The Dyktra-Parsons coefficient of variation is a widely employed method for evaluating permeability variation. It relies on determining the coefficient value, V, using the formula: V = (k50 - k84.1)/k50. Here, k50 represents the permeability value at %k>=50 (log mean), and k84.1 is the permeability value at %k>=84.1 (one standard deviation). To compute this coefficient, knowledge of k50 and k84.1 is essential. The process involves using Rstudio to plot the frequency distribution of permeability on log-normal probability graph paper. This requires organizing permeability values in descending order and calculating the percentage of samples with permeability greater than each value. To avoid issues with values of zero or 100%, the percentage greater than or equal to a value is normalized by n+1, where n is the number of samples. Before proceeding, the data must be loaded into Rstudio.
data2 = read.csv('D:/karpur.csv')
k_core = data2$k.core
depth=data2$depth
summary(k_core)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.42 657.33 1591.22 2251.91 3046.82 15600.00
Then,we take the permeability and arrange them in descending order.
sorted_k = sort(k_core,decreasing = TRUE)
head(sorted_k)
## [1] 15600.00 14225.31 13544.98 13033.53 11841.74 11117.40
Following the computation of permeability values, the subsequent task is to ascertain the percentage of samples exhibiting permeability greater than each specific value. To circumvent complications associated with values hitting extremes of zero or 100%, the calculated percentage, for values greater than or equal to a particular threshold, is adjusted through normalization using the formula n+1, where n denotes the number of samples.
n = length(sorted_k)
k_percent = c(1:n)/(n+1)
head(k_percent)
## [1] 0.001219512 0.002439024 0.003658537 0.004878049 0.006097561 0.007317073
Create a log-normal probability graph by plotting k percent on the x-axis and sorted k on the y-axis.
plot(
x = k_percent,
y = sorted_k,
type="l",
xlab = "% >= k",
ylab = "k",
log='y',
lwd=2
)
As the curve is largely within the 0.1-0.9 interval, we can approximate
it effectively using a straight line. This allows for the possibility of
performing a straight line fitting on the curve.
nearly_linear_k_values = sorted_k[floor(0.1*n): floor(0.9*n)]
nearly_linear_k_percent = k_percent[floor(0.1*n): floor(0.9*n)]
model = lm(log10(nearly_linear_k_values) ~ nearly_linear_k_percent)
summary(model)
##
## Call:
## lm(formula = log10(nearly_linear_k_values) ~ nearly_linear_k_percent)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.19128 -0.03880 0.02148 0.04110 0.07176
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.885895 0.005010 775.7 <2e-16 ***
## nearly_linear_k_percent -1.461904 0.009112 -160.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05402 on 655 degrees of freedom
## Multiple R-squared: 0.9752, Adjusted R-squared: 0.9751
## F-statistic: 2.574e+04 on 1 and 655 DF, p-value: < 2.2e-16
plot(
x = k_percent,
y = sorted_k,
type="l",
xlab = "% >= k",
ylab = "k",
log='y',
lwd=2
)
abline(model, col="red", lwd=2)
The permeability variation coefficient, V, is derived from the
comparison of permeability values at specific percentiles on a graph. To
be specific, V is calculated as the difference between the permeability
value at %k>=50 (log mean) and the permeability value at %k>=84.1
(one standard deviation), divided by the permeability value at
%k>=50, represented as V=(k50−k84.1)/k50.
log_k50_and_84.1 = predict(model,
data.frame(nearly_linear_k_percent=c(0.50, 0.841))
)
print(10^log_k50_and_84.1)
## 1 2
## 1428.7056 453.3498
k50 = 10^log_k50_and_84.1[1]
k84.1 = 10^log_k50_and_84.1[2]
V = (k50 - k84.1)/k50
print(V)
## 1
## 0.682685
The Dykstra-Parsons coefficient reveals a permeability coefficient of variation exceeding 0.5, indicating pronounced heterogeneity in the reservoir.
The Lorenz coefficient for permeability variation is calculated by constructing a flow capacity plot, which entails graphing cumulative kh against cumulative phi*h.
first, let’s calculate the thickness from the depths.the differences in depths gives the thickness:
thickness = depth[2:n]-depth[1:n-1]
summary(thickness)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5000 0.5000 0.5000 0.5086 0.5000 1.0000
thickness=append(thickness, 0.5)
ta=data.frame(data2)
ta["thickness"]=thickness
j=ta[order(k_core, decreasing = TRUE),]
summary(j)
## depth caliper ind.deep ind.med
## Min. :5667 Min. :8.487 Min. : 6.532 Min. : 9.386
## 1st Qu.:5769 1st Qu.:8.556 1st Qu.: 28.799 1st Qu.: 27.892
## Median :5872 Median :8.588 Median :217.849 Median :254.383
## Mean :5873 Mean :8.622 Mean :275.357 Mean :273.357
## 3rd Qu.:5977 3rd Qu.:8.686 3rd Qu.:566.793 3rd Qu.:544.232
## Max. :6083 Max. :8.886 Max. :769.484 Max. :746.028
## gamma phi.N R.deep R.med
## Min. : 16.74 Min. :0.0150 Min. : 1.300 Min. : 1.340
## 1st Qu.: 40.89 1st Qu.:0.2030 1st Qu.: 1.764 1st Qu.: 1.837
## Median : 51.37 Median :0.2450 Median : 4.590 Median : 3.931
## Mean : 53.42 Mean :0.2213 Mean : 24.501 Mean : 21.196
## 3rd Qu.: 62.37 3rd Qu.:0.2640 3rd Qu.: 34.724 3rd Qu.: 35.853
## Max. :112.40 Max. :0.4100 Max. :153.085 Max. :106.542
## SP density.corr density phi.core
## Min. :-73.95 Min. :-0.067000 Min. :1.758 Min. :15.70
## 1st Qu.:-42.01 1st Qu.:-0.016000 1st Qu.:2.023 1st Qu.:23.90
## Median :-32.25 Median :-0.007000 Median :2.099 Median :27.60
## Mean :-30.98 Mean :-0.008883 Mean :2.102 Mean :26.93
## 3rd Qu.:-19.48 3rd Qu.: 0.002000 3rd Qu.:2.181 3rd Qu.:30.70
## Max. : 25.13 Max. : 0.089000 Max. :2.387 Max. :36.30
## k.core Facies thickness
## Min. : 0.42 Length:819 Min. :0.5000
## 1st Qu.: 657.33 Class :character 1st Qu.:0.5000
## Median : 1591.22 Mode :character Median :0.5000
## Mean : 2251.91 Mean :0.5085
## 3rd Qu.: 3046.82 3rd Qu.:0.5000
## Max. :15600.00 Max. :1.0000
Now we will make table contain (thickness,phi.core,k.core):
ta['kh']= j$k.core * j$thickness
ta['sum_kh']=cumsum(ta['kh'])
ta['sum_kh/total']=ta['sum_kh']/ta[n, 'sum_kh']
ta['phih'] = j$phi.core * j$thickness
ta['sum_phih'] = cumsum(ta['phih'])
ta['sum_phih/total'] = ta['sum_phih']/ta[n, 'sum_phih']
plot(ta['sum_phih/total'][1:n,1], ta['sum_kh/total'][1:n,1], xlab = "fraction of total volume (phih)",
ylab = "fraction of total flow capacity (kh)")
x = c(ta['sum_phih/total'][1:n,1])
dx = x[2:n] - x[1:n-1]
y1 = c(ta['sum_kh/total'][1:n,1])[1:n-1]
y2 = c(ta['sum_kh/total'][1:n,1])[2:n]
lower_area = sum(y1*dx) #Reduce("+", y1*dx)
upper_area = sum(y2*dx) #Reduce("+", y2*dx)
AUC = (lower_area + upper_area)/2
print(AUC)
## [1] 0.7247318
Lorenz coefficient=(AUC−0.5)/0.5
Lorenz_coefficient = (AUC - 0.5)/0.5
print(Lorenz_coefficient)
## [1] 0.4494636