------------------------------------------------------------
## likfit: likelihood maximisation using the function optim.
## likfit: Use control() to pass additional
## arguments for the maximisation function.
## For further details see documentation for optim.
## likfit: It is highly advisable to run this function several
## times with different initial values for the parameters.
## likfit: WARNING: This step can be time demanding!
## ---------------------------------------------------------------
## likfit: end of numerical maximisation.
ml8 <- likfit(geosolo, ini=c(32.63,128.2), nug=4.08, trend=~X1+Y1, cov.model="spherical")
## kappa not used for the spherical correlation function
## ---------------------------------------------------------------
## likfit: likelihood maximisation using the function optim.
## likfit: Use control() to pass additional
## arguments for the maximisation function.
## For further details see documentation for optim.
## likfit: It is highly advisable to run this function several
## times with different initial values for the parameters.
## likfit: WARNING: This step can be time demanding!
## ---------------------------------------------------------------
## likfit: end of numerical maximisation.
ml1[17]
## $AIC
## [1] 1483.672
ml2[17]
## $AIC
## [1] 1483.124
ml3[17]
## $AIC
## [1] 1482.126
ml4[17]
## $AIC
## [1] 1482.548
ml5[17]
## $AIC
## [1] 1485.558
ml6[17]
## $AIC
## [1] 1485.058
ml7[17]
## $AIC
## [1] 1480.685
ml8[17]
## $AIC
## [1] 1479.097
#Modelo 8 com menor AIC
plot(variog(geosolo, max.dist = 400,nugget.tolerance = 20))
## variog: computing omnidirectional variogram
## variog: co-locatted data found, adding one bin at the origin
lines.variomodel(ml8,col="black")
title("Ajuste do variograma ")
GR <- pred_grid(geosolo$borders, by=6)
points(geosolo)
points(GR, pch=".",cex=1.5)
geosolo.kr <- krige.conv(geosolo, loc=GR, bor=geosolo$bor, krige=krige.control(obj.model=ml8))
## krige.conv: results will be returned only for prediction locations inside the borders
## krige.conv: model with constant mean
## krige.conv: Kriging performed using global neighbourhood
image(main="Mapa dos quantis",geosolo.kr,col=terrain.colors(15),x.leg=c(500, 850), y.leg=c(0,50), xlim=c(-100,950))
GR <- pred_grid(geosolo$borders, by=15)
OC <- output.control(thres=0.9,quantile=c(0.1, 0.9))
geosolo.kc <- krige.conv(geosolo, loc=GR, krige=krige.control(obj.model=ml8), out=OC)
## krige.conv: results will be returned only for prediction locations inside the borders
## krige.conv: model with constant mean
## krige.conv: sampling from the predictive distribution (conditional simulations)
## krige.conv: Kriging performed using global neighbourhood
#names(geosolo.kc)
#dim(geosolo.kc$simula)
image(main="Mapa de Probabilidade para elemento Dy, considerando sua mediana=0.9",geosolo.kc, loc=GR, bor=geosolo$borders, col=terrain.colors(21),
val=1-geosolo.kc$prob,x.leg=c(500, 1000), y.leg=c(0,50))