OPM 2022 Report

Items

Q Item Item name
Q1 I am given a real opportunity to improve my skills in my organization mut_1
Q2 I feel encouraged to come up with new and better ways of doing things cvo_4
Q3 My work gives me a feeling of personal accomplishment.
Q4 I know what is expected of me on the job.
Q5 My workload is reasonable.
Q6 My talents are used well in the workplace. cvo_5
Q7 I know how my work relates to the agency’s goals. proh_2
Q8 I can disclose a suspected violation of any law, rule or regulation without fear of reprisal. proh_3
Q9 I have enough informationXS to do my job well.
Q10 I receive the training I need to do my job well.
Q11 I am held accountable for the quality of work I produce.
Q12 Continually changing work priorities make it hard for me to produce high quality work.
Q13 I have a clear idea of how well I am doing my job.
Q14 The people I work with cooperate to get the job done.
Q16 In my work unit, differences in performance are recognized in a meaningful way.
Q17 Employees in my work unit share job knowledge.
Q18 My work unit has the job-relevant knowledge and skills necessary to accomplish organizational goals.
Q19 Employees in my work unit meet the needs of our customers.
Q20 Employees in my work unit contribute positively to my agency’s performance.
Q21 Employees in my work unit produce high-quality work.
Q22 Employees in my work unit adapt to changing priorities.
Q23 New hires in my work unit (i.e. hired in the past year) have the right skills to do their jobs.
Q24 I can influence decisions in my work unit. cvo_1
Q25 I know what my work unit’s goals are.
Q26 My work unit commits resources to develop new ideas (e.g., budget, staff, time, expert support).
Q27 My work unit successfully manages disruptions to our work.
Q28 Employees in my work unit consistently look for new ways to improve how they do their work.
Q29 Employees in my work unit incorporate new ideas into their work.
Q30 Employees in my work unit approach change as an opportunity.
Q31 Employees in my work unit consider customer needs a top priority.
Q32 Employees in my work unit consistently look for ways to improve customer service.
Q33 Employees in my work unit support my need to balance my work and personal responsibilities.
Q34 Employees in my work unit are typically under too much pressure to meet work goals.
Q35 Employees are recognized for providing high quality products and services. cvo_2
Q36 Employees are protected from health and safety hazards on the job.
Q37 My organization is successful at accomplishing its mission.
Q38 I have a good understanding of my organization’s priorities.
Q39 My organization effectively adapts to changing government priorities.
Q40 My organization has prepared me for potential physical security threats.
Q41 My organization has prepared me for potential cybersecurity threats.
Q42 In my organization, arbitrary action, personal favoritism and/or political coercion are not tolerated. exp_4
Q43 I recommend my organization as a good place to work. exp_1
Q44 I believe the results of this survey will be used to make my agency a better place to work.
Q45 My supervisor is committed to a workforce representative of all segments of society.
Q46 Supervisors in my work unit support employee development. lvo_2
Q47 My supervisor supports my need to balance work and other life issues.
Q48 My supervisor listens to what I have to say.
Q49 My supervisor treats me with respect.
Q50 I have trust and confidence in my supervisor.
Q51 My supervisor holds me accountable for achieving results.
Q52 Overall, how good a job do you feel is being done by your immediate supervisor?
Q53 My supervisor provides me with constructive suggestions to improve my job performance. lvo_1
Q54 My supervisor provides me with performance feedback throughout the year.
Q55 In my organization, senior leaders generate high levels of motivation and commitment in the workforce.
Q56 My organization’s senior leaders maintain high standards of honesty and integrity.
Q57 Managers communicate the goals of the organization.
Q58 Managers promote communication among different work units (for example, about projects, goals, needed resources).
Q59 Overall, how good a job do you feel is being done by the manager directly above your immediate supervisor?
Q60 I have a high level of respect for my organization’s senior leaders. exp_3
Q61 Senior leaders demonstrate support for Work-Life programs.
Q62 Management encourages innovation.
Q63 Management makes effective changes to address challenges facing our organization.
Q64 Management involves employees in decisions that affect their work.
Q65 How satisfied are you with your involvement in decisions that affect your work? cvo_3
Q66 How satisfied are you with the information you receive from management on what’s going on in your organization?
Q67 How satisfied are you with the recognition you receive for doing a good job? cgs_1
Q68 Considering everything, how satisfied are you with your job? exp_2
Q69 Considering everything, how satisfied are you with your pay?
Q70 Considering everything, how satisfied are you with your organization?
Q71 My organization’s management practices promote diversity (e.g., outreach, recruitment, promotion opportunities).
Q72 My supervisor demonstrates a commitment to workforce diversity (e.g., recruitment, promotion opportunities, development).
Q73 I have similar access to advancement opportunities (e.g., promotion, career development, training) as others in my work unit. mut_2
Q74 My supervisor provides opportunities fairly to all employees in my work unit (e.g., promotions, work assignments). mut_3
Q75 In my work unit, excellent work is similarly recognized for all employees (e.g., awards, acknowledgements). mut_4
Q76 Employees in my work unit treat me as a valued member of the team.
Q77 Employees in my work unit make me feel I belong. belong_2
Q78 Employees in my work unit care about me as a person. belong_1
Q79 I am comfortable expressing opinions that are different from other employees in my work unit. proh_1
Q80 In my work unit, people’s differences are respected.
Q81 I can be successful in my organization being myself. cgs_2
Q82 I can easily make a request of my organization to meet my accessibility needs.
Q83 My organization responds to my accessibility needs in a timely manner.
Q84 My organization meets my accessibility needs.
Q85 My job inspires me.
Q86 The work I do gives me a sense of accomplishment.
Q87 I feel a strong personal attachment to my organization.
Q88 I identify with the mission of my organization.
Q89 It is important to me that my work contribute to the common good.
Q90 What percentage of your work time are you currently required to be physically present at your agency worksite (including headquarters, bureau, field offices, etc.)?
Q91 Please select the response that BEST describes your current remote work or teleworking schedule.
Q92 Did you have an approved remote work agreement before the 2020 COVID-19 pandemic?
Q93 Based on your work unit’s current telework or remote work options, are you considering leaving your organization, and if so, why?
Q94 My agency’s re-entry arrangements are fair in accounting for employees’ diverse needs and situations.
Q95 Please select the response that BEST describes how employees in your work unit currently report to work:
Q96 My organization’s senior leaders support policies and procedures to protect employee health and safety.
Q97 My organization’s senior leaders provide effective communications about what to expect with the return to the physical worksite.
Q98 My supervisor supports my efforts to stay healthy and safe while working.
Q99 My supervisor creates an environment where I can voice my concerns about staying healthy and safe.

Demographics Controls

variabe_label Text Renamed
DRNO Race ethnicity
DHISP Hispanic hisp
DDIS. Disability disab
DAGEGRP. Age Group age
DSUPER Supervisory status supervisor
DFEDTEN. Time with federal government tenure
DSEX Sex sex
DMIL Military service military
DLEAVING Considering leaving org? leave

Alphas

Mutability

## 
## Reliability analysis   
## Call: psych::alpha(x = as.data.frame(cbind(mut_1, mut_2, mut_3, mut_4)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N     ase mean sd median_r
##       0.89      0.89    0.86      0.66 7.9 0.00024  3.7  1     0.65
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.89  0.89  0.89
## Duhachek  0.89  0.89  0.89
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## mut_1      0.89      0.89    0.85      0.74 8.3  0.00025 0.0015  0.75
## mut_2      0.85      0.85    0.80      0.65 5.5  0.00036 0.0106  0.59
## mut_3      0.84      0.84    0.78      0.63 5.1  0.00038 0.0031  0.61
## mut_4      0.85      0.85    0.80      0.65 5.5  0.00036 0.0079  0.61
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean  sd
## mut_1 554191  0.81  0.80  0.69   0.65  3.8 1.1
## mut_2 517875  0.88  0.88  0.83   0.78  3.7 1.2
## mut_3 507104  0.90  0.90  0.87   0.81  3.9 1.1
## mut_4 502077  0.88  0.88  0.83   0.78  3.6 1.2
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## mut_1 0.05 0.10 0.15 0.43 0.28 0.01
## mut_2 0.08 0.09 0.15 0.40 0.27 0.07
## mut_3 0.06 0.07 0.15 0.40 0.32 0.09
## mut_4 0.08 0.10 0.17 0.36 0.28 0.10

Latent voice opportunity

## 
##  Pearson's product-moment correlation
## 
## data:  lvo_1 and lvo_2
## t = 690.58, df = 534637, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6852094 0.6880429
## sample estimates:
##       cor 
## 0.6866287

Confidence in voice efficacy

## 
## Reliability analysis   
## Call: psych::alpha(x = as.data.frame(cbind(cvo_1, cvo_2, cvo_3, cvo_4, 
##     cvo_5)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N     ase mean   sd median_r
##       0.88      0.88    0.86       0.6 7.4 0.00025  3.6 0.94      0.6
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.88  0.88  0.88
## Duhachek  0.88  0.88  0.88
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## cvo_1      0.87      0.87    0.84      0.62 6.6  0.00029 0.0028  0.62
## cvo_2      0.87      0.87    0.84      0.62 6.6  0.00029 0.0027  0.62
## cvo_3      0.85      0.85    0.82      0.59 5.7  0.00033 0.0049  0.57
## cvo_4      0.84      0.84    0.80      0.57 5.3  0.00035 0.0021  0.57
## cvo_5      0.85      0.85    0.81      0.59 5.7  0.00032 0.0025  0.60
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean  sd
## cvo_1 556440  0.78  0.79  0.71   0.66  3.7 1.1
## cvo_2 533114  0.79  0.79  0.71   0.66  3.5 1.2
## cvo_3 534329  0.84  0.84  0.79   0.74  3.4 1.1
## cvo_4 548783  0.87  0.86  0.83   0.78  3.7 1.2
## cvo_5 546839  0.84  0.84  0.79   0.74  3.6 1.2
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## cvo_1 0.05 0.10 0.20 0.43 0.21 0.00
## cvo_2 0.08 0.13 0.18 0.43 0.18 0.04
## cvo_3 0.07 0.17 0.25 0.35 0.17 0.04
## cvo_4 0.06 0.12 0.16 0.38 0.28 0.02
## cvo_5 0.07 0.12 0.16 0.41 0.23 0.02

Prohibitive voice

## 
## Reliability analysis   
## Call: psych::alpha(x = as.data.frame(cbind(proh_1, proh_2, proh_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N     ase mean   sd median_r
##       0.69      0.69    0.61      0.43 2.3 0.00069    4 0.83     0.42
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.69  0.69  0.69
## Duhachek  0.69  0.69  0.69
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## proh_1      0.58      0.59    0.42      0.42 1.5  0.00108    NA  0.42
## proh_2      0.66      0.66    0.49      0.49 1.9  0.00092    NA  0.49
## proh_3      0.55      0.55    0.38      0.38 1.2  0.00119    NA  0.38
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean   sd
## proh_1 523674  0.81  0.79  0.62   0.52  3.9 1.08
## proh_2 552613  0.73  0.76  0.56   0.47  4.2 0.89
## proh_3 533120  0.84  0.81  0.66   0.55  3.9 1.17
## 
## Non missing response frequency for each item
##           1    2    3    4    5 miss
## proh_1 0.05 0.08 0.12 0.45 0.31 0.06
## proh_2 0.02 0.03 0.09 0.47 0.38 0.01
## proh_3 0.07 0.08 0.14 0.36 0.35 0.04

Belonging

## 
##  Pearson's product-moment correlation
## 
## data:  belong_1 and belong_2
## t = 1365.6, df = 517560, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8841496 0.8853332
## sample estimates:
##       cor 
## 0.8847428

Factor Analysis

Note: Latent Voice Opportunity and Belongingness load onto their own factors, so I removed them from this analysis

opm22_clean_fa <- opm22_clean %>%
  select(
    mut_1, mut_2, mut_3, mut_4,
    cvo_1, cvo_2, cvo_3, cvo_4, cvo_5,
    proh_1, proh_2, proh_3,
    cgs_1, cgs_2
  )%>%
    drop_na()

psych::fa.parallel(opm22_clean_fa, fa = "fa")

## Parallel analysis suggests that the number of factors =  5  and the number of components =  NA

With 5 factors

(fit <- stats::factanal(opm22_clean_fa, factors = 5, rotation = "promax"))
## 
## Call:
## stats::factanal(x = opm22_clean_fa, factors = 5, rotation = "promax")
## 
## Uniquenesses:
##  mut_1  mut_2  mut_3  mut_4  cvo_1  cvo_2  cvo_3  cvo_4  cvo_5 proh_1 proh_2 proh_3  cgs_1  cgs_2 
##  0.230  0.306  0.138  0.210  0.365  0.323  0.360  0.232  0.301  0.374  0.566  0.532  0.188  0.147 
## 
## Loadings:
##        Factor1 Factor2 Factor3 Factor4 Factor5
## mut_1   0.933                          -0.109 
## mut_2   0.193           0.115   0.615  -0.107 
## mut_3                           0.910         
## mut_4           0.525           0.480         
## cvo_1   0.148                           0.658 
## cvo_2   0.114   0.777                         
## cvo_3   0.286   0.408                   0.172 
## cvo_4   0.801                           0.189 
## cvo_5   0.767                                 
## proh_1 -0.104           0.752           0.164 
## proh_2  0.620           0.106                 
## proh_3  0.241           0.238   0.114         
## cgs_1           0.933                         
## cgs_2                   0.981          -0.117 
## 
##                Factor1 Factor2 Factor3 Factor4 Factor5
## SS loadings      2.718   1.937   1.626   1.477   0.587
## Proportion Var   0.194   0.138   0.116   0.105   0.042
## Cumulative Var   0.194   0.332   0.449   0.554   0.596
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4 Factor5
## Factor1   1.000  -0.698  -0.728   0.754   0.648
## Factor2  -0.698   1.000   0.748  -0.783  -0.764
## Factor3  -0.728   0.748   1.000  -0.709  -0.771
## Factor4   0.754  -0.783  -0.709   1.000   0.731
## Factor5   0.648  -0.764  -0.771   0.731   1.000
## 
## Test of the hypothesis that 5 factors are sufficient.
## The chi square statistic is 27053.18 on 31 degrees of freedom.
## The p-value is 0

Loadings (with 6 as a cutoff)

print(fit$loadings, cutoff = .6)
## 
## Loadings:
##        Factor1 Factor2 Factor3 Factor4 Factor5
## mut_1   0.933                                 
## mut_2                           0.615         
## mut_3                           0.910         
## mut_4                                         
## cvo_1                                   0.658 
## cvo_2           0.777                         
## cvo_3                                         
## cvo_4   0.801                                 
## cvo_5   0.767                                 
## proh_1                  0.752                 
## proh_2  0.620                                 
## proh_3                                        
## cgs_1           0.933                         
## cgs_2                   0.981                 
## 
##                Factor1 Factor2 Factor3 Factor4 Factor5
## SS loadings      2.718   1.937   1.626   1.477   0.587
## Proportion Var   0.194   0.138   0.116   0.105   0.042
## Cumulative Var   0.194   0.332   0.449   0.554   0.596
psych::fa.diagram(fit$loadings)

Correlations

Linear Regressions

## 
## Call:
## lm(formula = lvo ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9570 -0.2898  0.0430  0.3397  3.0069 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.2521050  0.0036002   347.8   <2e-16 ***
## mut         0.7409827  0.0009221   803.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6383 on 474974 degrees of freedom
##   (82802 observations deleted due to missingness)
## Multiple R-squared:  0.5762, Adjusted R-squared:  0.5762 
## F-statistic: 6.458e+05 on 1 and 474974 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = cvo ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5737 -0.2680  0.0204  0.3909  3.5320 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.6916243  0.0030807   224.5   <2e-16 ***
## mut         0.7764109  0.0007874   986.1   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5322 on 453318 degrees of freedom
##   (104458 observations deleted due to missingness)
## Multiple R-squared:  0.682,  Adjusted R-squared:  0.682 
## F-statistic: 9.724e+05 on 1 and 453318 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = proh ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7358 -0.2851  0.0482  0.3159  2.6681 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.7309233  0.0032589   531.1   <2e-16 ***
## mut         0.6009827  0.0008342   720.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5653 on 452404 degrees of freedom
##   (105372 observations deleted due to missingness)
## Multiple R-squared:  0.5343, Adjusted R-squared:  0.5343 
## F-statistic: 5.19e+05 on 1 and 452404 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = cgs ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7188 -0.3160  0.0868  0.2882  3.5036 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.6908120  0.0033140   208.5   <2e-16 ***
## mut         0.8055989  0.0008491   948.8   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5842 on 467664 degrees of freedom
##   (90112 observations deleted due to missingness)
## Multiple R-squared:  0.6581, Adjusted R-squared:  0.6581 
## F-statistic: 9.001e+05 on 1 and 467664 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = belong ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8752 -0.2634  0.1248  0.4143  2.7038 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.651497   0.004006   412.2   <2e-16 ***
## mut         0.644744   0.001026   628.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7066 on 469584 degrees of freedom
##   (88192 observations deleted due to missingness)
## Multiple R-squared:  0.4568, Adjusted R-squared:  0.4568 
## F-statistic: 3.949e+05 on 1 and 469584 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = exp_1 ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7315 -0.4047  0.1117  0.4580  3.3012 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.940594   0.004483   209.8   <2e-16 ***
## mut         0.758186   0.001150   659.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8006 on 478548 degrees of freedom
##   (79228 observations deleted due to missingness)
## Multiple R-squared:  0.4761, Adjusted R-squared:  0.4761 
## F-statistic: 4.349e+05 on 1 and 478548 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = exp_2 ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7006 -0.5122  0.0530  0.4298  3.3139 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.932487   0.004545   205.2   <2e-16 ***
## mut         0.753621   0.001165   646.8   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8069 on 473580 degrees of freedom
##   (84196 observations deleted due to missingness)
## Multiple R-squared:  0.469,  Adjusted R-squared:  0.469 
## F-statistic: 4.184e+05 on 1 and 473580 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = exp_3 ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5139 -0.5139  0.1764  0.5215  3.2473 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.062467   0.005455   194.8   <2e-16 ***
## mut         0.690281   0.001398   493.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9689 on 474424 degrees of freedom
##   (83352 observations deleted due to missingness)
## Multiple R-squared:  0.3393, Adjusted R-squared:  0.3393 
## F-statistic: 2.437e+05 on 1 and 474424 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = exp_4 ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4511 -0.5364  0.1735  0.5489  3.8800 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.287196   0.005307   54.12   <2e-16 ***
## mut         0.832771   0.001363  611.21   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9339 on 456123 degrees of freedom
##   (101653 observations deleted due to missingness)
## Multiple R-squared:  0.4503, Adjusted R-squared:  0.4503 
## F-statistic: 3.736e+05 on 1 and 456123 DF,  p-value: < 2.2e-16

Latent voice opportunity

## 
## Call:
## lm(formula = lvo ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9570 -0.2898  0.0430  0.3397  3.0069 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.2521050  0.0036002   347.8   <2e-16 ***
## mut         0.7409827  0.0009221   803.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6383 on 474974 degrees of freedom
##   (82802 observations deleted due to missingness)
## Multiple R-squared:  0.5762, Adjusted R-squared:  0.5762 
## F-statistic: 6.458e+05 on 1 and 474974 DF,  p-value: < 2.2e-16

Confidence in gaining status

summary(lm(lvo~cgs, opm22_clean))
## 
## Call:
## lm(formula = lvo ~ cgs, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8790 -0.3790  0.1064  0.4495  2.7487 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.594419   0.003938   404.9   <2e-16 ***
## cgs         0.656911   0.001026   640.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7279 on 511166 degrees of freedom
##   (46610 observations deleted due to missingness)
## Multiple R-squared:  0.4452, Adjusted R-squared:  0.4452 
## F-statistic: 4.103e+05 on 1 and 511166 DF,  p-value: < 2.2e-16

Confidence in voice efficacy

## 
## Call:
## lm(formula = cvo ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5737 -0.2680  0.0204  0.3909  3.5320 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.6916243  0.0030807   224.5   <2e-16 ***
## mut         0.7764109  0.0007874   986.1   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5322 on 453318 degrees of freedom
##   (104458 observations deleted due to missingness)
## Multiple R-squared:  0.682,  Adjusted R-squared:  0.682 
## F-statistic: 9.724e+05 on 1 and 453318 DF,  p-value: < 2.2e-16

Prohibitive voioce

## 
## Call:
## lm(formula = proh ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7358 -0.2851  0.0482  0.3159  2.6681 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.7309233  0.0032589   531.1   <2e-16 ***
## mut         0.6009827  0.0008342   720.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5653 on 452404 degrees of freedom
##   (105372 observations deleted due to missingness)
## Multiple R-squared:  0.5343, Adjusted R-squared:  0.5343 
## F-statistic: 5.19e+05 on 1 and 452404 DF,  p-value: < 2.2e-16

Belonging

## 
## Call:
## lm(formula = belong ~ mut, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8752 -0.2634  0.1248  0.4143  2.7038 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.651497   0.004006   412.2   <2e-16 ***
## mut         0.644744   0.001026   628.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7066 on 469584 degrees of freedom
##   (88192 observations deleted due to missingness)
## Multiple R-squared:  0.4568, Adjusted R-squared:  0.4568 
## F-statistic: 3.949e+05 on 1 and 469584 DF,  p-value: < 2.2e-16

Controls

## $`as dv: mut`
## 
## Call:
## lm(formula = y ~ mut + sex + leave + age + super + agency, data = opm22_clean)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -4.000e-12 -1.000e-14  0.000e+00  1.000e-14  2.405e-09 
## 
## Coefficients:
##                      Estimate Std. Error    t value Pr(>|t|)    
## (Intercept)         1.377e-11  3.501e-14  3.934e+02  < 2e-16 ***
## mut                 1.000e+00  6.038e-15  1.656e+14  < 2e-16 ***
## sexMale             1.260e-14  1.134e-14  1.111e+00    0.267    
## leaveYes, - Fed    -9.162e-15  1.593e-14 -5.750e-01    0.565    
## leaveYes, - NotFed -1.022e-14  2.799e-14 -3.650e-01    0.715    
## leaveYes, Other    -1.009e-14  1.756e-14 -5.750e-01    0.566    
## ageUnder 40        -8.456e-15  1.325e-14 -6.380e-01    0.523    
## superSupervisor    -1.054e-14  1.325e-14 -7.960e-01    0.426    
## agencyAG            2.335e-15  3.059e-14  7.600e-02    0.939    
## agencyAM            4.919e-15  1.004e-13  4.900e-02    0.961    
## agencyAR            3.237e-16  2.852e-14  1.100e-02    0.991    
## agencyCM            9.960e-16  3.695e-14  2.700e-02    0.978    
## agencyCU           -4.238e-16  1.456e-13 -3.000e-03    0.998    
## agencyDD            8.187e-16  3.280e-14  2.500e-02    0.980    
## agencyDJ            1.889e-15  3.504e-14  5.400e-02    0.957    
## agencyDL            1.976e-15  5.412e-14  3.700e-02    0.971    
## agencyDN            1.329e-16  4.984e-14  3.000e-03    0.998    
## agencyDR            1.841e-15  1.313e-13  1.400e-02    0.989    
## agencyED            2.591e-15  8.381e-14  3.100e-02    0.975    
## agencyEE            3.634e-15  1.369e-13  2.700e-02    0.979    
## agencyEP            1.462e-15  5.285e-14  2.800e-02    0.978    
## agencyFT            2.479e-15  1.576e-13  1.600e-02    0.987    
## agencyGS            1.362e-15  5.222e-14  2.600e-02    0.979    
## agencyHE            2.954e-15  2.983e-14  9.900e-02    0.921    
## agencyHS            8.560e-16  2.776e-14  3.100e-02    0.975    
## agencyHU            2.835e-15  6.539e-14  4.300e-02    0.965    
## agencyIN            1.927e-15  3.420e-14  5.600e-02    0.955    
## agencyNF            2.284e-15  1.344e-13  1.700e-02    0.986    
## agencyNQ            1.314e-15  1.156e-13  1.100e-02    0.991    
## agencyNU            5.171e-16  9.880e-14  5.000e-03    0.996    
## agencyNV            6.901e-17  3.096e-14  2.000e-03    0.998    
## agencyOM            2.518e-15  1.125e-13  2.200e-02    0.982    
## agencySB            1.109e-15  7.538e-14  1.500e-02    0.988    
## agencyST            3.038e-15  5.163e-14  5.900e-02    0.953    
## agencySZ            2.362e-15  3.488e-14  6.800e-02    0.946    
## agencyTD           -1.220e-15  3.744e-14 -3.300e-02    0.974    
## agencyTR            1.932e-15  3.243e-14  6.000e-02    0.952    
## agencyXX            3.563e-13  4.998e-14  7.129e+00 1.01e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.638e-12 on 436961 degrees of freedom
##   (120779 observations deleted due to missingness)
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 8.935e+26 on 37 and 436961 DF,  p-value: < 2.2e-16
## 
## 
## $`as dv: lvo`
## 
## Call:
## lm(formula = y ~ mut + sex + leave + age + super + agency, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0703 -0.3129  0.0325  0.3427  3.1234 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.287731   0.006134 209.923  < 2e-16 ***
## mut                 0.730906   0.001058 690.781  < 2e-16 ***
## sexMale            -0.006010   0.001984  -3.030 0.002446 ** 
## leaveYes, - Fed    -0.058248   0.002788 -20.891  < 2e-16 ***
## leaveYes, - NotFed -0.071020   0.004902 -14.487  < 2e-16 ***
## leaveYes, Other    -0.051161   0.003076 -16.630  < 2e-16 ***
## ageUnder 40        -0.010139   0.002317  -4.376 1.21e-05 ***
## superSupervisor    -0.074735   0.002315 -32.285  < 2e-16 ***
## agencyAG            0.054639   0.005351  10.211  < 2e-16 ***
## agencyAM            0.038908   0.017563   2.215 0.026735 *  
## agencyAR            0.009747   0.004989   1.954 0.050736 .  
## agencyCM            0.057609   0.006462   8.915  < 2e-16 ***
## agencyCU            0.188273   0.025398   7.413 1.24e-13 ***
## agencyDD            0.046402   0.005736   8.089 6.01e-16 ***
## agencyDJ            0.024205   0.006134   3.946 7.94e-05 ***
## agencyDL            0.091215   0.009471   9.631  < 2e-16 ***
## agencyDN            0.077916   0.008708   8.948  < 2e-16 ***
## agencyDR            0.114417   0.022902   4.996 5.86e-07 ***
## agencyED            0.138753   0.014650   9.471  < 2e-16 ***
## agencyEE            0.079095   0.023969   3.300 0.000967 ***
## agencyEP            0.041112   0.009244   4.448 8.69e-06 ***
## agencyFT            0.120294   0.027680   4.346 1.39e-05 ***
## agencyGS            0.126296   0.009120  13.848  < 2e-16 ***
## agencyHE            0.073393   0.005216  14.070  < 2e-16 ***
## agencyHS            0.060058   0.004858  12.363  < 2e-16 ***
## agencyHU            0.116285   0.011438  10.167  < 2e-16 ***
## agencyIN            0.005861   0.005982   0.980 0.327195    
## agencyNF            0.021402   0.023412   0.914 0.360651    
## agencyNQ            0.082430   0.020182   4.084 4.42e-05 ***
## agencyNU            0.158004   0.017301   9.133  < 2e-16 ***
## agencyNV           -0.003326   0.005414  -0.614 0.538981    
## agencyOM            0.117857   0.019682   5.988 2.12e-09 ***
## agencySB            0.134090   0.013212  10.149  < 2e-16 ***
## agencyST           -0.009757   0.009036  -1.080 0.280241    
## agencySZ            0.043479   0.006109   7.118 1.10e-12 ***
## agencyTD            0.067440   0.006550  10.296  < 2e-16 ***
## agencyTR            0.077833   0.005678  13.708  < 2e-16 ***
## agencyXX            0.067863   0.008748   7.758 8.67e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6336 on 433109 degrees of freedom
##   (124631 observations deleted due to missingness)
## Multiple R-squared:  0.5776, Adjusted R-squared:  0.5775 
## F-statistic: 1.6e+04 on 37 and 433109 DF,  p-value: < 2.2e-16
## 
## 
## $`as dv: cvo`
## 
## Call:
## lm(formula = y ~ mut + sex + leave + age + super + agency, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5181 -0.2925  0.0524  0.3304  3.4803 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.0032571  0.0050916 197.040  < 2e-16 ***
## mut                 0.7327509  0.0008790 833.638  < 2e-16 ***
## sexMale            -0.0231220  0.0016454 -14.053  < 2e-16 ***
## leaveYes, - Fed    -0.1931372  0.0023171 -83.354  < 2e-16 ***
## leaveYes, - NotFed -0.3099966  0.0040630 -76.297  < 2e-16 ***
## leaveYes, Other    -0.1473387  0.0025647 -57.448  < 2e-16 ***
## ageUnder 40        -0.0914952  0.0019158 -47.759  < 2e-16 ***
## superSupervisor     0.1160180  0.0019164  60.541  < 2e-16 ***
## agencyAG           -0.1389001  0.0044350 -31.319  < 2e-16 ***
## agencyAM           -0.0714487  0.0144903  -4.931 8.19e-07 ***
## agencyAR           -0.0047918  0.0041292  -1.160 0.245854    
## agencyCM           -0.1902763  0.0053575 -35.516  < 2e-16 ***
## agencyCU           -0.1067713  0.0210235  -5.079 3.80e-07 ***
## agencyDD           -0.0415402  0.0047523  -8.741  < 2e-16 ***
## agencyDJ           -0.1001390  0.0050779 -19.721  < 2e-16 ***
## agencyDL           -0.0666034  0.0078479  -8.487  < 2e-16 ***
## agencyDN           -0.0045539  0.0071876  -0.634 0.526356    
## agencyDR           -0.0124038  0.0188950  -0.656 0.511531    
## agencyED           -0.0459088  0.0122105  -3.760 0.000170 ***
## agencyEE           -0.1006407  0.0200779  -5.012 5.37e-07 ***
## agencyEP            0.0105665  0.0076299   1.385 0.166091    
## agencyFT           -0.1286485  0.0227440  -5.656 1.55e-08 ***
## agencyGS            0.0104654  0.0075456   1.387 0.165453    
## agencyHE            0.0006267  0.0043156   0.145 0.884536    
## agencyHS           -0.1343345  0.0040230 -33.392  < 2e-16 ***
## agencyHU           -0.0331013  0.0094817  -3.491 0.000481 ***
## agencyIN           -0.0417876  0.0049504  -8.441  < 2e-16 ***
## agencyNF            0.0121304  0.0193443   0.627 0.530608    
## agencyNQ           -0.0597959  0.0168140  -3.556 0.000376 ***
## agencyNU           -0.0120407  0.0142284  -0.846 0.397415    
## agencyNV           -0.0242466  0.0044795  -5.413 6.21e-08 ***
## agencyOM           -0.0002396  0.0163358  -0.015 0.988298    
## agencySB           -0.0174225  0.0110226  -1.581 0.113968    
## agencyST           -0.0520484  0.0074750  -6.963 3.34e-12 ***
## agencySZ           -0.2036626  0.0050830 -40.067  < 2e-16 ***
## agencyTD           -0.0586075  0.0054207 -10.812  < 2e-16 ***
## agencyTR           -0.1467289  0.0047079 -31.166  < 2e-16 ***
## agencyXX           -0.0489306  0.0072334  -6.765 1.34e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5137 on 413787 degrees of freedom
##   (143953 observations deleted due to missingness)
## Multiple R-squared:  0.7007, Adjusted R-squared:  0.7006 
## F-statistic: 2.618e+04 on 37 and 413787 DF,  p-value: < 2.2e-16
## 
## 
## $`as dv: proh`
## 
## Call:
## lm(formula = y ~ mut + sex + leave + age + super + agency, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3315 -0.2855  0.0508  0.3177  2.7167 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.8825322  0.0054903 342.884  < 2e-16 ***
## mut                 0.5750798  0.0009494 605.703  < 2e-16 ***
## sexMale            -0.0070809  0.0017829  -3.972 7.14e-05 ***
## leaveYes, - Fed    -0.0823481  0.0025033 -32.896  < 2e-16 ***
## leaveYes, - NotFed -0.1564929  0.0043935 -35.619  < 2e-16 ***
## leaveYes, Other    -0.1061840  0.0027674 -38.370  < 2e-16 ***
## ageUnder 40         0.0064570  0.0020834   3.099 0.001940 ** 
## superSupervisor     0.0629091  0.0020690  30.406  < 2e-16 ***
## agencyAG           -0.0934087  0.0047856 -19.519  < 2e-16 ***
## agencyAM           -0.0173387  0.0157026  -1.104 0.269511    
## agencyAR            0.0111623  0.0044507   2.508 0.012143 *  
## agencyCM           -0.0617781  0.0058342 -10.589  < 2e-16 ***
## agencyCU            0.0399990  0.0228411   1.751 0.079915 .  
## agencyDD           -0.0037034  0.0051332  -0.721 0.470628    
## agencyDJ           -0.0473836  0.0054912  -8.629  < 2e-16 ***
## agencyDL            0.0097610  0.0085191   1.146 0.251883    
## agencyDN            0.0291655  0.0077926   3.743 0.000182 ***
## agencyDR            0.0925272  0.0207818   4.452 8.50e-06 ***
## agencyED            0.0119252  0.0133075   0.896 0.370185    
## agencyEE           -0.0495948  0.0218068  -2.274 0.022949 *  
## agencyEP            0.0097149  0.0083277   1.167 0.243383    
## agencyFT           -0.0378540  0.0249376  -1.518 0.129027    
## agencyGS           -0.0038205  0.0082174  -0.465 0.641980    
## agencyHE           -0.0085161  0.0046741  -1.822 0.068462 .  
## agencyHS           -0.0610933  0.0043400 -14.077  < 2e-16 ***
## agencyHU           -0.0269148  0.0103490  -2.601 0.009303 ** 
## agencyIN           -0.0756720  0.0053457 -14.156  < 2e-16 ***
## agencyNF            0.0452335  0.0212486   2.129 0.033273 *  
## agencyNQ           -0.0082672  0.0182620  -0.453 0.650766    
## agencyNU            0.0720805  0.0154655   4.661 3.15e-06 ***
## agencyNV            0.0036130  0.0048319   0.748 0.454616    
## agencyOM            0.0311128  0.0178986   1.738 0.082162 .  
## agencySB            0.0896386  0.0118841   7.543 4.61e-14 ***
## agencyST           -0.0392458  0.0081167  -4.835 1.33e-06 ***
## agencySZ            0.0006967  0.0054766   0.127 0.898776    
## agencyTD           -0.0073951  0.0058696  -1.260 0.207710    
## agencyTR           -0.0162027  0.0050949  -3.180 0.001472 ** 
## agencyXX            0.0034985  0.0079006   0.443 0.657897    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5564 on 413669 degrees of freedom
##   (144071 observations deleted due to missingness)
## Multiple R-squared:  0.5385, Adjusted R-squared:  0.5385 
## F-statistic: 1.305e+04 on 37 and 413669 DF,  p-value: < 2.2e-16
## 
## 
## $`as dv: cgs`
## 
## Call:
## lm(formula = y ~ mut + sex + leave + age + super + agency, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7586 -0.3100  0.0511  0.3258  3.5604 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.9225188  0.0055920 164.970  < 2e-16 ***
## mut                 0.7750519  0.0009647 803.403  < 2e-16 ***
## sexMale            -0.0252849  0.0018103 -13.967  < 2e-16 ***
## leaveYes, - Fed    -0.1673907  0.0025425 -65.837  < 2e-16 ***
## leaveYes, - NotFed -0.2600088  0.0044685 -58.187  < 2e-16 ***
## leaveYes, Other    -0.1249155  0.0028096 -44.460  < 2e-16 ***
## ageUnder 40        -0.0551910  0.0021123 -26.129  < 2e-16 ***
## superSupervisor    -0.0201924  0.0021143  -9.550  < 2e-16 ***
## agencyAG           -0.0917815  0.0048817 -18.801  < 2e-16 ***
## agencyAM           -0.1308357  0.0159810  -8.187 2.69e-16 ***
## agencyAR            0.0063491  0.0045504   1.395 0.162934    
## agencyCM           -0.0652572  0.0059029 -11.055  < 2e-16 ***
## agencyCU           -0.0761084  0.0231689  -3.285 0.001020 ** 
## agencyDD           -0.0062027  0.0052333  -1.185 0.235917    
## agencyDJ           -0.0178775  0.0055963  -3.195 0.001401 ** 
## agencyDL            0.0040406  0.0086233   0.469 0.639377    
## agencyDN            0.0011589  0.0079408   0.146 0.883970    
## agencyDR            0.0782399  0.0208674   3.749 0.000177 ***
## agencyED            0.0145000  0.0133868   1.083 0.278739    
## agencyEE            0.0212794  0.0217321   0.979 0.327497    
## agencyEP            0.0160665  0.0084139   1.910 0.056198 .  
## agencyFT            0.0036740  0.0250494   0.147 0.883392    
## agencyGS            0.0161116  0.0083315   1.934 0.053135 .  
## agencyHE            0.0126849  0.0047586   2.666 0.007684 ** 
## agencyHS           -0.0544070  0.0044304 -12.280  < 2e-16 ***
## agencyHU            0.0342810  0.0104432   3.283 0.001029 ** 
## agencyIN           -0.0377177  0.0054520  -6.918 4.58e-12 ***
## agencyNF            0.0495648  0.0214065   2.315 0.020591 *  
## agencyNQ           -0.0082552  0.0185526  -0.445 0.656349    
## agencyNU           -0.0142936  0.0157568  -0.907 0.364336    
## agencyNV           -0.0203672  0.0049383  -4.124 3.72e-05 ***
## agencyOM            0.0355539  0.0179492   1.981 0.047614 *  
## agencySB            0.1265520  0.0120823  10.474  < 2e-16 ***
## agencyST           -0.1011422  0.0082440 -12.269  < 2e-16 ***
## agencySZ           -0.0512133  0.0055785  -9.180  < 2e-16 ***
## agencyTD           -0.0130470  0.0059743  -2.184 0.028974 *  
## agencyTR           -0.0353936  0.0051781  -6.835 8.20e-12 ***
## agencyXX           -0.0001958  0.0079796  -0.025 0.980427    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5743 on 427222 degrees of freedom
##   (130518 observations deleted due to missingness)
## Multiple R-squared:  0.6661, Adjusted R-squared:  0.6661 
## F-statistic: 2.304e+04 on 37 and 427222 DF,  p-value: < 2.2e-16
## 
## 
## $`as dv: belong`
## 
## Call:
## lm(formula = y ~ mut + sex + leave + age + super + agency, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9175 -0.3056  0.0871  0.3704  2.7618 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.704575   0.006805 250.500  < 2e-16 ***
## mut                 0.629962   0.001175 536.053  < 2e-16 ***
## sexMale             0.005179   0.002203   2.351 0.018725 *  
## leaveYes, - Fed    -0.064483   0.003098 -20.817  < 2e-16 ***
## leaveYes, - NotFed -0.087672   0.005447 -16.096  < 2e-16 ***
## leaveYes, Other    -0.077167   0.003417 -22.581  < 2e-16 ***
## ageUnder 40         0.011027   0.002574   4.283 1.84e-05 ***
## superSupervisor    -0.017785   0.002569  -6.922 4.46e-12 ***
## agencyAG            0.030518   0.005935   5.142 2.72e-07 ***
## agencyAM            0.122976   0.019406   6.337 2.35e-10 ***
## agencyAR            0.018979   0.005530   3.432 0.000600 ***
## agencyCM           -0.017709   0.007216  -2.454 0.014124 *  
## agencyCU            0.097477   0.028309   3.443 0.000575 ***
## agencyDD            0.028412   0.006367   4.462 8.11e-06 ***
## agencyDJ            0.022026   0.006797   3.241 0.001193 ** 
## agencyDL            0.072769   0.010533   6.908 4.91e-12 ***
## agencyDN            0.061688   0.009673   6.377 1.80e-10 ***
## agencyDR            0.120075   0.025454   4.717 2.39e-06 ***
## agencyED            0.151209   0.016291   9.282  < 2e-16 ***
## agencyEE            0.053699   0.026618   2.017 0.043655 *  
## agencyEP            0.085839   0.010246   8.377  < 2e-16 ***
## agencyFT            0.194322   0.030649   6.340 2.30e-10 ***
## agencyGS            0.078871   0.010135   7.782 7.17e-15 ***
## agencyHE            0.058546   0.005787  10.117  < 2e-16 ***
## agencyHS            0.022821   0.005387   4.237 2.27e-05 ***
## agencyHU            0.067155   0.012702   5.287 1.24e-07 ***
## agencyIN            0.015585   0.006636   2.349 0.018841 *  
## agencyNF            0.060239   0.026078   2.310 0.020892 *  
## agencyNQ            0.050052   0.022519   2.223 0.026238 *  
## agencyNU            0.096883   0.019168   5.054 4.32e-07 ***
## agencyNV            0.013948   0.006007   2.322 0.020226 *  
## agencyOM            0.081893   0.021860   3.746 0.000180 ***
## agencySB            0.134484   0.014639   9.186  < 2e-16 ***
## agencyST            0.105842   0.010010  10.574  < 2e-16 ***
## agencySZ            0.021422   0.006787   3.156 0.001599 ** 
## agencyTD            0.052107   0.007270   7.167 7.67e-13 ***
## agencyTR            0.003972   0.006308   0.630 0.528908    
## agencyXX            0.111004   0.009709  11.433  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7002 on 428646 degrees of freedom
##   (129094 observations deleted due to missingness)
## Multiple R-squared:  0.4584, Adjusted R-squared:  0.4584 
## F-statistic:  9807 on 37 and 428646 DF,  p-value: < 2.2e-16
## 
## 
## $`as dv: exp_1`
## 
## Call:
## lm(formula = y ~ mut + sex + leave + age + super + agency, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9131 -0.4098  0.1034  0.4523  3.5712 
## 
## Coefficients:
##                     Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)         1.468209   0.007373  199.123  < 2e-16 ***
## mut                 0.671074   0.001272  527.644  < 2e-16 ***
## sexMale            -0.019954   0.002388   -8.355  < 2e-16 ***
## leaveYes, - Fed    -0.453524   0.003355 -135.160  < 2e-16 ***
## leaveYes, - NotFed -0.631978   0.005894 -107.231  < 2e-16 ***
## leaveYes, Other    -0.333356   0.003699  -90.124  < 2e-16 ***
## ageUnder 40        -0.049925   0.002791  -17.890  < 2e-16 ***
## superSupervisor    -0.008591   0.002791   -3.079 0.002080 ** 
## agencyAG           -0.074776   0.006444  -11.604  < 2e-16 ***
## agencyAM           -0.034824   0.021152   -1.646 0.099686 .  
## agencyAR            0.036581   0.006007    6.090 1.13e-09 ***
## agencyCM            0.011885   0.007783    1.527 0.126772    
## agencyCU            0.105479   0.030662    3.440 0.000582 ***
## agencyDD           -0.003126   0.006909   -0.452 0.650940    
## agencyDJ           -0.038210   0.007380   -5.177 2.25e-07 ***
## agencyDL            0.031284   0.011402    2.744 0.006076 ** 
## agencyDN            0.045466   0.010500    4.330 1.49e-05 ***
## agencyDR            0.269780   0.027653    9.756  < 2e-16 ***
## agencyED           -0.105766   0.017660   -5.989 2.11e-09 ***
## agencyEE           -0.014346   0.028843   -0.497 0.618907    
## agencyEP            0.112037   0.011131   10.065  < 2e-16 ***
## agencyFT           -0.159442   0.033172   -4.807 1.54e-06 ***
## agencyGS            0.165818   0.011004   15.068  < 2e-16 ***
## agencyHE            0.089480   0.006283   14.241  < 2e-16 ***
## agencyHS           -0.123112   0.005848  -21.054  < 2e-16 ***
## agencyHU           -0.090164   0.013781   -6.543 6.06e-11 ***
## agencyIN           -0.022293   0.007201   -3.096 0.001964 ** 
## agencyNF            0.212900   0.028304    7.522 5.41e-14 ***
## agencyNQ           -0.184372   0.024360   -7.569 3.78e-14 ***
## agencyNU           -0.078218   0.020797   -3.761 0.000169 ***
## agencyNV           -0.013598   0.006521   -2.085 0.037043 *  
## agencyOM            0.063921   0.023736    2.693 0.007081 ** 
## agencySB            0.163496   0.015880   10.296  < 2e-16 ***
## agencyST           -0.029926   0.010878   -2.751 0.005939 ** 
## agencySZ           -0.183899   0.007347  -25.032  < 2e-16 ***
## agencyTD            0.069733   0.007888    8.841  < 2e-16 ***
## agencyTR           -0.032266   0.006831   -4.723 2.32e-06 ***
## agencyXX           -0.021842   0.010533   -2.074 0.038109 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7656 on 436091 degrees of freedom
##   (121649 observations deleted due to missingness)
## Multiple R-squared:  0.5148, Adjusted R-squared:  0.5147 
## F-statistic: 1.25e+04 on 37 and 436091 DF,  p-value: < 2.2e-16
## 
## 
## $`as dv: exp_2`
## 
## Call:
## lm(formula = y ~ mut + sex + leave + age + super + agency, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8783 -0.4017  0.1014  0.4403  3.8540 
## 
## Coefficients:
##                     Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)         1.587685   0.007324  216.781  < 2e-16 ***
## mut                 0.657706   0.001263  520.607  < 2e-16 ***
## sexMale            -0.031139   0.002371  -13.133  < 2e-16 ***
## leaveYes, - Fed    -0.565849   0.003332 -169.836  < 2e-16 ***
## leaveYes, - NotFed -0.816224   0.005853 -139.463  < 2e-16 ***
## leaveYes, Other    -0.401124   0.003676 -109.126  < 2e-16 ***
## ageUnder 40        -0.161417   0.002770  -58.280  < 2e-16 ***
## superSupervisor    -0.052696   0.002771  -19.020  < 2e-16 ***
## agencyAG           -0.090653   0.006396  -14.173  < 2e-16 ***
## agencyAM           -0.153258   0.020983   -7.304 2.80e-13 ***
## agencyAR            0.033258   0.005965    5.575 2.47e-08 ***
## agencyCM           -0.100409   0.007725  -12.997  < 2e-16 ***
## agencyCU           -0.081316   0.030405   -2.674  0.00749 ** 
## agencyDD           -0.014981   0.006858   -2.184  0.02894 *  
## agencyDJ           -0.013711   0.007331   -1.870  0.06146 .  
## agencyDL           -0.012297   0.011305   -1.088  0.27672    
## agencyDN           -0.020865   0.010412   -2.004  0.04508 *  
## agencyDR            0.031224   0.027384    1.140  0.25418    
## agencyED           -0.038369   0.017490   -2.194  0.02825 *  
## agencyEE           -0.016350   0.028473   -0.574  0.56582    
## agencyEP            0.003935   0.011040    0.356  0.72154    
## agencyFT           -0.269663   0.032885   -8.200 2.41e-16 ***
## agencyGS            0.014193   0.010901    1.302  0.19290    
## agencyHE            0.016374   0.006235    2.626  0.00864 ** 
## agencyHS           -0.068234   0.005807  -11.751  < 2e-16 ***
## agencyHU           -0.010123   0.013673   -0.740  0.45908    
## agencyIN           -0.042045   0.007148   -5.882 4.05e-09 ***
## agencyNF            0.045429   0.028032    1.621  0.10511    
## agencyNQ           -0.035729   0.024212   -1.476  0.14003    
## agencyNU           -0.061875   0.020642   -2.997  0.00272 ** 
## agencyNV           -0.021254   0.006475   -3.282  0.00103 ** 
## agencyOM            0.034900   0.023552    1.482  0.13839    
## agencySB            0.213810   0.015756   13.570  < 2e-16 ***
## agencyST           -0.112593   0.010792  -10.433  < 2e-16 ***
## agencySZ           -0.195332   0.007298  -26.764  < 2e-16 ***
## agencyTD            0.002963   0.007826    0.379  0.70493    
## agencyTR           -0.091886   0.006779  -13.555  < 2e-16 ***
## agencyXX           -0.030802   0.010440   -2.951  0.00317 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7561 on 431597 degrees of freedom
##   (126143 observations deleted due to missingness)
## Multiple R-squared:   0.53,  Adjusted R-squared:  0.5299 
## F-statistic: 1.315e+04 on 37 and 431597 DF,  p-value: < 2.2e-16
## 
## 
## $`as dv: exp_3`
## 
## Call:
## lm(formula = y ~ mut + sex + leave + age + super + agency, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7946 -0.5298  0.1582  0.5881  4.0441 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.608954   0.009138 176.081  < 2e-16 ***
## mut                 0.637127   0.001577 404.090  < 2e-16 ***
## sexMale            -0.132168   0.002959 -44.673  < 2e-16 ***
## leaveYes, - Fed    -0.273275   0.004157 -65.732  < 2e-16 ***
## leaveYes, - NotFed -0.492735   0.007309 -67.412  < 2e-16 ***
## leaveYes, Other    -0.274483   0.004584 -59.878  < 2e-16 ***
## ageUnder 40        -0.022907   0.003460  -6.620 3.59e-11 ***
## superSupervisor    -0.054312   0.003451 -15.737  < 2e-16 ***
## agencyAG           -0.286507   0.007985 -35.882  < 2e-16 ***
## agencyAM           -0.121995   0.026108  -4.673 2.97e-06 ***
## agencyAR           -0.041169   0.007436  -5.537 3.08e-08 ***
## agencyCM           -0.195429   0.009655 -20.241  < 2e-16 ***
## agencyCU           -0.150209   0.037858  -3.968 7.26e-05 ***
## agencyDD           -0.069011   0.008552  -8.070 7.06e-16 ***
## agencyDJ           -0.213106   0.009140 -23.315  < 2e-16 ***
## agencyDL           -0.074264   0.014114  -5.262 1.43e-07 ***
## agencyDN           -0.187005   0.012988 -14.398  < 2e-16 ***
## agencyDR            0.123195   0.034201   3.602 0.000316 ***
## agencyED           -0.173707   0.021802  -7.967 1.62e-15 ***
## agencyEE           -0.096319   0.035752  -2.694 0.007059 ** 
## agencyEP           -0.115771   0.013764  -8.411  < 2e-16 ***
## agencyFT           -1.016944   0.041072 -24.760  < 2e-16 ***
## agencyGS           -0.030253   0.013610  -2.223 0.026231 *  
## agencyHE           -0.017643   0.007779  -2.268 0.023327 *  
## agencyHS           -0.213383   0.007239 -29.476  < 2e-16 ***
## agencyHU           -0.175678   0.017047 -10.306  < 2e-16 ***
## agencyIN           -0.294979   0.008931 -33.029  < 2e-16 ***
## agencyNF           -0.026564   0.035033  -0.758 0.448303    
## agencyNQ           -0.361217   0.030168 -11.974  < 2e-16 ***
## agencyNU           -0.333938   0.025772 -12.958  < 2e-16 ***
## agencyNV           -0.094917   0.008073 -11.757  < 2e-16 ***
## agencyOM            0.012351   0.029311   0.421 0.673485    
## agencySB            0.090593   0.019711   4.596 4.31e-06 ***
## agencyST           -0.099466   0.013457  -7.391 1.46e-13 ***
## agencySZ           -0.208810   0.009116 -22.907  < 2e-16 ***
## agencyTD           -0.234038   0.009769 -23.958  < 2e-16 ***
## agencyTR           -0.198028   0.008465 -23.392  < 2e-16 ***
## agencyXX           -0.202916   0.013030 -15.573  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9444 on 432502 degrees of freedom
##   (125238 observations deleted due to missingness)
## Multiple R-squared:  0.3659, Adjusted R-squared:  0.3659 
## F-statistic:  6746 on 37 and 432502 DF,  p-value: < 2.2e-16
## 
## 
## $`as dv: exp_4`
## 
## Call:
## lm(formula = y ~ mut + sex + leave + age + super + agency, data = opm22_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7030 -0.5285  0.1380  0.5656  4.1339 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.6141706  0.0090259  68.045  < 2e-16 ***
## mut                 0.7841557  0.0015569 503.659  < 2e-16 ***
## sexMale             0.0264013  0.0029433   8.970  < 2e-16 ***
## leaveYes, - Fed    -0.2151555  0.0041271 -52.132  < 2e-16 ***
## leaveYes, - NotFed -0.2471967  0.0072401 -34.143  < 2e-16 ***
## leaveYes, Other    -0.1467412  0.0045448 -32.288  < 2e-16 ***
## ageUnder 40         0.0017810  0.0034494   0.516 0.605630    
## superSupervisor     0.0687765  0.0034072  20.186  < 2e-16 ***
## agencyAG           -0.1046711  0.0078952 -13.258  < 2e-16 ***
## agencyAM           -0.2245785  0.0258141  -8.700  < 2e-16 ***
## agencyAR           -0.0324920  0.0073434  -4.425 9.66e-06 ***
## agencyCM           -0.0494613  0.0096724  -5.114 3.16e-07 ***
## agencyCU           -0.0807131  0.0382674  -2.109 0.034929 *  
## agencyDD           -0.0490478  0.0084795  -5.784 7.29e-09 ***
## agencyDJ           -0.2944708  0.0090323 -32.602  < 2e-16 ***
## agencyDL            0.0104844  0.0141401   0.741 0.458411    
## agencyDN           -0.0594849  0.0129346  -4.599 4.25e-06 ***
## agencyDR            0.0543197  0.0344405   1.577 0.114749    
## agencyED           -0.0739641  0.0221695  -3.336 0.000849 ***
## agencyEE           -0.0534772  0.0360676  -1.483 0.138157    
## agencyEP           -0.0463480  0.0137872  -3.362 0.000775 ***
## agencyFT           -0.2235246  0.0410403  -5.446 5.14e-08 ***
## agencyGS           -0.0173778  0.0136323  -1.275 0.202398    
## agencyHE           -0.0592210  0.0077325  -7.659 1.88e-14 ***
## agencyHS           -0.2868424  0.0071507 -40.114  < 2e-16 ***
## agencyHU           -0.1352921  0.0171977  -7.867 3.64e-15 ***
## agencyIN           -0.1400927  0.0088344 -15.858  < 2e-16 ***
## agencyNF           -0.0009681  0.0347197  -0.028 0.977755    
## agencyNQ           -0.0309183  0.0300172  -1.030 0.303002    
## agencyNU           -0.1675256  0.0258190  -6.488 8.68e-11 ***
## agencyNV           -0.0517063  0.0079730  -6.485 8.87e-11 ***
## agencyOM           -0.0389241  0.0295956  -1.315 0.188444    
## agencySB            0.1416854  0.0196595   7.207 5.73e-13 ***
## agencyST           -0.3188363  0.0132773 -24.014  < 2e-16 ***
## agencySZ           -0.0242879  0.0090160  -2.694 0.007063 ** 
## agencyTD           -0.0526204  0.0096933  -5.429 5.69e-08 ***
## agencyTR           -0.0340090  0.0084208  -4.039 5.38e-05 ***
## agencyXX           -0.1412484  0.0130185 -10.850  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.921 on 416049 degrees of freedom
##   (141691 observations deleted due to missingness)
## Multiple R-squared:  0.4598, Adjusted R-squared:  0.4598 
## F-statistic:  9573 on 37 and 416049 DF,  p-value: < 2.2e-16

Moderation

Because we are so highly powered, all of the interactions are significant - but when I plot the interactions, the lines pretty much overlap. So I don’t include any in this report.

## [1] "mut"
## [1] "lvo"
## [1] "cvo"
## [1] "proh"
## [1] "cgs"
## [1] "belong"
## [1] "exp_1"
## [1] "exp_2"
## [1] "exp_3"
## [1] "exp_4"

Multilevel models (nesting department)

##       dvs      output              
##  [1,] "mut"    "0.0271756556342543"
##  [2,] "lvo"    "0.0226570306174541"
##  [3,] "cvo"    "0.0273716808141622"
##  [4,] "proh"   "0.0194175241922053"
##  [5,] "cgs"    "0.0252733564813611"
##  [6,] "belong" "0.0186458148578086"
##  [7,] "exp_1"  "0.0317611694052896"
##  [8,] "exp_2"  "0.0192776223961834"
##  [9,] "exp_3"  "0.0317929491552445"
## [10,] "exp_4"  "0.022357541254379"